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1 Supplementary Figures
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Figure S1: Assessment of inferred direct interactions against the Y2H reference set. Interactions are ranked by scores
calculated using corresponding methods. Performance of all methods is measured by plotting the number of top-ranking
inferred direct interactions of a method against the number of these interactions that are validated by the Y2H reference set.
(A) Collins dataset, (B) Friedel dataset.
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Figure S2: Assessment of inferred direct interactions against the PCA reference set. Interactions are ranked by scores
calculated using corresponding methods. Performance of all methods is measured by plotting the number of top-ranking
inferred direct interactions of a method against the number of these interactions that are validated by the PCA reference set.
(A) Collins dataset, (B) Friedel dataset.
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Figure S3: ROC curves for direct (versus indirect) interaction classification with respect to HINT reference sets. (A)
Collins dataset, (B) Friedel dataset.
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Figure S4: ROC curves for direct (versus indirect) interaction classification with respect to Y2H reference sets. (A)
Collins dataset, (B) Friedel dataset.
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Figure S5: ROC curves for direct (versus indirect) interaction classification with respect to PCA reference sets. (A)
Collins dataset, (B) Friedel dataset.
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Figure S6: Assessment of inferred direct interactions using the CYC2008 complexes. Interactions are ranked by scores
calculated using corresponding methods. Performance of all methods is measured by plotting the number of top-ranking
inferred direct interactions of a method against the number of complexes that are sufficiently connected by these interactions.
A complex is considered to be sufficiently connected by a set of physical interactions if the physical interactions reduce the
number of connected components within the complex to less than 50% compared with the unconnected complex. (A) Collins
dataset, (B) Friedel dataset.
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Figure S7: Score distributions of different types of interactions on the Friedel dataset. The score distributions are
represented by box plots (line = median). We use Student’s t-test to test difference between scores of bait-prey (B-P)
interactions and prey-prey (P-P) interactions, and t-statistics is presented in the figure. (A) AP-MS score distributions,
(B) BINM score distributions.
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2 Supplementary Text

2.1 Model parameter estimation
The objective function of the proposed binary interaction network model (BINM) is

min
Wdir≥0

∥D
(
Wobs −

(
Wdir +W 2

dir

))
∥2F + λ∥Wdir∥2F , (1)

where Wdir ≥ 0 means each element wdir
ij ≥ 0 and D(·) sets the diagonal terms of a matrix to zero.

We use the multiplicative updating rule [1] to solve this nonnegative constrained optimization problem. Let ωij be the
Lagrange multipliers for constraints wdir

ij ≥ 0, and Ω = (ωij). The Lagrange function L is

L (Wdir,Ω) = ∥D
(
Wobs −

(
Wdir +W 2

dir

))
∥2F + λ∥Wdir∥2F + tr(ΩWT

dir), (2)

where tr(·) denotes the trace of a matrix. The partial derivatives of L with respect to Wdir is:

∂L
∂Wdir

= −2Wobs − 2Wdir
TWobs − 2WobsWdir

T + 2Ŵobs + 2Wdir
T Ŵobs + 2ŴobsWdir

T + 2λWdir +Ω, (3)

where Ŵobs = D
(
Wdir +W 2

dir

)
. Since the estimators of Wdir need to satisfy ∂L

∂Wdir
= 0, we can get

Ω = 2Wobs + 2Wdir
TWobs + 2WobsWdir

T − 2Ŵobs − 2Wdir
T Ŵobs − 2ŴobsWdir

T − 2λWdir. (4)

By the Karush-Kuhn-Tucker (KKT) conditions [2], wdir
ij ωij = 0, we get the following equations for wdir

ij :

wdir
ij

(
Wobs +Wdir

TWobs +WobsWdir
T − Ŵobs −Wdir

T Ŵobs − ŴobsWdir
T − λWdir

)
ij
= 0. (5)

This leads to the following update rule for wdir
ij ,

wdir
ij ← wdir

ij ·
(

Wobs +Wdir
TWobs +WobsWdir

T

Ŵobs +Wdir
T Ŵobs + ŴobsWdir

T + λWdir

). 14

ij

. (6)

For the sake of convenience, we rewrite the updating formulae in matrix form,

Wdir ←Wdir ·
(

Wobs +Wdir
TWobs +WobsWdir

T

Ŵobs +Wdir
T Ŵobs + ŴobsWdir

T + λWdir

). 14

. (7)

Here matrix operation X · Y represents element-by-element multiplication; X
Y represents element-by-element division; and

X . 14 represents element power.

2.2 Convergence analysis
We have developed an iterative algorithm to solve the optimization problem of BINM based on multiplicative updating rule. It
is known that the multiplicative updating rule is a special case of gradient descent methods with an automatic step parameter
selection for guaranteeing the nonnegativity of parameters [3]. It may therefore be able to prove that the objective function
of our model is nonincreasing under the update and that the iterative algorithm is guaranteed to find at least locally optimal
solutions by constructing an auxiliary function similar to that used in [3, 4]. Instead of proving this in theory, we validate the
convergence experimentally. From Figigure S8, we observe that the objective function decreases under the updating process,
which demonstrates the convergence of our algorithm.

2.3 Computational complexity analysis
We now analyze the computational complexity in Equation (7). Since matrices Wobs and Wdir are sparse, computing W 2

dir,
Wdir

TWobs, WobsWdir
T , Wdir

T Ŵobs, and ŴobsWdir
T take O(nE) times in the worst case, where n is the number of

proteins and E is the number of interactions. Consequently, the time cost to update Wobs once is O(nE), and hence the
time complexity of our method is O(nTE), where T is the iteration number for convergence. In real world situations,
the co-complex interaction networks are extremely sparse. Therefore, the overall cost might be reduced in practice. In the
experiments, we implement the algorithm using Matlab in a workstation with Intel 4 CPU (3.40 GH × 4) and 16 GB RAM.
As can be seen from Table S1, each update costs at most 0.07 seconds and the entire estimation takes less than 2 seconds.
Therefore, our method is efficient and scale well with the size of the network analyzed.
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Figure S8: Convergence analysis of parameter estimation algorithm. For each figure, the x-axis denotes the number of
iterations, and the y-axis denotes the value of the objective function in logarithm scale. (A) Collins dataset, (B) Friedel
dataset.

Table S1: Time cost (second) of BINM for estimating model parameters

Dataset Per update Entire estimation

Collins 0.068 1.15
Friedel 0.062 0.94

2.4 Comparison with other regularization methods
In our model (Equation 1), following the method of ridge regression [5], we use an ℓ2-norm (Frobenius norm) regular-
ization term ∥Wdir∥2F to avoid overfitting. In fact, since it would except that a co-complex interaction network would be
sparse, an ℓ1-norm regularization term ∥Wdir∥1, which is similar to lasso [5], may be better suited to identify direct physical
interactions. To test the effect of ℓ1-norm penalty, we change our model as follows:

min
Wdir≥0

∥D
(
Wobs −

(
Wdir +W 2

dir

))
∥2F + λ∥Wdir∥1, (8)

where ∥Wdir∥1 =
∑n

i=1

∑n
j=1 w

dir
ij . Here we use a ℓ1-norm penalty to replace the ℓ2-norm penalty. According to the

multiplicative update rule, we obtain the following updating formula:

Wdir ←Wdir ·

(
Wobs +Wdir

TWobs +WobsWdir
T

Ŵobs +Wdir
T Ŵobs + ŴobsWdir

T + λ
2

). 14

, (9)

where Ŵobs is computed using Ŵobs = D
(
Wdir +W 2

dir

)
. Then the estimator of Wdir can be obtained according to this

update rule.
We compare the performances of ℓ1-norm and ℓ2-norm penalties. We run the BINM model with these two types of penal-

ties on the two AP-MS datasets (Collins and Friedel) with different values of λ
(
λ ∈ {2−4, 2−2, · · · , 22}

)
, and evaluate the

performance with respect to the HINT reference set. The performance is measured by the area under the ROC curve (AUC).
From Figure S9, we observe that when λ is small (λ ∈ [2−4, 2−2]), there is no clear difference between the performances of
these two penalties. This might be due to the fact that the penalties have a slight effect on the estimators of Wdir when λ is
small. However, when λ is large (λ ∈ [2−1, 22]), ℓ2-norm penalty outperforms ℓ1-norm penalty significantly. These results
shows that ℓ2-norm penalty is less sensitive to the choice of λ than ℓ1-norm penalty. Therefore, we use the ℓ2-norm penalty
in the main text.

In fact, various regularization methods have been proposed in the field of machine learning in recent years, such as lasso
[6], SCAD penalties [7], elastic net [8], adaptive lasso [9], reweighted ℓ1 minimization [10]. In our study, we do not compare
the ℓ2-norm regularization method with these methods for the following two reasons: (1) as shown in Figure 2 in the main
text and Figure S9, the performance of BINM is not very sensitive to regularization parameter (e.g., λ) and a small λ can
produce competitive performance; (2) the main contribution of BINM is the first term that captures topological relationships
between observed co-complex interactions and underlying direct physical interactions. Consequently, we just use a widely
used regularization term to avoid the case of overfitting.
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Figure S9: Comparative performances of ℓ1-norm and ℓ2-norm penalties. The x-axis denotes the value of log2 λ; the
y-axis denotes the value of AUC score. (A) Collins dataset, (B) Friedel dataset.
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