Supplementary Figure 1. Low-magnification TEM image of Pt-Ni frame @ MOF. The scale bar is

200 nm.
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Supplementary Figure 2. (a) XRD patterns of the Pt-Ni @ MOF and the simulated Ni-MOF-74

pattern. (b) XRD patterns of Pt-Ni @ MOF, Pt-Ni frames and Pt-Ni polyhedra.
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Supplementary Figure 3. EDX spectra of Pt-Ni frame @ MOF, Pt-Ni frame and Pt-Ni polyhedra.
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Supplementary Figure 4. The fingerprint region of the IR spectra registered for the Pt-Ni frame @
MOF, pure Ni-MOF-74 and the linker 2,5-dihydroxyterephthalic acid. IR spectra of the linker and pure
Ni-MOF-74 are remarkably different while there shows a good agreement in band position and relative

intensity between Pt-Ni frame @ MOF and pure Ni-MOF-74.




Supplementary Figure 5. TEM image of bare Pt-Ni frame and the scale bar is 100 nm. Inset is the

magnified TEM image. The scale bar is 10 nm.
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Supplementary Figure 6. (a) Ni 2p3/2 and (b) Pt 4f XPS spectra of Pt-Ni polyhedra, Pt-Ni frame, and

Pt-Ni frame @ MOF.
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Supplementary Figure 7. (a) HAADF-STEM image and (b) cross-sectional compositional line

profiles of Pt-Ni frame @ MOF. The scale bar is 10 nm.

Supplementary Figure 8. HAADF STEM images of Pt-Ni frame @ MOF taken at representative tilt

angles.




Supplementary Figure 9. Tomographic reconstruction of Pt-Ni frame @ MOF. The scale bars are 50

nm.

Supplementary Figure 10. SEM images showing morphology evolution from Pt-Ni polyhedra to

Pt-Ni frame @ MOF sampled at different reaction stages: (a) 0 (b) 2 (c) 4 (d) 12 h.




Supplementary Figure 12. (a), (0))HAADF-STEM image, (c)EDS mapping image and (d), (e)TEM
image of concave Pt-Ni alloy @ MOF. Inset is the magnified TEM image showing the concave

morphology of Pt-Ni alloy. The scale bar is 5 nm.
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Supplementary Figure 13. TGA of Pt-Ni Frame @ MOF and Ni-MOF-74. Data were collected under

flowing nitrogen using a temperature ramp of 10°C « min™.

diluted acid

treatment

Supplementary Figure 14. Scheme showing the structural transformation from Pt-Ni frame @ MOF
to bare Pt-Ni frame by acid treatment. From ICP-MS measurement, the Pt:Ni molar ratios within Pt-Ni
frame @ MOF and bare Pt-Ni nanoframe are 1:6.7 and 1:0.5, repectively. Hence, the molar ratio of Pt :
Ni (in nanoframe) : Ni(in MOF) is 1 : 0.5 : 6.2. As the stoichiometric ratio of Ni : ligand in Ni-MOF-74
is 2:1, the molecular formula of Pt-Ni frame @ MOF should be PtNijs(Ni,L)3; and the mass fractions

of Pt-Ni frame (core) and MOF (shell) could be obtained according to equation (1) and (2).
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Supplementary Figure 15. Hydrogen adsorption capacity of (a) Pt-Ni frame @ MOF and (b) pure
MOF. Calculated hydrogen adsorption capacity (c) of Pt-Ni frame in the Pt-Ni frame @ MOF. For the
Pt-Ni frame @ MOF composites (Cpi core-mor), the uptake capacity of H, were suggested to contain
two parts: Cpmi core (ML-g™) for the encapsulated Pt-Ni alloy core and Cyor (mL-g™) for MOF. The

total uptake Cpi core-mor (ML-g™Y) was considered to be the weighted arithmetic mean of Cpyi core and

H, uptake (P1-Ni MOF composites, miig)
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Cwmor. Hence, the calculated Cpyi core Can be obtained by equation (3).

Ceini core = (Cini core-Mor = Cmor «@mor)! @pii core (3)
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Supplementary Figure 16. The recycle experiment of selective hydrogenation of
1-chloro-2-nitrobenzene. Reaction conditions: 1-chloro-2-nitrobenzene (0.3 mmol), [Pt] (Img, 1.6

mol%), CH;OH (1.5 mL), PH,: 1 bar, T: 30 “C, 90min.
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Supplementary Figure 17. PXRD of Pt-Ni frame @ MOF after 10 catalytic runs.




Supplementary Figure 18. TEM image of Pt-Ni frame @ MOF after 10 catalytic runs.

Supplementary Figure 19. SEM images of (a) the Pt-Ni frame on MOF and (b) Pt-Ni frame @ MOF

catalysts, showing the different topological structure.
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Supplementary Figure 20. The catalytic activity of commercial Pt/C compared with Pt-Ni alloy and
Pt-Ni frame @ MOF in the hydrogenation of 1-chloro-2-nitrobenzene, reductive imination of
nitrobenzene, and hydrogenation of olefins. (a) 1-chloro-2-nitrobenzene (0.3 mmol), catalysts [Pt]
(0.005 mmol), CH3OH (1.5 mL), PH,: 1 bar, T: 30 °C. (b) nitrobenzene (0.2 mmol), benzaldehyde (0.3
mmol), catalysts containing [Pt] (0.005 mmol), C,HsOH (2 mL), PH,: 1 bar, T: 30 “C. The TOF values
were calculated based on the active sites measured from the CO titration experiments. (c) olefins
(styrene, 2,4,6-trimethylstyrene, trans-stilbene, 4,4'-dimethyl-trans-stilbene) (0.1 mmol for each

component), catalysts containing [Pt] (0.0025 mmol), THF (1.5 mL), PH,: 1 bar, T: 30 C.




Supplementary Table 1. Composition of Pt-Ni nanostructures

Analyzed molar ratios Analyzed molar ratios
Entry
(Pt-Ni) by ICP-MS (Pt-Ni) by EDS
Pt-Ni Polyhedra 0.110.89 0.130.87
Pt-Ni Frame 0.68 0.32 0.710.29
Pt-Ni Frame @ MOF 0.130.87 0.16 0.84

Supplementary Table 2. Catalytic activity comparison among Ni based materials and Pt-Ni frame @

MOF

Entry Conv. (%)
Pt-Ni frame@Ni-MOF-74 2 >99.0
Ni nanocrystal ? N.D.
Ni-MOF-74? N.D.
Pt-Ni frame@Ni-MOF-74 ° >99.0
Ni nanocrystal ® N.D.
Ni-MOF-74 " N.D.
Pt-Ni frame@Ni-MOF-74 ¢ >99.0
Ni nanocrystal © N.D.
Ni-MOF-74 ¢ N.D.

# 1-chloro-2-nitrobenzene (0.3 mmol), [Ni] (10 mol%), CH;OH (1.5 mL), PH,: 1 bar, T: 30 °C, 3 h.
® styrene (0.1 mmol), [Ni] (10 mol%), THF (1.5 mL), PH,: 1 bar, T: 30 ‘C, 3 h.

¢ nitrobenzene (0.2 mmol), benzaldehyde (0.3 mmol), [Ni] (10 mol%), C,HsOH (2 mL), PH,: 1 bar,

T:30 C,3h.




Supplementary Table 3. CO chemsorption measurements at 323K

CO chemsorption measurements at 323K

Metal (0) co active sites Dispersion™
Entry Sample content chemsorption per gram metal * (mol qetive sites/
(wt. %) (umol/g catatyst) (umol/g metar) Mol metar; %)
1 Pt-Ni frame 100 256.4 256.4 3.8
2 Ni-MOF-74 0 45 - -
3 Pt-Ni frame @ MOF 19 35.5 159.5 2.4
4 Pt-Ni frame on MOF 19 45.5 209.5 3.1
5 PyC™ 5 189.7 3794 73.8

The active site number and dispersion were calculated assuming a stoichiometry of one CO molecule per surface

metal atom (metal atom = Pt + Ni).

*From entryl and 2, it is showed that the CO chemsorption on Ni-MOF-74 is significantly lower than Pt-Ni frame

core. In this column we deducted the chemsorption of Ni-MOF-74 part and normalize the CO uptake amount

based on the total metal weight (Pt + Ni) of Pt-Ni nanostructures and Pt/C. We assume a stoichiometry of one CO

molecule per surface active site to calculate the active sites per gram metal.

**As it is hard to exclude the catalytic role of Ni metal due to the possible synergetic interaction between Pt and

Ni atoms, we calculate the dispersion of Pt-Ni nanostructures base on the total metal number (Pt + Ni).

***|t has been inferred that carbon materials did not show CO chemsorption capability?.
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