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Supplementary Figure 1. Two-photon correlations obtained with distinguishable photons. 

Experimental correlation matrices  ,k l
z  obtained with pairs of distinguishable photons for a the device 

with symmetric input state preparation at propagation length of 0.4
B

 and b the device with 

antisymmetric input state at propagation length of 0.1
B

. 

 

 

Supplementary Figure 2. Two-photon correlations obtained with different initial phase shifts of the 

input N00N state. Experimental correlation matrices  ,k l
z  at identical propagation length of 

0.3z 
B

 obtained through continuous tuning of the input phase shift from a to b and c (see main text). 

The phase shift of the intermediate case was determined through best-fit optimization procedure between 

experiments and simulations (not shown). 
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           Symmetric input state           Antisymmetric input state 

     

Supplementary Figure 3. Photon densities over a full Bloch cycle. Left: Output experimental photon 

densities (blue bars) obtained with symmetric input state preparation, with propagation lengths from 

0.1
B

 to a full Bloch period 
B

. Simulations are shown in red (with reversed vertical axis for better 

visibility). Right: Output experimental photon densities (blue bars) obtained with antisymmetric input 

state preparation, with propagation lengths from 0.1
B

 to a full Bloch period 
B

. Simulations are shown 

in red (with reversed vertical axis for better visibility). 

 

Propagation length 0.1B  0.2
B  0.3

B  0.4
B  

S
 state 0.950 0.004  0.928 0.005  0.924 0.002  0.914 0.001  

AS
 state 0.931 0.003  0.952 0.002  0.939 0.006  0.936 0.008  

 

Supplementary Table 1. Similarities between experimental and simulated matrices in the cases of 

symmetric S
 and antisymmetric AS

 input state preparation. The errors are derived from 

assuming Poissonian count statistics for and are further propagated for the calculation. 
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Supplementary Note 1. Matrices with distinguishable particles 

We consider the case of the correlations exhibited by the (antisymmetric) symmetric input state 

at propagation lengths (before) after the turning point of 0.25B  (Fig. 3d and 3e of the main 

text). These states are strongly correlated, implying that both photons are always found in the 

same branch, as a result of the cancellation of anticorrelated events. We show here that such 

amplitude interference is not occurring when deliberately injecting distinguishable photon pairs 

into the circuit, produced by adding a delay between the two particles that is longer than the 

wave packet coherence time. Supplementary Figure 1 shows the correlation matrices obtained 

from injecting such states in the device with symmetric input state preparation with propagation 

up to 0.4
B , and with antisymmetric input state preparation with propagation up to 0.1B . 

Under these premises, the quantum state remains separable and the correlations map exhibits 

four peaks. Similar probabilities are therefore observed for the photon pair to gather or separate 

upon propagation, which is by nature a feature of separable states. Formally, it is a manifestation 

that time-evolved states of this kind can always be factorized, therefore preventing the building-

up of non-classical correlations.  

It can be shown that for distinguishable photons, the matrix with elements given by the 

parameter 
, , ,l ,l

1
0

3
k l k k l kV       is expected to be negative at every position

1
. In our 

experiments, however, we used indistinguishable photons and, as a result, such matrices exhibit 

several positive elements, showing a violation of the inequality with an interval of confidence as 

high as 
,23 k l , where 

,k l  is the standard deviation. 

In order to provide a comparison of the maximum deviation of our experimental non-classical 

parameters, 
,k lV , with the ones obtained for distinguishable particles; we have determined 

,k lV  

normalized to the standard deviation 
,k l  obtained from the propagation of distinguishable 

photons in the same Bloch array, that is, 
, ,k l k lV  .  

Then, we perform a direct comparison between the matrix elements that maximize the inequality 

for the indistinguishable case (elements , 4, 4k l    in the violation matrix for the S
 state 

occurring at 0.4z 
B ) and the corresponding counterparts with distinguishable photons. By 

doing so, we obtain a value of 26 , that is, the non-classical inequality is not violated with an 
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interval of confidence as high as 
,26 k l . According to these results, the correlation 

measurements performed with indistinguishable photons are genuinely quantum.  

 

Supplementary Note 2. Observation of the first Bloch revival 

In general, periodicity of a given phenomenon can be assessed by observing its behavior over a 

full period (e.g. in time or in space). In order to do so, we have determined the photon density 

 kn z  out of the two-photon correlation measurements covering the propagation distances of 

0.1B , 0.2
B , 0.3

B , 0.4
B , 0.5

B  and 
B  in the Bloch cycle, for both input cases. The 

heralded photon density was obtained by extracting the marginal ,k k ll
n    of each correlation 

matrix, strictly corresponding to the single-photon case. The results are plotted in Supplementary 

Figure 3, with corresponding simulations. The high quality of the revival of the photon density 

kn  obtained at one Bloch period is evidenced, here estimated to occur with probability of 

0.92 0.02  for the symmetric wave function case, and 0.94 0.01  for the antisymmetric one. 

This indicates the high degree of coherence obtained over an entire Bloch cycle in our 

experimental realizations. 

 

Supplementary Methods. Detuned directional couplers 

To be able to induce a controlled phase shift   of the two-photon N00N state in the range 

 0,  , we take advantage of an additional degree of freedom during the fabrication process 

of a standard directional coupler, namely the writing speed. This parameter controls the amount 

of deposited laser energy through the number of pulses focused at the same spot in the glass and, 

therefore, directly varies the mode propagation constant. In doing so, we implement an integrated 

detuned Directional Coupler (detuned DC). At the single photon level, such detuned DC is 

described by the coupled set of equations: 

†
† †0
0 1

da
i a Ca

dz
                      (1) 

†
†1
0

da
i Ca

dz
  ,               (2) 
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where †

ka ,  0,1k   is the bosonic creation operator in waveguide k , C  is the coupling 

coefficient and   the difference in the mode propagation constants. After analytical integration 

of coupled equations (S1) and (S2), we obtain: 
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where 

2

2

2
C

 
  

 


 is an effective coupling coefficient. A detuned DC behaves as a 

balanced beam splitter if the condition 
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is fulfilled. Remarkably, at the same propagation distance the device is able to transform a two-

photon separable product state † †

0 1 0a a , where 0  is the vacuum state, into the following state: 
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(5) 

which is of the form 00 2 ,0 e 0 ,2 2i

N N m n m n

      up to a global phase factor, and thus 

identical to equation (2) of the main text. When prepared in such a state, the two photons are 

always found in the same site with a phase shift between the associated modes given by 
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2
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The device therefore allows for on-chip integration of arbitrary path-entangled state 

presenting mixed quantum statistics, or anyonic-like state. In the particular case of 0  , one 

can retrieve 0   which corresponds to the well-known situation of a standard DC, where the 

two photons output the device in a symmetric wave function S
. The other specific case is 

obtained when considering a detuning of 2C  , generating the antisymmetric wave function 

AS
, with   . Experimentally, this detuning was achieved by increasing the writing 

velocity to 1m.m8 m in0   in one arm of the coupling section of the detuned DC, compared to 

1m.m6 m in0   in the other arm. The coupling length was further adjusted according to equation 

(S4) to obtain again a balanced device, with a splitting ratio of 50:50 . The intermediate situation 

for generating the arbitrary wave function arb
 was obtained with a writing velocity for the 

detuned mode of 1m.m7 m in5   and led experimentally to a phase in the input state of 

exp 0.8 0.1   
arb

. 

Every designed detuned DC was first characterized in on-chip interferometers made of one 

detuned DC followed by a standard DC. The bulk-optic equivalent of this scheme is the detuned 

Mach-Zehnder interferometer, having two arms of different lengths. Such an arrangement allows 

for determining the output phase shift of the detuned DC when a classical light beam is launched 

in one input mode, with appropriate measurement of the output ratio of the interferometer. The 

designed phase shift was achieved with an accuracy of about 10 . 

In the second fabrication stage the designed detuned DC was connected to the central modes 

of the curved waveguide array constitutive of the Bloch-oscillator. After performing the spatial 

correlation measurements, extensive best-fit optimization of simulated matrices was done 

through Root Mean Square optimization procedure, with C  and   as input parameters. The 

results are given in the main text, further confirming the introduction of desired phase shifts in 

the two-photon N00N states. 
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