Supplementary Figures
Supplementary Figure 1. Schematic representation of the JigsawSeq algorithm
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When analyzing highly homologous library (gray region) with short-read length (i.e., lllumina
<150 bp) sequencer, without codon barcode (a), assembling reads results in four possible
combinations. The red dotted line represents sequencing errors. Two (subset A, D) were
correctly called. However, utilization of codon barcodes enables specific assembly (b).



Supplementary Figure 2. Construction of pBR322-dul plasmid
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(a) Using the forward primer containing a HindlIl site and the reverse primer containing an
Nhel site, we amplified the regions beginning with the promoter to the open reading frame of C-
kanR. (b) Using Hindlll and Nhel enzymes, we cloned the fragment into pBR322 to construct
pBR322-du0. We then constructed the pBR322-dul plasmid by substituting the intein sequence
with an 87-bp dummy sequence. (c) Finally, with enzyme Nsil and Ncol, intein variants were
cloned into a vector.




Supplementary Figure 3. Cloning of codon variant libraries through Gibson assembly.
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Primer pairs (blue and gray arrows) were used to amplify backbone sequences, resulting in
fragments of similar lengths. Combined with synthesized gene libraries, we cloned synthesized
genes into the pEGFP-C1 (a) and pBR322-dul (b) plasmids using Gibson assembly (Online
Methods).



Supplementary Figure 4. Procedure for constructing variant library pools
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The constructed plasmids were transformed into chemically-competent E. coli C2566, and cells
were recovered after incubating for 1 h at 37°C. By spreading 100 pL of the initial cells, we
could estimate the volume required to generate the initial pool. This pool was saturated
overnight. We then extracted plasmids, and they were subjected to a standard NGS preparation
protocol. The diluted pool was also spread on agar plates, from which we randomly selected 96
individual colonies. The 96 clones were mixed, saturated, and prepared for NGS as described
above, and these clones represented the sub-pool (Sub) from larger initial pool of clones.



Supplementary Figure 5. Downsampling analysis for Sub Sanger pools
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Random subsampling of the total reads (quality trimmed as described in Online Methods) for
each library was performed. For Npu-intein and mcardinal genes (approximately 1.0 x 10° reads;
0.3% of one Illumina HiSeq lane), sensitivity remains high [(92.4% for intein (916,800 reads),
87.3% for mcardinal_L (LCR, 1,380,740 reads), and 83.3% for mcardinal_A (Assembly PCR,
1,214,230 reads)].



Supplementary Figure 6. Depth distribution of NGS Sub pools
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Contigs predicted by JigsawSeq and the distribution of their mean depth (variant population) in
various libraries is shown: (a) Npu-intein_Sub, (b) mcardinal_A (Assembly PCR), (c)
mcardinal_L (LCR), (d) kanR, (e) tolC. We assumed mean depth distributions of the library
would reflect the variant population, and we observed amplification biases in the variant library.



Supplementary Figure 7. Alignment result of a contig from the tolC Sub Sanger pool
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tv!ﬂ_ﬁ? H RO GG ATCCAC TEGCATT TCCGATADGT CT TAT TCTGGGT CARAAAC GO G GRTOOGECAGGEATGCAGTACGACGATTCCAAT B8
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tolc 52 : GOCTGACTCGOOGGCTOOGGTGETHCAGCARANOGT CHECAOHEACTACAROGTC! COGTTTOGTARTTAL 1470

Representative contig from the Sanger-validated tolC_Sub pool aligned to its reference
sequence. Eight substitutions and 12 consecutive in-frame deletions are shown in red box.
Mutations that occur between long stretches of wild type sequence can be resolved by
connecting edges of the pool’s de Bruijn graph. Randomized codons, which served as barcodes,
provided sufficient diversity to distinguish each variant.



Supplementary Figure 8. Depth distribution of NGS initial pools
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Depth distribution of the initial kanR (left) and tolC (right) pools are shown. The majority of the
population distribution is concentrated on the left (positively skewed). To model over-dispersed

data, negative binomial model is generally preferable. The variance-to-mean ratio (VMR, o°/u )

is calculated for each pool and samples drawn from this parametric distribution (negative
binomial) is applied in the simulation study.



Supplementary Figure 9. JigsawSeq simulation performance
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Simulation results of (a) 100, (b) 1,000, (c) 10,000, (d~f) 100,000 tolC mutant library populations.
We set the variable as coverage (x) and mutation rate for the error-prone PCR model. Random
mutations were generated with specified mutation rates of 0.001, 0.01 and 0.05. Additionally,
we assumed that no amplification biases in PCR (an even number of templates of distinctive
molecules) and applied sequencing error rate of 0.1% (a~d, f) and 1% (e, g). Across all levels,
the recovery of template sequences was nearly perfect with reasonable mutation rate and
coverage. Overall, a minimum depth of coverage value ~12 x ensures high sensitivity across all
simulations. PPV for all simulation result was 100%. Additionally, we designed the tolC gene
library with a randomization method using N, R, and Y. Since library complexity increases with
an increasing number of barcodes, the coverage required to achieve comparable sensitivity
increases. The sensitivity was slightly higher (98.8% vs 97.8% for 0.1% error, 93.8% vs 93% for
1% error) than that of the gene library using only ‘N’ when the depth of coverage was sufficient
(> 48 x). We note that the model based on the sequencing error rate of 0.1% would reflect more
realistic scenarios (the error rate of lllumina sequencer is approximately 0.1%).



Supplementary Figure 10. Data estimation for the initial tolC pool
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In the simulation, for 60x mean coverage, recovery of true positives was perfect (a). Even when
sequencing errors are introduced at the rate of 1%, 60x ensures maximum recovery. We
extrapolated the graph (b) using the R function predict.Im() and estimated the required data size
(Gbytes) (95% prediction interval for a future Y observation when x=x*(1.6)). Considering the
current trend of the backbone-removed data above, we expected 31.4 Gbytes (19.6 GB*1.6)
would be enough to saturate a larger pool (c).



Supplementary Figure 11. Schematic diagram of the causes of missed true contigs
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Rare seeds (a) and edges (b) could be missed using the default parameters. We could rescue
these sequences by raising the cutoff value. However, erroneous edges from sequencing errors
create a complex graph structure, thereby posing additional computational challenges and false
assembly. Therefore, we optimized parameters for robust error correction (Online methods,
edge cutoff: 50, seed cutoff: 200). In the above figure, the x-axis presents k-3 mer node position,
which was defined by sliding the nodes by 3 bases from the start to the end of the gene
sequences.



Supplementary Figure 12. Data estimation for the initial kanR pool
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In contrast with tolC, recovery rate reached 100% in the simulation at 48x coverage (for both 0.1%
and 1% sequencing error simulations) (a). Using the same method as tolC, we extrapolated the
graph (b) to calculate required data (Gbytes) size (95% prediction interval for a future Y
observation when x=x*(1.3)) When removing vector backbone sequences, 17.9 Ghytes (13.8
GB*1.3) of data would be sufficient (c).



Supplementary Figure 13. Codon adaptation index (CAl) distribution of functional
variants of kanR and tolC.
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Calculated CAI distribution of both kanR_Ori (0.603+0.018, left) and tolC_Ori (0.608+0.013,
right) pool variants are shown. Specifically, functional variants (in-frame contigs without
premature stop codons), reveal low standard deviations.



Supplementary Figure 14. Simulation of barcode density downsampling
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As the number of barcodes decreases, the recovery of true templates decreases (sequencing
error rate of 0.1% (left) and 1% (right). As the population size increases, this effect is more
pronounced. In the population up to 1,000, downsampling of barcodes to p=0.7 (sampling the
number of barcodes in binomial distribution) showed high sensitivity. The simulation is
evaluated based on optimized k-mer length 120.
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Supplementary Figure 15. Simulation results of amino acid length variation for which
translated into fixed DNA sequences
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(a) We generated 100,000 normal PCR (0.1%, 1% sequencing error rate) libraries with a fixed
DNA sequences region (not randomized to N, R, and Y, see figure above) within tolC. We
performed the simulation (k-mer: 120) by varying the window size of the fixed region and
compared two different barcoding strategies (using ‘N’ only or using ‘NRY’, assume 48x even
coverage that showed high sensitivity in Supplementary Fig. 9). We observed decreased PPV
value (an increase in false positives) for both (b, d) ‘N’ only and (c, €) ‘NRY’ strategies as the

fixed length increased. We also generated random mutations to fixed region (blue) to have 1
mutation on average (range: 0-3). For both different barcoding scenarios (‘N’ for (d), ‘NRY’ for
(e)), PPV increased to ~95%. Introducing 1% errors (substitution) on sequencing resulted in 2~3%
decrease in PPV on average for above simulations.



Supplementary Figure 16. Simulation results of multiple-site (double) mutagenesis
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(a) We created mutated libraries of tolC including missense mutation as a singleton for two
distant random regions. For the convenience of simulation, we limited the library size to 100,000.
Venn diagram showed JigsawSeq’s performance in the simulation when sequencing error rate

is (b) 0.1% and (c) 1.0%. For both conditions, high concordance was observed between true
positive contigs and called contigs from JigsawSeq. We could create the above library by either
of the two methods discussed in Supplementary Fig. 18.



Supplementary Figure 17. Simulation results of single chain antibody (ScFv)
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We focused on single-chain variable fragment, which is the simplest functional representation of
an antibody molecule. To assess full-length antibody repertoires, we simulated 100,000 variable
templates (sequencing error rate of 0.1%) by randomly shuffling multiple CDR sequences to
mimic large genetic variation (a).

When comparing the library construction methods, the design (c, €) with fixed codons (a; gray
region showing that the region is not randomized to ‘N’) showed poor performance in contrast
with the randomized design (b, d). We observed slight decrease in sensitivity and increase in
PPV when sequencing error rate is adjusted to 1%.



Supplementary Figure 18. JigsawSeq application to the library generated with different

types of mutagenesis techniques
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(a) Oligonucleotides could be synthesized with errors and then assembled to yield full-length
gene products using ligation or assembly PCR. Each oligonucleotide sequence contains
randomly distributed mutations and could be assembled to generate a codon-barcoded mutant

library.

(b) Using a codon barcoded gene library, the practitioner could perform programmed
mutagenesis on the target region of interest where DNA sequences are fixed (not randomized to
‘N’, ‘R’, and Y’ sequences). The region excepting the fixed portion of sequences was
randomized using degenerate bases. Mutagenic primers (left) or programmed mutant
oligonucleotides (right) could generate mutations to specific fixed positions (blue).



Supplementary Figure 19. Results of selection of the initial kanR pool library
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Comparing initial pool and selected pool (a), functional variants were highly enriched (b). The
enrichment ratio is calculated as follows:

i: initial pOOI ER = variants variant;
s: selection pool Ygxvariantsy [ X; variant; .

(variant;,) : depth of variant x in the initial pool

We plotted the enrichment ratio for intersecting population (1183) only (c). We reasoned that the
eight remaining contigs in the selection pool would be due to the enriched population that was
not sequenced in the initial pool since they contained rare alleles.



Supplementary Figure 20. Retrieval of kanR from the selection pool
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Specific primers containing molecular barcodes (‘N’, ‘R’ or ‘Y’) allow us to retrieve target of
interest (a). For the validation, we have shown successful amplification (red arrow) of three
variants out of three trials and these sequences were validated via Sanger sequencing (b).



Supplementary Fig. 21 Bioinformatics workflow of JigsawSeq
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Supplementary Tables

Supplementary Table 1. Randomized genetic code used for constructing gene libraries.

@ Amino acid codon Amino acid codon
Glycine((3) GGN Alanine(A) GCHN
WValine(\V) GTN Leucine(L) CTHN
lsoLeucine(l) ATY Methionine(M) ATG
Proline(F) CCHN Serine(s) TCHN
Threonine(T) CARN Cysteine(C) TGY
Phenylalanine(F) TTY Tyrosine(Y) TAY

Tryptophan(W) TGG Aspartic acid(D) GAY
Asparagine(MN) AAY Glutamic acid(E) GAR

Glutamine(Q) CAR Histidine(H) CAY
Lysine(k) AAR Arginine(R) CGN
b Amino acid codon Amino acid codon

Glycine(G) GGN Alanine(A) GCN
Valine(V) GTH Leucine(L) CTHN
lsoLeucine(l) ATT, ATC, ATA  Methionine(M) ATG
Praline(F) CCHN Serine(s) TCHN
Threonine(T) CARN Cysteine(C) TGT, TGC
Phenylalanine(F) TTT, TTC Tyrosine(Y) TAT, TAC
Tryptophan{\W) TGG Aspartic acid(D)  GAT, GAC
Asparagine(MN) AAT. AAC Glutamic acid(E) GAA, GAG
Glutamine(Q) CAA, CAG Histidine(H) CAT, CAC
Lysine(k) AAA AAG Arginine(R) CGN

Oligonucleotides were designed to show degeneracy by converting the third base of each codon
to a mixed base.

(a) Method 1. Amino acid table for reverse translation with N, R, and Y random bases.

(b) Method 2. Amino acid table for reverse translation with N random base; I, F, N, Q, K, C, Y, D,
E, and H were fixed to one of any possible codon changes by random selection.



Supplementary Table 2. Comparison of the assembly methods of different target genes

Randomization

Target gene Target size Method Gene synthesis Backbone

Cloning method

(Randomized ratio) method vector
Npu-intein*  411bp N,R,Y(32.4%) Assembly PCR pBR322-dut E;?{E: digestion &
kanR B16bp MR, Y(31.5%) LCR pBR322-du1 Gibson assembly
mcardinal T35bp N({16.3%) LCR, Assembly PCR pEGFP-C1 Gibson assembly
tolC* 1,482bp N({19.0%) Assembly PCR pBR322-du1 Gibson assembly

(*) represents a library constructed with error-prone PCR. We have listed all properties for
various gene libraries; in the third column, the randomized ratio is calculated by dividing total N,
R, and Y bases by the total length of the gene. For mcardinal, we used both LCR and assembly
PCR methods for gene variant library construction.



Supplementary Table 3. Variant distribution in Sub Sanger pools

Pool Gene size Functional Non-functional
(bp) (%) (%)
Npu-intein_Sub 411 58 42
mcardinal_Sub 735 30 70

(AssemblyPCR)
mcardinal_Sub 735 41 59
(LCR)

kanR_Sub 816 44 56
tolC_Sub 1482 18 82

Generally, the frequency of functional variants (in-frame contigs without premature stop codons)
decreases with assembled gene size. Non-functional variants are contigs with a length of 3n+1,
3n+2, or 3n (In-frame) length with a nonsense mutation (substitution) or indel.



Supplementary Table 4. Estimating computational requirements for real data

Pool Data (GB) Peak memory usage (G) Running time (h)
Npu-intein_Sub ?liﬁ 24 0.19
by PR @6 36 029
mcaf?:]{ Sub 4{]15;; 16 0.26

kanR Sub ?f; 26 0.25
tolC_Sub 0.40 24 0.16
- (2)
kanR initial %6358; 202 71
tolC initial %695? 153 121

Values in the parentheses () refers to the original raw data. The rest of the values are calculated
based on removal of the backbone data. Running time depends on several factors including
data size and graph complexity. Peak memory size relies on the number of nodes or k-mer
multiplicity, which represents the complexity of the path.



Supplementary Table 5. Performance optimization of sub pool libraries using JigsawSeq

. . Before alignment
With alignment . .
Pool with adjusted parameter
Sensitivity (%) | PPV (%) | Sensitivity (%) PPV (%)
Npu-intein_Sub 96.2 894 96.2 89.4
mcardinal Sub
(Assembly PCR) 88.5 94.5 94.8 83.1
meardinal_Sub
- 91.5 92.9 920.1 914
(LCR)
kanR _Sub 88 97.6 92.3 95.5
to/C _Sub 87.3 954 91.5 95.5

Overall, for sub pool gene variant libraries, the coefficient of variation (CV) filter with the BWA
alignment step allows for lower sensitivity and higher PPV. As the aligning step is time-
consuming, we modified the algorithm to make the final filter step optional. If the user requires
high PPV, the filtering step can be enabled by turning on the -a (--realign) option. The adjusted
parameters were --cut_edge 50, --cut_seed 200. A detailed description of the parameters is
provided on the website (https://github.com/jy2/JigsawSeq).


https://github.com/jy2/JigsawSeq

Supplementary Table 6. Primers used for the retrieval of kanR sequences

For primer Rev primer
kanR_MNRY_4385 ATGTCTCATATCCAACGCGAGACC TTAAAAGAACTCATCAAGCATT
kanR_NRY 2932 ATGTCGCATATTCAACGTGAAALT TTAGAAAAACTCATCTAGCATC

kanR_MRY 3272 ATGTCTCATATCCAACGGGAGACC TTAAAAGAATTCGTCTAGCATC




