
Supplementary Figures 

Supplementary Figure 1. Schematic representation of the JigsawSeq algorithm 

 
When analyzing highly homologous library (gray region) with short-read length (i.e., Illumina 

<150 bp) sequencer, without codon barcode (a), assembling reads results in four possible 

combinations. The red dotted line represents sequencing errors. Two (subset A, D) were 

correctly called. However, utilization of codon barcodes enables specific assembly (b).  



Supplementary Figure 2. Construction of pBR322-du1 plasmid 

 

 
  

(a) Using the forward primer containing a HindIII site and the reverse primer containing an 

Nhel site, we amplified the regions beginning with the promoter to the open reading frame of C-

kanR. (b) Using HindIII and Nhel enzymes, we cloned the fragment into pBR322 to construct 

pBR322-du0. We then constructed the pBR322-du1 plasmid by substituting the intein sequence 

with an 87-bp dummy sequence. (c) Finally, with enzyme NsiI and NcoI, intein variants were 

cloned into a vector. 

 

  

 

 

 



 Supplementary Figure 3. Cloning of codon variant libraries through Gibson assembly. 

  

  

  
  

 

  

Primer pairs (blue and gray arrows) were used to amplify backbone sequences, resulting in 

fragments of similar lengths. Combined with synthesized gene libraries, we cloned synthesized 

genes into the pEGFP-C1 (a) and pBR322-du1 (b) plasmids using Gibson assembly (Online 

Methods). 

 

 

   

 



Supplementary Figure 4. Procedure for constructing variant library pools 

 

 
  

The constructed plasmids were transformed into chemically-competent E. coli C2566, and cells 

were recovered after incubating for 1 h at 37ºC. By spreading 100 µL of the initial cells, we 

could estimate the volume required to generate the initial pool. This pool was saturated 

overnight. We then extracted plasmids, and they were subjected to a standard NGS preparation 

protocol. The diluted pool was also spread on agar plates, from which we randomly selected 96 

individual colonies. The 96 clones were mixed, saturated, and prepared for NGS as described 

above, and these clones represented the sub-pool (Sub) from larger initial pool of clones. 

 

 



Supplementary Figure 5. Downsampling analysis for Sub Sanger pools 

 
  

Random subsampling of the total reads (quality trimmed as described in Online Methods) for 

each library was performed. For Npu-intein and mcardinal genes (approximately 1.0 x 106 reads; 

0.3% of one Illumina HiSeq lane), sensitivity remains high [(92.4% for intein (916,800 reads), 

87.3% for mcardinal_L (LCR, 1,380,740 reads), and 83.3% for mcardinal_A (Assembly PCR, 

1,214,230 reads)]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 6. Depth distribution of NGS Sub pools 

 
  

Contigs predicted by JigsawSeq and the distribution of their mean depth (variant population) in 

various libraries is shown: (a) Npu-intein_Sub, (b) mcardinal_A (Assembly PCR), (c) 

mcardinal_L (LCR), (d) kanR, (e) tolC. We assumed mean depth distributions of the library 

would reflect the variant population, and we observed amplification biases in the variant library. 

 

  

  



Supplementary Figure 7. Alignment result of a contig from the tolC Sub Sanger pool 

 

  

Representative contig from the Sanger-validated tolC_Sub pool aligned to its reference 

sequence. Eight substitutions and 12 consecutive in-frame deletions are shown in red box. 

Mutations that occur between long stretches of wild type sequence can be resolved by 

connecting edges of the pool’s de Bruijn graph. Randomized codons, which served as barcodes, 

provided sufficient diversity to distinguish each variant. 

  



Supplementary Figure 8. Depth distribution of NGS initial pools 

 

 

Depth distribution of the initial kanR (left) and tolC (right) pools are shown. The majority of the 
population distribution is concentrated on the left (positively skewed). To model over-dispersed 

data, negative binomial model is generally preferable. The variance-to-mean ratio (VMR, σ2/μ ) 

is calculated for each pool and samples drawn from this parametric distribution  (negative 
binomial) is applied in the simulation study. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 9. JigsawSeq simulation performance 

 

 
 

Simulation results of (a) 100, (b) 1,000, (c) 10,000, (d~f) 100,000 tolC mutant library populations. 

We set the variable as coverage (x) and mutation rate for the error-prone PCR model. Random 

mutations were generated with specified mutation rates of 0.001, 0.01 and 0.05.  Additionally, 

we assumed that no amplification biases in PCR (an even number of templates of distinctive 

molecules) and applied sequencing error rate of 0.1% (a~d, f) and 1% (e, g). Across all levels, 

the recovery of template sequences was nearly perfect with reasonable mutation rate and 

coverage. Overall, a minimum depth of coverage value ~12 x ensures high sensitivity across all 

simulations. PPV for all simulation result was 100%. Additionally, we designed the tolC gene 

library with a randomization method using N, R, and Y. Since library complexity increases with 

an increasing number of barcodes, the coverage required to achieve comparable sensitivity 

increases. The sensitivity was slightly higher (98.8% vs 97.8% for 0.1% error, 93.8% vs 93% for 

1% error) than that of the gene library using only ‘N’ when the depth of coverage was sufficient 

(> 48 x). We note that the model based on the sequencing error rate of 0.1% would reflect more 

realistic scenarios (the error rate of Illumina sequencer is approximately 0.1%).  

 

 

 

  



Supplementary Figure 10.   Data estimation for the initial tolC pool 

 

 
 

In the simulation, for 60x mean coverage, recovery of true positives was perfect (a). Even when 

sequencing errors are introduced at the rate of 1%, 60x ensures maximum recovery.  We 

extrapolated the graph (b) using the R function predict.lm() and estimated the required data size 

(Gbytes) (95% prediction interval for a future Y observation when x=x*(1.6)). Considering the 

current trend of the backbone-removed data above, we expected 31.4 Gbytes (19.6 GB*1.6) 

would be enough to saturate a larger pool (c).  



Supplementary Figure 11. Schematic diagram of the causes of missed true contigs 

 

 

Rare seeds (a) and edges (b) could be missed using the default parameters. We could rescue 

these sequences by raising the cutoff value. However, erroneous edges from sequencing errors 

create a complex graph structure, thereby posing additional computational challenges and false 

assembly. Therefore, we optimized parameters for robust error correction (Online methods, 

edge cutoff: 50, seed cutoff: 200). In the above figure, the x-axis presents k-3 mer node position, 

which was defined by sliding the nodes by 3 bases from the start to the end of the gene 

sequences.  



Supplementary Figure 12.   Data estimation for the initial kanR pool 

 
 

In contrast with tolC, recovery rate reached 100% in the simulation at 48x coverage (for both 0.1% 

and 1% sequencing error simulations) (a). Using the same method as tolC, we extrapolated the 

graph (b) to calculate required data (Gbytes) size (95% prediction interval for a future Y 

observation when x=x*(1.3)) When removing vector backbone sequences, 17.9 Gbytes (13.8 

GB*1.3) of data would be sufficient (c). 

  



Supplementary Figure 13. Codon adaptation index (CAI) distribution of functional 

variants of kanR and tolC. 

 

Calculated CAI distribution of both kanR_Ori (0.603±0.018, left) and tolC_Ori (0.608±0.013, 

right) pool variants are shown. Specifically, functional variants (in-frame contigs without 

premature stop codons), reveal low standard deviations. 

  



Supplementary Figure 14. Simulation of barcode density downsampling  

 

 
 

 

As the number of barcodes decreases, the recovery of true templates decreases (sequencing 

error rate of 0.1% (left) and 1% (right). As the population size increases, this effect is more 

pronounced. In the population up to 1,000, downsampling of barcodes to p=0.7 (sampling the 

number of barcodes in binomial distribution) showed high sensitivity. The simulation is 

evaluated based on optimized k-mer length 120. 

  



Supplementary Figure 15. Simulation results of amino acid length variation for which 

translated into fixed DNA sequences 

 
 

(a)  We generated 100,000 normal PCR (0.1%, 1% sequencing error rate) libraries with a fixed 

DNA sequences region (not randomized to N, R, and Y, see figure above) within tolC. We 

performed the simulation (k-mer: 120) by varying the window size of the fixed region and 

compared two different barcoding strategies (using ‘N’ only or using ‘NRY’, assume 48x even 

coverage that showed high sensitivity in  Supplementary Fig. 9). We observed decreased PPV 

value (an increase in false positives) for both (b, d) ‘N’ only and (c, e) ‘NRY’ strategies as the 

fixed length increased. We also generated random mutations to fixed region (blue) to have 1 

mutation on average (range: 0-3). For both different barcoding scenarios (‘N’ for (d), ‘NRY’ for 

(e)), PPV increased to ~95%. Introducing 1% errors (substitution) on sequencing resulted in 2~3% 

decrease in PPV on average for above simulations.  

 



 Supplementary Figure 16. Simulation results of multiple-site (double) mutagenesis 

 
 

 

(a) We created mutated libraries of tolC including missense mutation as a singleton for two 

distant random regions. For the convenience of simulation, we limited the library size to 100,000. 

Venn diagram showed JigsawSeq’s performance in the simulation when sequencing error rate 

is (b) 0.1% and (c) 1.0%. For both conditions, high concordance was observed between true 

positive contigs and called contigs from JigsawSeq. We could create the above library by either 

of the two methods discussed in Supplementary Fig. 18.  

 



Supplementary Figure 17. Simulation results of single chain antibody (ScFv) 

 
We focused on single-chain variable fragment, which is the simplest functional representation of 

an antibody molecule. To assess full-length antibody repertoires, we simulated 100,000 variable 

templates (sequencing error rate of 0.1%) by randomly shuffling multiple CDR sequences to 

mimic large genetic variation (a).  

When comparing the library construction methods, the design (c, e) with fixed codons (a; gray 

region showing that the region is not randomized to ‘N’) showed poor performance in contrast 

with the randomized design (b, d). We observed slight decrease in sensitivity and increase in 

PPV when sequencing error rate is adjusted to 1%.  



Supplementary Figure 18. JigsawSeq application to the library generated with different 

types of mutagenesis techniques  

 
 

(a) Oligonucleotides could be synthesized with errors and then assembled to yield full-length 

gene products using ligation or assembly PCR. Each oligonucleotide sequence contains 

randomly distributed mutations and could be assembled to generate a codon-barcoded mutant 

library.   

(b) Using a codon barcoded gene library, the practitioner could perform programmed 

mutagenesis on the target region of interest where DNA sequences are fixed (not randomized to 

‘N’, ‘R’, and ‘Y’ sequences). The region excepting the fixed portion of sequences was 

randomized using degenerate bases. Mutagenic primers (left) or programmed mutant 

oligonucleotides (right) could generate mutations to specific fixed positions (blue).  

 



Supplementary Figure 19. Results of selection of the initial kanR pool library  

  

 
 

Comparing initial pool and selected pool (a), functional variants were highly enriched (b). The 

enrichment ratio is calculated as follows:    

i: initial pool 

s: selection pool 

 

 

(varianti,x) : depth of variant x in the initial pool    

We plotted the enrichment ratio for intersecting population (1183) only (c). We reasoned that the 

eight remaining contigs in the selection pool would be due to the enriched population that was 

not sequenced in the initial pool since they contained rare alleles. 
                                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 20. Retrieval of kanR from the selection pool 

 

 
 

Specific primers containing molecular barcodes (‘N’, ‘R’ or ‘Y’) allow us to retrieve target of 

interest (a). For the validation, we have shown successful amplification (red arrow) of three 

variants out of three trials and these sequences were validated via Sanger sequencing (b). 

 

 

 

 

 

 



Supplementary Fig. 21 Bioinformatics workflow of JigsawSeq 

 

 
 

 

 

 

 



Supplementary Tables  

Supplementary Table 1.  Randomized genetic code used for constructing gene libraries. 

 
  

Oligonucleotides were designed to show degeneracy by converting the third base of each codon 

to a mixed base. 

(a) Method 1. Amino acid table for reverse translation with N, R, and Y random bases. 

(b) Method 2. Amino acid table for reverse translation with N random base; I, F, N, Q, K, C, Y, D, 

E, and H were fixed to one of any possible codon changes by random selection. 



 

 

Supplementary Table 2.  Comparison of the assembly methods of different target genes 

  

 
  

  

(*) represents a library constructed with error-prone PCR. We have listed all properties for 

various gene libraries; in the third column, the randomized ratio is calculated by dividing total N, 

R, and Y bases by the total length of the gene. For mcardinal, we used both LCR and assembly 

PCR methods for gene variant library construction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Table 3. Variant distribution in Sub Sanger pools 

  

Pool Gene size     

     (bp) 

Functional 

(%) 

Non-functional 

(%) 

Npu-intein_Sub 411 58 42 

mcardinal_Sub 

(AssemblyPCR) 

735 30 70 

mcardinal_Sub 

(LCR) 

735 41 59 

kanR_Sub 816 44 56 

tolC_Sub 1482 18 82 

  

Generally, the frequency of functional variants (in-frame contigs without premature stop codons) 

decreases with assembled gene size. Non-functional variants are contigs with a length of 3n+1, 

3n+2, or 3n (In-frame) length with a nonsense mutation (substitution) or indel. 

  



Supplementary Table 4. Estimating computational requirements for real data  

 

 
Values in the parentheses () refers to the original raw data. The rest of the values are calculated 

based on removal of the backbone data. Running time depends on several factors including 

data size and graph complexity. Peak memory size relies on the number of nodes or k-mer 

multiplicity, which represents the complexity of the path. 

  



Supplementary Table 5.  Performance optimization of sub pool libraries using JigsawSeq 

 

 
 

Overall, for sub pool gene variant libraries, the coefficient of variation (CV) filter with the BWA 

alignment step allows for lower sensitivity and higher PPV. As the aligning step is time-

consuming, we modified the algorithm to make the final filter step optional. If the user requires 

high PPV, the filtering step can be enabled by turning on the -a (--realign) option. The adjusted 

parameters were --cut_edge 50, --cut_seed 200. A detailed description of the parameters is 

provided on the website (https://github.com/jy2/JigsawSeq).  

 

  

https://github.com/jy2/JigsawSeq


Supplementary Table 6. Primers used for the retrieval of kanR sequences 

 

 


