SUPPLEMENTARY INFORMATION

Whole Genome Sequencing demonstrates that Geographic Variation of Escherichia coli

O157 Genotypes Dominates Host Association

Norval J.C. Strachan, Ovidiu Rotariu, Bruno Lopes, Marion MacRae, Susan Fairley, Chad Laing, Victor Gannon, Lesley J. Allison, Mary F. Hanson, Tim Dallman, Philip Ashton, Eelco Franz, Angela H.A.M. van Hoek, Nigel P. French, Tessy George, Patrick J. Biggs, and Ken J. Forbes.

<u>Metadata</u>

The Metadata, as well as the in silico PCR results, assignment of Shiga toxins and SBI types described in Table 1 are in Supplementary Table S1 (Supplementary_Table_S1.xlsx). This is an Excel file which contains a worksheet for each of USA, Canada, Scotland, New Zealand, the Netherlands and other countries.

SNP data

The SNP data for the Scottish phylogenetic tree (Fig. 1 and Fig. 2) is in Supplementary Table S2 (Supplementary_Table_S2.xlsx).

The SNP data for the international phylogenetic tree (Fig. 4) as well as locations in Sakai (NC_002695.1) of discriminatory SNPS for clades A-G and corresponding probes is in Supplementary Table S3 (Supplementary_Table_S3.xlsx).

Current File

In the current file are Suppl. Figs S1 – S4 and Suppl. Tables S4 to S9.

Fig. S1a depicts the bootstrap phylogenetic tree of the 145 Scottish isolates with 4 reference international *E. coli* O157 (Sakai, EDL933, TW14359 and EC4115), an *E. coli* O55:H7 (CB9615) and an *E. coli* O111:H- isolate (See also Fig. 1). The tree was drawn utilising 871 phylogenetically informative SNPs obtained from Panseq. A Neighbor-Joining method was employed ¹. The optimal tree with the sum of branch length = 1.249 is shown. The evolutionary distances were computed using the Maximum Composite Likelihood method ² and are in the units of the number of base substitutions per site. All positions containing gaps and missing data were eliminated. There were a total of 882 positions in the final dataset. Evolutionary analyses were conducted in MEGA6 ³. **Fig. S1b** shows the bootstrap consensus tree of this dataset, inferred from 500 replicates taken to represent the evolutionary history of the taxa analyzed ⁴. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The evolutionary distances were computed using the Maximum Composite Likelihood method ² and are in the units of the number of base substitutions per site.

Fig. S2 illustrates the phylogeny of the above *E. coli* O157 isolates in radiation format where the isolate labels are coloured to represent their LSPA6 lineage, whether their *tir* 255 SNP is A or T, which of Manning's clades they belong to and their clade membership according to Fig. 3 in the current paper.

Fig. S3a depicts the bootstrap phylogenetic tree of the combined international and Scottish *E. coli* O157 isolates (see also Fig. 3). A Neighbor-Joining method was employed ¹. The tree was drawn utilising 813 phylogenetically informative SNPs obtained from Panseq (Suppl. Table S3). The optimal tree with the sum of branch length = 0.7884 is shown. The evolutionary distances were computed using the Maximum Composite Likelihood method ² and are in the units of the number of base substitutions per site. All positions containing gaps and missing data were eliminated. There were a total of 812 positions in the final dataset. Evolutionary analyses were conducted in MEGA6 ³. **Fig. S3b** shows the bootstrap consensus tree of this dataset, inferred from 500 replicates taken to represent the evolutionary history of the taxa analyzed ⁴. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The evolutionary distances were computed using the Maximum Composite Likelihood method ² and are in the units of the number of base substitutions per site.

Fig. S4 shows the tree depicted in Fig. S3 in radiation format and with isolate labels coloured to show sources (clinical cattle, sheep, food/environment or unknown), Manning's Clade membership, LSPA6 lineage, *tir* 255 allele (T or A), phage type, Shiga toxin, SBI genotype and presence of O-antigenencoding region of O157 (*rfb* O157).

Table S4 provides a list of the oligonucleotide PCR primers, probes or gene accession numbers used in this study along with the relevant references.

Table S5 is a continuation of Table 1 which shows the abundance of LSPA6, *tir* 255, and Manning clades by source (Bovine, Ovine, Food/Environment and Clinical) for the Scottish *E. coli* O157 isolates.

Table S6 provides pairwise comparisons of Nei's genetic distances calculated using the SNP polymorphisms within the Scottish *E. coli* O157 isolates obtained from Panseq. Distances are calculated between sources, phage types, Shiga-toxin types, LSPA6 lineages and SBI genotypes.

Table S7 presents P-values of randomisation tests for pairwise comparisons of (a) rarefaction and (b) Simpson's index by (i) animal source and (b) country.

Table S8 depicts the allocation of phylogenetic clades from the current study (Fig. 4) to those of previous typing methods (Manning clades, LSPA6 lineages, *tir* 255 A/T alleles, phage types, Shiga toxin types and SBI types).

Table S9 provides pairwise comparisons of Nei's genetic distances calculated using the SNP polymorphisms (Suppl. Table S3) from international *E. coli* O157 isolates between and within countries.

References

1. Saitou, N. & Nei, M. The Neighbor-Joining Method - a New Method for Reconstructing Phylogenetic Trees. *Mol. Biol. Evol.* **4**, 406-425 (1987).

2. Tamura, K., Nei, M. & Kumar, S. Prospects for inferring very large phylogenies by using the neighbor-joining method. *Proc. Natl. Acad. Sci. U. S. A.* **101**, 11030-11035 (2004).

3. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. *Mol. Biol. Evol.* **30**, 2725-2729 (2013).

4. Felsenstein, J. Confidence-Limits on Phylogenies - an Approach using the Bootstrap. *Evolution* **39**, 783-791 (1985).

5. Paton, A. & Paton, J. Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx(1), stx(2), eaeA, enterohemorrhagic E-coli hlyA, rfb(O111), and rfb(O157). *J. Clin. Microbiol.* **36**, 598-602 (1998).

6. Scheutz, F. *et al.* Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. *J. Clin. Microbiol.* **50**, 2951-2963 (2012).

7. Ashton, P. *et al.* Insight into Shiga toxin genes encoded by *Escherichia coli*O157 from whole genome sequencing. *PeerJ PrePrints* **2:e652v1**, 1-22 (2014).

8. Yang, Z. *et al.* Identification of common subpopulations of non-sorbitol-fermenting, betaglucuronidase-negative*Escherichia coli*O157:H7 from bovine production environments and human clinical samples. *Appl. Environ. Microbiol.* **70**, 6846-6854 (2004).

9. Bono, J. L. *et al.* Association of *Escherichia coli*O157 : H7 tir polymorphisms with human infection. *BMC Infect. Dis.* **7**, 98 (2007).

10. Manning, S. D. *et al.* Variation in virulence among clades of *Escherichia coli*O157 : H7, associated with disease outbreaks. *Proc. Natl. Acad. Sci. U. S. A.* **105**, 4868-4873 (2008).

11. Shringi, S. *et al.* Carriage of stx2a differentiates clinical and bovine-biased strains of *Escherichia coli*O157. *PLoS One* 7, e51572 (2012).

12. Whitworth, J. *et al.* Diverse Genetic Markers Concordantly Identify Bovine Origin*Escherichia coli*O157 Genotypes Underrepresented in Human Disease. *Appl. Environ. Microbiol.* **76**, 361-365 (2010).

13. Riordan, J. T., Viswanath, S. B., Manning, S. D. & Whittam, T. S. Genetic differentiation of Escherichia coli O157 : H7 clades associated with human disease by real-time PCR. *J. Clin. Microbiol.* **46**, 2070-2073 (2008).

14. Mellor, G. E. *et al.* Multilocus Genotype Analysis of *Escherichia coli*O157 Isolates from Australia and the United States Provides Evidence of Geographic Divergence. *Appl. Environ. Microbiol.* **79**, 5050-5058 (2013).

Scottish Additional Phylogenetic Figures

(a)

Figure S1 (a) Bootstrapped phylogenetic tree and (b) the Consensus tree for the 145 Scottish isolates, 4 international *E. coli* O157 isolates (Sakai, EDL933, TW14359 and EC4115) and *E. coli* O55:H7 (CB9615) and *E. coli* O111:H-.

Figure S2 The *E. coli* O157 phylogeny of the 145 Scottish and 4 international isolated described in Figures 1 and 2 characterised by (a) LSPA6 lineage: I (\bullet); I/II (\bullet); II (\bullet); Unknown (\bullet); International (Δ), (b) *tir* 255 genotypes: *tir* T (\bullet); *tir* A (\bullet); International (Δ); (c) Manning's Clades: Clade 1 (\bullet); Clade 2 (\bullet); Clade 3 (\bullet); Clade 4/5/6/7/9 (\bullet); Clade 8 (\bullet); International (Δ) and (d) the clades defined in the international tree (Figure 3): C (\bullet); D (\bullet); E (\bullet), F (\bullet) and G (\bullet).

International additional Phylogenetic Figures

(a)

Fig. S3 (a) Bootstrapped phylogenetic tree and (b) the Consensus tree all of the isolates in the study.

(a) Sources: Clinical (●);Cattle (●);Sheep (●); Food/Environment (●); Unknown (●).

(b) Manning's Clades: Clade $1(\bigcirc)$; Clade $2(\bigcirc)$; Clade $3(\bigcirc)$; Clade $4/5/6/7/9(\bigcirc)$; Clade $8(\bigcirc)$.

(d) *tir* 255 T (●); *tir* 255 A (●); Unknown (●);

(e) Phage types: PT2 (●); PT21/28 (●); PT32 (●); PT8 (●); Other PTs (●); Unknown (O);

(f) Shiga toxins: $stx1a(\bigcirc)$; $stx1a/stx2a(\bigcirc)$; $stx1a/stx2c(\bigcirc)$; $stx2a(\bigcirc)$; $stx2a/stx2c(\bigcirc)$; $stx2c(\bigcirc)$; negative (\bigcirc); $stx1a/stx2a/stx2c(\bigcirc)$,

(g) SBI genotypes: WY1a2a (●), ASY2a2c (●); SY1a2c (●); SY2a2c (●); SY2c (●); AY2a (●); YN (●); Other SBI types (●); Unknown (●)

(h) *rfb* O157 positive (\bigcirc) and negative (\bigcirc).

Fig. S4 International phylogeny by (a) Sources: Clinical (●);Cattle (●);Sheep (●); Food/Environment (●); Unknown (●),

(b) Manning's Clades: Clade 1(●); Clade 2(●); Clade 3(●); Clade 4/5/6/7/9(●); Clade 8(●),

(c) LSPA6 lineages: I (●); I/II (●); II (●),

(d) *tir* 255 T (•); *tir* 255A (•); Unknown (•);

(e) Phage types: PT2 (●); PT21/28 (●); PT32 (●); PT8 (●); Other PTs (●); Unknown (O);

(f) Shiga toxins: $stx1a(\bullet)$; $stx1a/stx2a(\bullet)$; $stx1a/stx2c(\bullet)$; $stx2a(\bullet)$; $stx2a/stx2c(\bullet)$; $stx2c(\bullet)$; $negative(\bullet)$; $stx1a/stx2a/stx2c(\bullet)$,

(g) SBI genotypes: WY1a2a (●), ASY2a2c (●); SY1a2c (●); SY2a2c (●); SY2c (●); AY2a (●); YN (●); Other SBI types (●); Unknown (●)

(h) *rfb* O157 positive (\bullet) and negative (\bullet) .

Target	Primer/Probe	Sequence 5'-3' or gene accession no.	Amplicon size	Reference
<i>rfb</i> ₀₁₅₇ (O-	O157F	CGGACATCCATGTGATATGG	259	5
antigen-encoding)	O157R	TTGCCTATGTACAGCTAATCC		
eaeA (intimin)	eaeAF	GACCCGGCACAAGCATAAGC	384	5
	eaeAR	CCACCTGCAGCAACAAGAGG		
hlyA (plasmid-	hlyAF	GCATCATCAAGCGTACGTTCC	534	5
encoded	hlyAR	AATGAGCCAAGCTGGTTAAGCT		
enterohemolysin)				
stx genes	N/A		N/A	6, 7
stxla		L04539.1		
stx1c		Z36901.1		
stx1d		AY170851.1		
stx2a		X07865.1		
stx2b		X65949.1		
stx2c		AB071845.1		
stx2d		AY095209.1		
stx2e		AJ249351.2		
stx2f		AB472687.1		
stx2g		AY286000.1		
^a LSPA6				8
folD-sfmA	Forward	TACGTAGGTCGAAGGG	161/170	
	Reverse	CCAGATTTACAACGCC		
Z5935	Forward	GTGTTCCCGGTATTTG	133/142/160	
	Reverse	CTCACTGGCGTAACCT		
yhcG	Forward	CTCTGCAAAAAACTTACGCC	392/394/472	
	Reverse	CAGGTGGTTGATCAGCG		
rbsB	Forward	AGTTTAATGTTCTTGCCAGCC	218	
	Reverse	ATTCACCGCTTTTTCGCC		
<i>rtcB</i>	Forward	GCGCCAGATCGATAAAGTAAG	270/279/288	
	Reverse	GCCGTTGTAAACGTGATAAAG		
arp-iclR	Forward	GCTCAATCTCATAATGCAGCC	314/323	
<u>^</u>	Reverse	CACGTATTACCGATGACCG		
^b tir 255 SNP	255A	ACTGAATGATGGATTTG	NA	9
probes	255T	CTGAATGAAGGATTTG	NA	
^c Clade probes				10
ECs2521	SNP3T	CAGTTACACTCCAGCGATC	NA	
	SNP3G	CAGTTACACGCCAGCGATC	NA	
ECs2357	SNP39A	CGCGCAATTACGAGCCACT	NA	
	SNP39C	CGCGCAATTCCGAGCCACT	NA	
ECs3881	SNP24T	CGTGTGCACTGGTTGCCGT	NA	
	SNP24C	CGTGTGCACCGGTTGCCGT	NA	
ECs4130	SNP30T	TGCCGCTGGTGGCTTAAGC	NA	
	SNP30C	TGCCGCTGGCGGCTTAAGC	NA	
^d Bacteriophage				11
insertion sites				
argW	Left junction	GCATCTCACCGACGATAACA	462	
		AATTAGCCCTTAGGAGGGGC		
	Right junction	CCGTAACGACATGAGCAACAAG	583	
		GCAGTATCACGCAGAGCTGAAG		
	Insertion site	CCGTAACGACATGAGCAACAAG	216	
		AATTAGCCCTTAGGAGGGGC		
sbcB	Left junction	GTGCTTGGGTCTTTTCTCTG	914	
		TCCAGGCGTAAGGATCGTAG		
	Right junction	GACAGCAGAAACAACGGATTTAAC	730	
		CCAGCGTGGGATAAAAGAGAATC		
	Insertion site	GACAGCAGAAACAACGGATTTAAC	406	

Table S4 Oligonucleotide PCR primers, probes or gene accession numbers used in this study.

		TCCAGGCGTAAGGATCGTAG		
wrbA	Left junction	CCGACCTTTGTACGGATGTAA	506/537	
		CGAATCGCTACGGAATAGAGA		
	Right junction	AGGAAGGTACGCATTTGACC	592	
		ATCGTTCGCAAGAATCACAA		
	Insertion site	AGGAAGGTACGCATTTGACC	314	
		CGAATCGCTACGGAATAGAGA		
yehV	Left junction	CACCGGAAGGACAATTCATC	824	
		AACAGATGTGTGGTGAGTGTCTG		
	Right junction	AAGTGGCGTTGCTTTGTGAT	702	
		GATGCACAATAGGCACTACGC		
	Variant right	AAGTGGCGTTGCTTTGTGAT	295	
	jn.	AGCGATACAGATCTCAACAC		
	Insertion site	AAGTGGCGTTGCTTTGTGAT	340	
		AACAGATGTGTGGTGAGTGTCTG		

^aLSPA6 sub-typing results were arranged in the order *folD-sfmA*, *Z5935*, *yhcG*, *rbsB*, *rtcB* and *arp-iclR*. Each allele was assigned a number as described previously (Yang et al., 2004). Isolates showing the LSPA6 genotype 111111 were classified as LSPA6 lineage I (LSPA6 LI), while those with LSPA6 genotype 211111 were classified as LSPA6 lineage I/II (LSPA6 LI/II). Unique alleles (aberrant amplicon size) were assigned new numbers. All deviations from the genotypes 111111 and 211111 were classified as LSPA6 LI).

^btir 255T>A polymorphism analysis was used to detect a single nucleotide polymorphism (A/T) located in the *tir* gene $^{9, 12}$.

^cClade Identification (Manning) utilised an in silico probe based method based on four SNPs ¹³ to identify the main Clades (1, 2, 3 and 8 independently and 4, 5, 6, 7 and 9 as a group) published previously ¹⁰. The probes were developed using the Sakai reference genome (BA000007.2).

^dSBI results were concatenated using the terminology described previously ¹⁴ and restated here. When either or both bacteriophage-chromosome insertion site locus junctions were detected, the locus was considered occupied. When an intact locus insertion site product was detected without amplification of either bacteriophage insertion site junction, the locus was considered unoccupied. A modified genotyping code was assigned to each isolate using the characters A, S, W, Y, 1a, 2a and 2c to represent *argW*, *sbcB*, *wrbA*, *yehV*, *stx1a*, *stx2a* and *stx2c*, respectively. An N was assigned to any isolate that did not contain any of the three *stx* genes. Statistical differences in the frequencies of SBI types between animal host species and between countries were determined using the chi-square test.

	No. (%) of strains with factor					
Factor	Sub- type	Bovine	Ovine	Food/Env.	Clinical	Statistically
		(n=26)	(n=25)	(n=20)	(n=74)	significant
						pairwise
						comparisons ^a
LSPA6	Sub-type					
	111111 (I)	0 (0.0)	0 (0.0)	1 (5.0)	1 (1.4)	nd
	2N1121 (II)	0 (0.0)	0 (0.0)	0 (0.0)	1 (1.4)	nd
	252122 (II)	0 (0.0)	0 (0.0)	0 (0.0)	1 (1.4)	nd
	221132 (II)	0 (0.0)	0 (0.0)	0 (0.0)	1 (1.4)	nd
	221122 (II)	0 (0.0)	0 (0.0)	1 (5.0)	1 (1.4)	nd
	221111 (II)	0 (0.0)	0 (0.0)	0 (0.0)	1 (1.4)	nd
	211111 (I/II)	26(100.0)	25(100.0)	18 (90.0)	68 (90.0)	none
	Lineage					
	Ι	0 (0.0)	0 (0.0)	1 (5.0)	1 (1.4)	nd
	I/II	26(100.0)	25(100.0)	18 (90.0)	68 (91.9)	nd
	II	0 (0.0)	0 (0.0)	1 (5.0)	5 (6.7)	nd
tir 255	A allele	0 (0.0)	0 (0.0)	1 (5.0)	4 (5.4)	nd
Manning Clades	1	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	nd
	2	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	nd
	3	0 (0.0)	0 (0.0)	0 (0.0)	1 (1.4)	none
	4/5/6/7/9	25 (96.2)	24 (96.0)	25 (96.2)	68 (91.9)	CF, BF, FO
	8	1 (3.8)	1 (4.0)	1 (3.8)	5 (6.8)	CF, BF, FO

Table S5. Abundance of LSPA6, *tir* 255, and Manning clades by source (Bovine, Ovine, Food/Environment and Clinical) for the Scottish *E. coli* O157 isolates.

^aListed are statistically different pairwise comparisons where B = bovine, O = ovine, F =

Food/Environmental and C = clinical. Statistical significance determined by a two tailed Fisher's exact test.

Table S6. Pairwise comparisons of Nei's genetic distances calculated using SNP polymorphisms from the PANSEQ analysis of the Scottish *E. coli* O157 isolates, between sources, phage types, Shiga toxin types, LSPA6 lineages and SBI genotypes.

Factor	Pairwise Comparison	Genetic Distance (d1)	<i>P</i> -value
Source:	Clinical-Cattle	0.00385	0.006
	Clinical-Sheep	0.00415	0.007
	Clinical-Food/Env.	0.00614	0.0002
	Cattle-Sheep	0.00278	0.0651
	Cattle-Food/Env.	0.00656	<0.0001
	Sheep-Food/Env.	0.00669	0.0001
Phage type:	PT21/28 - PT32	0.00668	<0.0001
	PT21/28 - PT8	0.00939	<0.0001
	PT21/28 - PT2	0.01389	<0.0001
	PT21/28 - Other	0.00993	<0.0001
	PT32 - PT8	0.01035	<0.0001
	PT32 - PT2	0.01495	<0.0001
	PT32 - Other	0.01001	<0.0001
	PT8 - PT2	0.01230	<0.0001
	PT8 - Other	0.01039	<0.0001
	PT2 - Other	0.01578	<0.0001
Shigatoxin type:	stx2a,2c - stx1a,2c	0.01015	<0.0001
	stx2a,2c - stx1a,2a	0.01096	0.0008
	stx2a,2c – stx2a	0.00349	0.0547
	stx2a,2c - stx2c	0.01496	0.0691
	stx2a,2c - stx-ve	0.00908	0.0001
	stx1a,2c - stx1a,2a	0.00984	0.0001
	stx1a,2c – stx2a	0.00946	<0.0001
	stx1a,2c - stx2c	0.00978	<0.0001
	stx1a,2c - stx-ve	0.01082	<0.0001
	stx1a,2a - stx2a	0.01032	0.0003
	stx1a,2a - stx2c	0.01032	0.0082
	stx1a,2a – stx-ve	0.01128	0.0037
	stx2a – stx2c	0.01008	<0.0001
	st2a - stx-ve	0.00949	<0.0001
	stx2c - stx-ve	0.00881	0.008
LSPA6 lineage	LSPA I/II - LSPA II	0.01404	<0.0001
SBI genotypes	ASY2a2c - SY1a2c	0.01012	<0.0001
	ASY2a2c - SY2a2c	0.00277	0.0202
	ASY2a2c - SY2c	0.01065	0.0001
	ASY2a2c - YN	0.00856	0.0204
	ASY2a2c - Other	0.00680	<0.0001
	SY1a2c - SY2a2c	0.01016	<0.0001
	SY1a2c - SY2c	0.01094	<0.0001
	SY1a2c - YN	0.01113	<0.0001
	SY1a2c - Other	0.00862	0.0001
	SY2a2c - SY2c	0.01011	<0.0001
	SY2a2c - YN	0.00880	0.0153
	SY2a2c - Other	0.00644	<0.0001
	SY2c - YN	0.01031	0.0071
	SY2c - Other	0.00934	0.0011
	YN - Other	0.00905	0.0193

(a) Rarefaction						
	(i) Animal Sou	ırce				
		Cattle	Sheep			
	Cattle	-	0.091			
	Sheep	-	-			
	(ii) Country					
		USA	Canada	Netherlands	New Zealand	Scotland
	USA	-	0.137	0.630	0.149	0.363
	Canada	-	-	0.146	0.513	0.055
	Netherlands	-	-	-	0.158	0.410
	New Zealand	-	-	-	-	
	Scotland	-	-	-	-	-
(b) Simpson's index						
	(i) Animal Sou	ırce				
	. /	Cattle	Sheep			
	Cattle	-	0.356			
	Sheep	-	-			
	(ii) Country					
		USA	Canada	Netherlands	New Zealand	Scotland
	USA	-	<0.0001	0.557	0.038	0.125
	Canada	-	-	<0.0001	0.026	<0.0001
	Netherlands	-	-	-	0.017	0.071
	New Zealand	-	-	-	-	0.146
	Scotland	-	-	-	-	-

Table S7. SBI typing P-values for pairwise comparisons of (a) rarefaction and (b) Simpson's index by (i) animal source and (b) country.

Clades current	Clades ¹⁰	LSPA6 lineages ⁸	<i>tir</i> 255 ^{9,}	Phage Types ^{e,f}	Shigatoxins ^e	SBI types ^e
	4/5/6/7/9	Пp	Т		-ve str2a	Other
B	4/5/6/7/9	П	Т		vc, sin2a str2c	SY2c
C	4/5/6/7/9	I/II	T	PT8	stx1a/stx2c	SY1a2c & Other
D	4/5/6/7/9	I/II I/II	T	"Other" PTs	stx2c	Other
E (i)	4/5/6/7/9	Π	А		stx2c, stx1a/stx2c	SY2c, SY1a2c & other
E (ii)	4/5/6/7/9	II	А	"Other" PTs	<i>stx2c</i> , -ve	Other
F (i)	8	I/II	Т	PT2	stx2a	AY2a, ASY2a2c
F (ii)	8	I/II ^c	Т		stx2a,stx2c	Other
G (i)	4/5/6/7/9	I/II	Т	PT32	stx2c	SY2c, Other
G (ii)	4/5/6/7/9	I/II	Т	PT21/28	stx2a/stx2c	ASY2a2c,
						SY2a2c
G (iii)	4/5/6/7/9	I/II	Т	PT32	stx2a, stx2c, -ve	Other
G (iv)	4/5/6/7/9	I/II	Т	PT32	stx2c	SY2c, Other
G (v)	4/5/6/7/9	Ι	Т		<i>stx2a</i> , -ve	Other, WY1a2a
G (vi)	1, 2, 3 & 4/5/6/7/9	I^d	Т		stx1a/stx2a, stx2a	WY1a2a. Other

Table S8 Relationship between phylogenetic clades (Fig. 4) and previous typing methods^a.

^aPhylogenies annotated for each of the typing methods are given in Suppl. Fig. S4. ^bOne isolate lineage I/II, ^cOne isolate lineage II, ^dTwo isolates lineage II, ^ePredominant types in the clade

^fPhage typing was only available for the majority of Scottish isolates and EDL933 and Sakai.

Table S9 Pairwise comparisons of Nei's genetic distances calculated using SNP polymorphisms obtained from the PANSEQ analysis of all Scottish and international *E. coli* O157 isolates between and within countries^a.

		Genetic	
Comparisons	Countries	Distance(d1)	P-value
Comparing <i>all</i> isolates		0.01500	0.0001
between countries	USA - Canada	0.01538	0.0001
	USA - Netherlands	0.01679	0.0014
	USA - New Zealand	0.01767	0.0003
	USA - Scotland	0.01998	<0.0001
	Canada - Netherlands	0.01707	<0.0001
	Canada - New Zealand	0.01496	0.0016
	Canada - Scotland	0.01487	<0.0001
	Netherlands - New Zealand	0.01971	0.0005
	Netherlands - Scotland	0.01672	< 0.0001
	New Zealand - Scotland	0.01541	<0.0001
Comparing <i>clinical</i> isolates			
between countries	USA - Canada	0.01518	0.0039
	USA - Netherlands	0.01860	0.0027
	USA - New Zealand	0.01829	0.0361
	USA - Scotland	0.01998	<0.0001
	Canada - Netherlands	0.01746	0.0002
	Canada - New Zealand	0.01549	0.0368
	Canada - Scotland	0.01581	<0.0001
	Netherlands - New Zealand	0.02023	0.1062
	Netherlands - Scotland	0.01868	<0.0001
	New Zealand - Scotland	0.01568	0.0015
Comparing <i>cattle</i> isolates			
between countries	USA - Canada	0.02003	0.0024
	USA - Netherlands	0.02158	0.0015
	USA - New Zealand	0.02460	0.0001
	USA - Scotland	0.02351	0.0001
	Canada - Netherlands	0.01686	<0.0001
	Canada - New Zealand	0.01418	0.0093
	Canada - Scotland	0.01761	<0.0001
	Netherlands - New Zealand	0.02009	0.0007
	Netherlands - Scotland	0.01702	<0.0001
	New Zealand - Scotland	0.01749	0.0002
Comparing <i>clinical</i> and	The W Louising Soonand	0.01717	0.000
country	Scotland	0.00633	0 0071
country .	Canada	0.00055	0.0071
	Vanaua Natharlanda	0.01000	0.0014 ~0.0001
	New Zeelend	0.01930	<0.0001
	INEW Zealand	0.00595	0.5059
	USA	0.02550	0.0079

^aThe number of isolates for each country are Canada (87 clinical & 23 cattle), Netherlands (19 clinical and 20 cattle), Scotland (74 cclinical and 26 cattle), New Zealand (6 clinical and 6 cattle), USA (15 clinical and 4 cattle).