Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: 4β-S-aromatic heterocyclic podophyllum derivatives display antitumor activity

Jian-Long Li ^{1, a}, Wei Zhao ^{1, a}, Chen Zhou ^{1, a}, Ya-Xuan Zhang ^a, Hong-Mei Li ^a, Ya-Ling Tang ^b, Xin-Hua Liang ^b, Tao Chen ^c, and Ya-Jie Tang ^{a *},

^a Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China

^b State Key Laboratory of Oral Diseases West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan 610041, People's Republic of China

^c Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

*Corresponding author. Tel. & Fax: +86-27-5975.0491 Email: yajietang@hotmail.com

¹ Equally contributed to this work

Supporting Information

Compound	Energy (-kcal/mol)	H-bond	$\pi-\pi$ packing	Compound	Energy (-kcal/mol)	H-bond	$\pi-\pi$ packing
1S	2.11	-	Ser A178	1'S	6.51	Asp B479	Arg B503, DG D13
1N	4.03	Asn B258	Lys B352	1'N	3.04	Asp B479	Arg B503, DT F9 , DA D12, DG D13
2S	4.99	Lys B254	Leu B248	2'S	10.26	Asp B479	Arg B503, DT F9, DG D13
2N	5.72	Lys B352	Leu B255, Lys B352	2'N	6.15	Asp B479	Arg B503, DA D12, DG D13
38	4.37	Ser A178	Ala B316	3'S	3.86	Asp B479	Arg B503, DT F9, DG D13
3N	3.87	Asn B258, Thr B353	Leu B248	3'N	5.58	Asp B479	Arg B503, DT F9, DG D13
4S	2.90	Thr A179	Lys B254	4'S	4.52	Asp B479	Arg B503, DT F9, DG D13
4N	2.45	Asn B258	Lys B352	4'N	2.69	Asp B479	Arg B503, DT F9, DG D13
5S	6.45	Lys B254	Lys B254	5'S	5.10	Asp B479	Arg B503, DT F9, DG D13
5N	6.13	-	Leu B248	5'N	4.12	Asp B479	Arg B503, DA D12, DG D13
6S	6.28	Lys B352	-	6'S	8.42	Asp B479	Arg B503, DT F9, DG D13
6N	3.14	Leu B255	-	6'N	8.10	Asp B479, DG D13	Arg B503, DA D12, DG D13
7S	-2.03	-	-	7'S	-7.23	-	-
7N	-2.37	Thr B353	-	7'N	-6.25	DC E8	DT F9, DA D12
8S	-1.49	-	-	8'S	-4.23	Lys B456	Arg B503
8N	-5.37	-	Leu B248	8'N	-6.43	-	Arg B503, DT F9
9S	-10.00	-	-	9'S	-7.26	Lys B456	Arg B503
9N	-11.04	Leu B255	-	9'N	-5.32	-	Arg B503
PTOX	4.11	Leu B248	Ala B316	VP-16	6.38	Asp B479	Arg B503, DC E8, DG D13

Table S1. Calculated docking of the complex of podophyllum derivatives with tubulin/Topo II.

Figure S1. Effects of podophyllum derivatives on the HeLa cell cycle arrest and apoptosis induce. (A) Compound 4β -S-(1, 3, 4-trizole-2)-4-deoxy-podophyllotoxin (Compound 1S), Compound 4β -*NH*-(1, 3. 4-trizole-2)-4-deoxy-podophyllotoxin (Compound 1N). 4β -*S*-(1, 3, 4-trizole-2)-4-deoxy-4'-demethylepipodophyllotoxin (Compound 1'S) and Compound 4β-NH-(1, 3, 4-trizole-2)-4-deoxy-4'-demethylepipodophyllotoxin (Compound 1'N) arrested cell cycle in HeLa cells in a dose- and time-dependent manner at the concentration of 0, 0.1, 1, and 5 µM for 6, 12, 24, and 48 h, respectively. Compared with the cells incubated with no drug, the treatment of Compounds 1S and 1N did not induce the G₂/M phase arrest at a lower concentration of 0.1 µM. However, the percentage of G₂/M phase cells was accumulated significantly to about 80% at 48 h when the concentration was increased to 1 μ M. And then the percentage of G_2/M phase cells continuously increased to the maximum about 80-90% at the higher concentration of 5 µM after the incubation of 48 h. Corresponding to Compounds 1S and 1N, the comparison between Compound 1'S and 1'N showed the similar trend that Compound 1'S was superior than Compound 1'N to arrest the cell cycle. (B) Compound 1S, 1N, 1'S, and 1'N induced cell apoptosis in HeLa cells in a dose- and time-dependent manner at the concentration of 0, 0.1, 1, and 5 µM for 6, 12, 24, and 48 h, respectively. Symbols: the negative control without adding Compounds 1S, 1N, 1'S and 1'N (0 µM), Compound 1S (black triangle, \blacktriangle), Compound 1N (open triangle, \triangle), Compound 1'S (black circle, \bullet), and Compound 1'N (open circle, \circ).

Figure S2

Figure S3

Calculated docking of complexes

- 8 Copies of ¹H, ¹³C NMR and 2D NMR (1H-1H COSY, HMBC, HSQC) Spectra
- 9 1. NMR and MS spectrum of compound 3S.
- **1.1.** ¹H NMR spectrum of compound 3S.
- **1.2.** ¹³C NMR spectrum of compound 3S.
- **1.3.** ¹H-¹H COSY spectrums for compound 3S.
- **1.4. HMBC spectrums for compound 3S.**
- **1.5. HSQC spectrums for compound 3S.**
- **1.6. MS diagram for compound 3S.**
- 16 2. NMR spectrum of compound 4S.
- **2.1.** ¹H NMR spectrum of compound 4S.
- **2.2.** ¹³C NMR spectrum of compound 4S.
- **2.3.** ¹H-¹H COSY spectrums for compound 4S.
- **2.4. HMBC spectrums for compound 4S.**
- **2.5. HSQC spectrums for compound 4S.**
- **2.6. MS diagram for compound 4S.**
- 23 3. NMR and MS spectrum of compound 5S.
- **3.1.** ¹H NMR spectrum of compound 5S.
- **3.2.** ¹³C NMR spectrum of compound 5S.
- **3.3.** ¹H-¹H COSY spectrums for compound 5S.
- **3.4. HMBC spectrums for compound 5S.**
- **3.5. HSQC spectrums for compound 5S.**
- **3.6. MS diagram for compound 5S.**
- 30 4. NMR and MS spectrum of compound 6S.

- 31 **4.1.** ¹H NMR spectrum of compound 6S.
- 32 4.2. ¹³C NMR spectrum of compound 6S.
- 33 **4.3.** ¹H-¹H COSY spectrums for compound 6S.
- 34 4.4. HMBC spectrums for compound 6S.
- 35 **4.5. HSQC spectrums for compound 6S.**
- 36 **4.6. MS diagram for compound 6S.**
- 37 5. NMR and MS spectrum of compound 3'S.
- 38 5.1. ¹H NMR spectrum of compound 3'S.
- 39 5.2. ¹³C NMR spectrum of compound 3'S.
- 40 **5.3.** ¹H-¹H COSY spectrums for compound 3'S.
- 41 **5.4. HMBC spectrums for compound 3'S.**
- 42 5.5. HSQC spectrums for compound 3'S.
- 43 **5.6. MS diagram for compound 3'S.**
- 44 6. NMR and MS spectrum of compound 4'S.
- 45 **6.1.** ¹H NMR spectrum of compound 4'S.
- 46 **6.2.** ¹³C NMR spectrum of compound 4'S.
- 47 **6.3.** ¹H-¹H COSY spectrums for compound 4'S.
- 48 **6.4. HMBC spectrums for compound 4'S.**
- 49 6.5. HSQC spectrums for compound 4'S.
- 50 6.6. MS diagram for compound 4'S.
- 51 7. NMR and MS spectrum of compound 5'S.
- 52 7.1. ¹H NMR spectrum of compound 5'S.
- 53 7.2. ¹³C NMR spectrum of compound 5'S.

- 54 **7.3.** ¹H-¹H COSY spectrums for compound 5'S.
- 55 7.4. HMBC spectrums for compound 5'S.
- 56 7.5. HSQC spectrums for compound 5'S.
- 57 7.6. MS diagram for compound 5'S.
- 58 8. NMR spectrum of compound 6'S.
- 59 8.1. ¹H NMR spectrum of compound 6'S.
- 60 8.2. ¹³C NMR spectrum of compound 6'S.
- 61 **8.3.** ¹H-¹H COSY spectrums for compound 6'S.
- 62 **8.4. HMBC spectrums for compound 6'S.**
- 63 **8.5. HSQC spectrums for compound 6'S.**
- 64 **8.6. MS diagram for compound 6'S.**
- 65 9. NMR and MS spectrum of compound 1N.
- 66 **9.1.** ¹H NMR spectrum of compound 1N.
- 67 9.2. ¹³C NMR spectrum of compound 1N.
- 68 9.3. ¹H-¹H COSY spectrums for compound 1N.
- 69 9.4. HMBC spectrums for compound 1N.
- 70 9.5. HSQC spectrums for compound 1N.
- 71 9.6. MS diagram for compound 1N.
- 72 10. NMR spectrum of compound 2N.
- 73 **10.1.** ¹H NMR spectrum of compound 2N.
- 74 **10.2.** ¹³C NMR spectrum of compound 2N.
- 75 **10.3.** ¹H-¹H COSY spectrums for compound 2N.
- 76 **10.4. HMBC spectrums for compound 2N.**

77	10.5. HSQC spectrums for compound	l 2N.
----	-----------------------------------	-------

- 78 **10.6. MS diagram for compound 2N.**
- 79 11. NMR spectrum of compound 3N.
- 80 11.1. ¹H NMR spectrum of compound 3N.
- 81 **11.2.** ¹³C NMR spectrum of compound 3N.
- 82 11.3. ¹H-¹H COSY spectrums for compound 3N.
- 83 11.4. HMBC spectrums for compound 3N.
- 84 11.5. HSQC spectrums for compound 3N.
- 85 **11.6. MS diagram for compound 3N.**
- 86 12. NMR spectrum of compound 4N.
- 87 **12.1.¹H NMR spectrum of compound 4N.**
- 88 12.2. ¹³C NMR spectrum of compound 4N.
- 89 12.3. COSY spectrums for compound 4N.
- 90 12.4. HMBC spectrums for compound 4N.
- 91 12.5. HSQC spectrums for compound 4N.
- 92 **12.6. MS diagram for compound 4N.**
- 93 13. NMR and MS spectrum of compound 5N.
- 94 **13.1.¹H NMR spectrum of compound 5N.**
- 95 **13.2.** ¹³C NMR spectrum of compound 5N.
- 96 13.3. COSY spectrums for compound 5N.
- 97 13.4. HMBC spectrums for compound 5N.
- 98 13.5. HSQC spectrums for compound 5N.
- 99 13.6. MS diagram for compound 5N.

- 100 14. NMR and MS spectrum of compound 6N.
- **14.1.¹H NMR spectrum of compound 6N.**
- 102 14.2. ¹³C NMR spectrum of compound 6N.
- **14.3. COSY spectrums for compound 6N.**
- **14.4. HMBC spectrums for compound 6N.**
- **14.5. HSQC spectrums for compound 6N.**
- **13.6. MS diagram for compound 6N.**
- 107 15. NMR and MS spectrum of compound 1'N.
- **15.1.** ¹H NMR spectrum of compound 1'N.
- **15.2.** ¹³C NMR spectrum of compound 1'N.
- **15.3.** ¹H-¹H COSY spectrums for compound 1'N.
- **15.4. HMBC spectrums for compound 1'N.**
- **15.5. HSQC spectrums for compound 1'N.**
- **15.6. MS diagram for compound 1'N.**
- 114 16. NMR spectrum of compound 2'N.
- **16.1.** ¹H NMR spectrum of compound 2'N.
- **16.2.** ¹³C NMR spectrum of compound 2'N.
- **16.3.** ¹H-¹H COSY spectrums for compound 2'N.
- **16.4. HMBC spectrums for compound 2'N.**
- **16.5. HSQC spectrums for compound 2'N.**
- **16.6. MS diagram for compound 2'N.**
- 121 17. NMR spectrum of compound 3'N.
- **17.1.** ¹H NMR spectrum of compound 3'N.

- **17.2.** ¹³C NMR spectrum of compound 3'N.
- **17.3.** ¹H-¹H COSY spectrums for compound 3'N.
- **17.4. HMBC spectrums for compound 3'N.**
- 126 17.5. HSQC spectrums for compound 3'N.
- **17.6. MS diagram for compound 3'N.**
- 128 18. NMR spectrum of compound 4'N.
- **18.1.¹H NMR spectrum of compound 4'N.**
- **18.2.** ¹³C NMR spectrum of compound 4'N.
- **18.3. COSY spectrums for compound 4'N.**
- **18.4. HMBC spectrums for compound 4'N.**
- **18.5. HSQC spectrums for compound 4'N.**
- **18.6. MS diagram for compound 4'N.**
- 135 19. NMR and MS spectrum of compound 5'N.
- **19.1.¹H NMR spectrum of compound 5'N.**
- **19.2.** ¹³C NMR spectrum of compound 5'N.
- **19.3. COSY spectrums for compound 5'N.**
- **19.4. HMBC spectrums for compound 5'N.**
- **19.5. HSQC spectrums for compound 5'N.**
- **19.6. MS diagram for compound 5'N.**
- 142 20. NMR and MS spectrum of compound 6'N.
- **20.1.¹H NMR spectrum of compound 6'N.**
- **20.2.** ¹³C NMR spectrum of compound 6'N.
- **20.3. COSY spectrums for compound 6'N.**

146	20.4. HMBC spectrums for compound 6'N.
147	20.5. HSQC spectrums for compound 6'N.
148	20.6. MS diagram for compound 6'N.
149	
150	
151	
152	
153	
154	
155	
156	
157	
158	
159	
160	
161	
162	
163	
164	
165	
166	
167	
168	

¹H NMR (400 MHz, CDCl₃, δ): 8.40 (d, J = 4.0 Hz, 1H), 7.52 (t, J = 4.0 Hz, 1H), 7.18 (d, J = 8.0 Hz, 1H), 7.05 198

(t, J = 4.0 Hz, 1H), 6.95 (s, 1H), 6.46 (s, 1H), 6.33 (s, 2H), 5.95 (d, J = 8.0 Hz, 2H), 5.57 (d, J = 4.0 Hz, 1H),199

200 4.60 (d, J = 4.0 Hz, 1H), 4.34 (t, J = 8.0 Hz, 1H), 3.86 (t, J = 8.0 Hz, 1H), 3.80 (s, 3H), 3.76 (s, 6H), 3.25-3.21 201 (m, 2H); ¹³C NMR (101 MHz, CDCl₃, δ): 174.83, 157.95, 152.50 (2C), 147.99, 147.89, 147.25, 137.05, 136.37,

202 135.70, 132.37, 128.41, 121.51, 120.25, 110.09, 109.84, 108.23 (2C), 101.46, 71.01, 60.76, 56.21 (2C), 45.63,

203 43.77, 42.50, 37.12.

204 ESI-MS: calc'd for C₂₇H₂₅NO₇S [M+H]⁺: 508.14, found 508.14 [M+H]⁺.

3.88 (t, J = 8.0 Hz, 1H), 3.81 (s, 3H), 3.77 (s, 6H), 3.30-3.23 (m, 2H); ¹³C NMR (101 MHz, CDCl₃, δ): 174.45,
171.37, 157.45 (2C), 152.54 (2C), 148.10, 147.38, 137.22, 135.57, 132.48, 127.54, 117.38, 110.15, 109.92,
108.38 (2C), 101.52, 70.68, 60.73, 56.26 (2C), 47.13, 43.75, 42.40, 37.01.

ESI-MS: calc'd for $C_{26}H_{24}N_2O_7S$ [M+H]⁺: 508.13, found 508.31 [M+H]⁺; calc'd for $C_{26}H_{24}N_2O_7S$ [M+H]⁺: 509.54, found 509.13 [M+2H]⁺; calc'd for $C_{26}H_{24}N_2O_7S$ [M+Na]⁺: 531.53, found 531.11 [M+Na]⁺; calc'd for

- $C_{26}H_{24}N_2O_7S [M+2Na+2K-2H]^+: 629.16$, found 629.13 $[M+2Na+2K-2H]^+$.

3.4. HMBC spectrums for compound 5S.

4p-s-(benzounazoie-z)-4-deoxy-podophynotoxin (55)

¹H NMR (400 MHz, CDCl₃, δ): 7.86 (d, *J* = 8.0 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.45 (t, *J* = 8.0 Hz, 1H), 7.35 (t, *J* = 8.0 Hz, 1H), 7.01 (s, 1H), 6.50 (s, 1H), 6.33 (s, 2H), 6.99 (d, *J* = 8.0 Hz, 2H), 5.77 (d, *J* = 4.0 Hz, 1H), 4.63 (d, *J* = 4.0 Hz, 1H), 4.47 (t, *J* = 8.0 Hz, 1H), 3.99 (t, *J* = 8.0 Hz, 1H), 3.82 (s, 3H), 3.78 (s, 6H), 3.43-3.34 (m, 1H), 3.24-3.19 (m, 1H); ¹³C NMR (101 MHz, CDCl₃, δ): 174.29, 165.32, 152.60 (2C), 148.43 (2C), 147.49, 135.28, 135.18, 132.73, 126.95, 126.31, 124.85 (2C), 121.40, 121.30, 110.15, 110.01, 108.31 (2C), 101.65, 70.79, 60.76, 56.28 (2C), 49.64, 43.74, 42.58, 37.14.

268 ESI-MS: calc'd for C₂₉H₂₅NO₇S₂ [M+H]⁺: 564.11, found 564.02 [M+H]⁺.

- 269
- 270

¹H NMR (300 MHz, CDCl₃, δ): 6.87 (s, 1H), 6.54 (s, 1H), 6.27 (s, 2H), 5.99 (d, J = 9.0 Hz, 2H), 5.29 (s, 1H), 4.86 (d, J = 9.0 Hz, 1H), 4.59 (d, J = 9.0 Hz, 1H), 4.37 - 4.32 (m, 1H), 3.79 (s, 3H), 3.73 (s, 6H), 3.28 (dd, $J_1 =$ 16.0 Hz, $J_2 = 6.0$ Hz, 1H), 3.212-3.177 (m, 1H); ¹³C NMR (75 MHz, CDCl₃, δ): 175.03 (2C), 152.55 (2C), 148.53, 147.47 (2C), 137.14, 135.05 (2C), 131.94, 131.85, 110.48 (2C), 108.97, 108.16 (2C), 67.61, 66.72, 60.74, 56.23 (2C), 53.42, 47.258, 43.89, 40.47, 38.27.

295 ESI-MS: calc'd for C₂₇H₂₄N₄O₇S [M+H]⁺: 549.14, found 549.14 [M+H]⁺.

296

322 ¹H NMR (400 MHz, CDCl₃, δ): 8.40 (d, J = 4.0 Hz, 1H), 7.52 (t, J = 8.0 Hz, 1H), 7.18 (d, J = 8.0 Hz, 1H), 7.05 323 (t, J = 8.0 Hz, 1H), 6.94 (s, 1H), 6.46 (s, 1H), 6.34 (s, 2H), 5.96 (d, J = 12.0 Hz, 2H), 5.56 (d, J = 4.0 Hz, 1H),

324 5.35 (s, 1H), 4.59 (d, J = 4.0 Hz, 1H), 4.33 (t, J = 8.0 Hz, 1H), 3.85 (t, J = 8.0 Hz, 1H), 3.79 (s, 6H), 3.33-3.20

325 (m, 2H); ¹³C NMR (101 MHz, CDCl₃, δ): 174.89, 157.98, 149.29, 147.89, 147.21, 146.34 (2C), 136.37, 133.92,

326 **132.55, 131.18, 128.40, 121.52, 120.24, 110.04, 109.85, 107.90 (2C), 101.44, 70.98, 56.43 (2C), 45.64, 43.61,**

42.61, 37.05.

328 ESI-MS: calc'd for $C_{26}H_{23}NO_7S [M+H]^+$: 494.12, found 494.00 $[M+H]^+$.

- 329
- 330

6.4. HMBC spectrums for compound 4'S.

¹H NMR (300 MHz, CDCl₃, δ): 8.468 (d, J = 7.2 Hz, 1H), 7.599 (t, J = 6.9 Hz, 1H), 7.253 (d, J = 7.8 Hz, 1H),

3677.122 (t, J = 6.0 Hz, 1H), 6.998 (s, 1H), 6.512 (s, 1H), 6.388 (s, 2H), 6.009 (d, J = 7.2 Hz, 2H), 5.643 (t, J = 6.0368Hz, 1H), 4.645 (d, J = 4.2 Hz, 1H), 4.391 (t, J = 8.1 Hz, 1H), 3.897 (t, J = 9.0 Hz, 1H), 3.837 (s, 6H),

369 3.359-3.240 (m, 2H); ¹³C NMR (75 MHz, CDCl₃, δ): 175.170, 158.169, 149.399, 148.178, 147.469, 146.617,

370 136.854, 134.157, 132.823, 131.404, 128.566, 121.896, 120.562, 110.316, 110.118, 108.131 (2C), 101.717,

371 **71.234, 56.674 (2C), 46.031, 43.845, 42.852, 37.317.**

372 ESI-MS: calc'd for $C_{25}H_{22}N_2O_7S [M+H]^+$: 496.11, found 496.00 [M+H]⁺.

- 373
- 374

7.1. ¹H NMR spectrum of compound 5'S.

9.5. HSQC spectrums for compound 1N.

453 ¹H NMR (400 MHz, CDCl₃): δ 6.83 (s, 1H), 6.52 (s, 1H), 6.27 (s, 2H), 5.99 (d, J = 16 Hz, 2H), 4.60 (dd, J =454 4.0 Hz, 2H), 4.37 (t, J = 4.0 Hz, 1H), 4.24 (t, J = 4.0 Hz, 1H), 3.80 (s, 3H), 3.74 (s, 6H), 3.71 (t, J = 4.0 Hz, 1H),

455 **3.39-3.34** (dd, J = 8.0 Hz, 1H), 2.89-2.80 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 174.842, 158.605, 152.729

456 (3C), 148.617, 147.685, 137.263, 135.708, 132.541, 127.554, 110.428, 110.099, 108.460 (2C), 101.882, 70.754,

457 **61.025, 56.465 (2C), 49.103, 43.899, 42.421, 37.489;**

458 ESI-MS: calc'd for $C_{24}H_{24}N_4O_7[M+H]^+$: 481.16, found 481.00 $[M+H]^+$.

501 ¹H NMR (400 MHz, CDCl₃): δ 6.82 (s, 1H), 6.52 (s, 1H), 6.27 (s, 2H), 5.98 (d, J = 3.6 Hz, 2H), 5.30 (s, 1H),

502 5.46 (dd, 2H, J = 4.0 Hz), 4.36 (t, 1H, J = 8.0 Hz), 4.24 (t, 1H, J = 8.0 Hz), 3.80 (s, 3H), 3.74 (s, 6H), 3.72 (t, J

503 = 8.0 Hz, 1H), 3.38 (m, J = 4.0 Hz, 1H), 2.88-2.81 (m, 1H); ¹³C NMR(101 MHz, CDCl₃): δ 175.06, 152.51

504 (2C), 148.13, 147.03, 137.14, 135.33, 132.13, 130.43, 110.41, 109.18, 108.24 (2C), 104.89, 101.39, 71.31, 71.25,

505 **67.76, 60.73, 56.23 (2C), 43.86, 41.19, 38.43;**

506 ESI-MS: calc'd for C₂₄H₂₃N₃O₇S: 498.52, found 498.00 [M+H]⁺.

4 .12 9.15

4.91

2.88 6

18

9

6.67.

0.34

6.65

ppm

74.01

580 4β-N-(pyrimidine-2)-4-deoxy-podophyllotoxin (5N)

⁵⁸¹ ¹H NMR (400 MHz, CDCl₃, δ): 7.62 (d, J = 8.0 Hz, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.36 (t, J = 8.0 Hz, 1H), 7.19

582 (t, J = 4.0 Hz, 1H), 6.88 (s, 1H), 6.51 (s, 1H), 6.30 (s, 2H), 5.97 (d, J = 8.0 Hz, 2H), 5.39 (s, 1H), 4.61 (d, $J = 10^{-10}$

583 **4.0** Hz, 1H), **4.50** (t, J = 4.0 Hz, 1H), **4.02** (t, J = 8.0 Hz, H), **3.80** (s, 3H), **3.75** (s, 6H), **3.11-3.07** (m, 2H); ¹³C

584 NMR(101 MHz, CDCl₃, δ): 174.25, 165.66, 152.63 (2C), 148.68, 147.72 (2C), 137.27, 134.70, 132.48, 128.27,

585 **126.61**, **123.00**, **121.15**, **118.83** (2C), **110.12**, **109.16**, **108.19** (2C), **101.69**, **69.00**, **60.75**, **56.24** (2C), **53.91**, **43.69**,

586 **41.92, 37.84**.

587 ESI-MS: calc'd for C₂₉H₂₆N₂O₇S [M+H]⁺: 547.14, found 547.00 [M+H]⁺.

607 4β -N-(pyrimidine-2)-4-deoxy-podophyllotoxin (6N)

⁶⁰⁸ ¹H NMR (400 MHz, CDCl₃, δ): 6.87 (s, 1H), 6.54 (s, 1H), 6.27 (s, 2H), 5.99 (d, J = 12.0 Hz, 2H), 5.29 (s, 1H),

609 **4.86** (d, J = 4.0 Hz, 1H), 4.60 (d, J = 4.0 Hz, 1H), 4.40-4.32 (m, 2H), 3.79 (s, 3H), 3.73 (s, 6H), 3.29-3.24 (m, 2H), 4.40-4.32 (m, 2H), 3.79 (s, 3H), 3.73 (s, 6H), 3.29-3.24 (m, 2H), 3.2

610 1H), 2.87-2.78 (m, 1H); ¹³C NMR (101 MHz, CDCl₃, δ): 175.03 (2C), 152.55 (2C), 148.53 (2C), 147.47,

611 137.15, 135.05 (2C), 131.94, 131.85, 110.48 (2C), 108.97, 108.16 (2C), 101.57, 67.61, 66.72, 60.74, 56.23 (2C),

612 **53.42**, **43.89**, **40.47**, **38.27**.

613 ESI-MS: calc'd for $C_{27}H_{25}N_5O_7 [M+H]^+$: 532.18, found 532.00 $[M+H]^+$.

111.83, 105.30, 75.14, 75.04, 72.12, 67.42, 59.65 (2C), 57.26, 47.52, 45.18, 42.40.

656 ESI-MS: calc'd for $C_{23}H_{22}N_4O_7 [M+H]^+$: 467.15, found 467.00 $[M+H]^+$.

681 133.96, 132.29, 130.82, 130.43, 110.41, 109.14, 107.89 (2C), 101.37, 71.32, 71.24, 67.76, 56.44 (2C), 43.69,

41.29, 38.37, 29.67.

683 ESI-MS: calc'd for $C_{23}H_{21}N_3O_7S[M+H]^+$: 484.11, found 484.00 [M+H]⁺.

¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, J = 8.0 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.34 (t, J = 8.0 Hz, 1H), 7.15

767 (t, J = 8.0 Hz, 1H), 6.88 (s, 1H), 6.51 (s, 1H), 6.31 (s, 2H), 5.9 7(d, J = 12.0 Hz, 2H), 5.42 (d, J = 4.0 Hz, 1H),

768 **4.58** (d, J = 4.0 Hz, 1H), 4.49 (t, J = 8.0 Hz, 1H), 4.00 (t, J = 8.0 Hz, 1H), 3.77 (s, 6H), 3.12-2.98 (m, 2H); ¹³C

769 NMR (101 MHz, CDCl₃): δ 174.52 (2C), 165.41, 151.61, 148.53, 147.64, 146.46 (2C), 134.07, 132.52, 130.23,

770 **128.76**, **126.26**, **122.60** (2C), **121.00**, **119.36**, **110.03**, **109.16**, **107.81** (2C), **101.63**, **69.25**, **56.42** (2C), **53.40**,

771 **43.52, 42.02, 37.82.**

⁷⁷² ESI-MS: calc'd for $C_{28}H_{24}N_2O_7S [M+H]^+$: 533.13, found 533.00 [M+H]⁺.

798 38.65.

799 ESI-MS: calc'd for $C_{26}H_{23}N_5O_7 [M+H]^+$: 518.16, found 518.00 $[M+H]^+$