Supporting Information inventory

Table S1 Simulated TRB with 0.1%, 0.5% and 2% sequencing error.

 Table S2 Simulated IGH with 0.1%, 0.5% and 2% sequencing error and 0.1%

 hyper-mutation

 Table S3 Simulated Data with 0.5% sequencing error (TRA/IGK/IGL) and 4%

 hyper-mutation

Table S4 Plasmid mixing pattern

 Table S5 Data process for PCR and sequencing error statistics

 Table S6 Samples information

Table S7 Experimental design for five CD4+ T cell clones in the three spiked in mix

Table S8 Performance of IMonitor and other tools on the simulated dataset

Table S9 TRB and IGH V/J primers

Figure S1 Insertion and deletion length distribution for simulated data

Figure S2 IGH-VDJ Mutation and deletion/insertion analysis on the public sequences

Figure S3 Outputs of IMonitor, H-B-01 as an example

Figure S4 H-B-01 sample output figure of IMonitor

Figure S5 Error characteristics of 6 plasmid mix samples

Figure S6 V-J pairing dynamics for M002

Figure S7 MiTCR and IMonitor performance in 3 spiked-in samples

Figure S8 Nucleotide composition of V/J genes

Mismatc	Hyper-	Software	TRBV-Ge	TRBD-Ge	TRBJ-G	TRBV-al	TRBD-a	TRBJ-al
h Rate	Mutatio		ne(%)	ne(%)	ene(%)	lele(%)	llele(%)	lele(%)
	n Rate							
0.10%	0.00%	IMMonitor	98.25	77.04	100.00	82.95	72.13	99.98
		HighV-QUST	91.46	86.31	99.24	65.94	81.69	99.23
		IgBLAST	97.87	80.55	99.20	72.46	76.33	99.19
		Decombinator	70.28	-	80.76	29.53	-	70.17
0.50%	0.00%	IMMonitor	98.18	76.90	100.00	82.34	71.60	99.83
		HighV-QUST	91.44	85.77	99.24	66.04	80.75	99.14
		IgBLAST	97.80	79.32	99.02	72.58	74.95	98.92
		Decombinator	68.33	-	78.64	-	-	-
2%	0.00%	IMMonitor	98.13	77.82	100.00	80.01	70.77	99.42
		HighV-QUST	91.59	83.89	99.30	65.39	77.27	98.96
		IgBLAST	97.83	75.13	98.61	71.82	70.07	98.27
		Decombinator	59.58	-	68.45	24.85	-	60.18

Table S1. Simulated TRB with 0.1%, 0.5% and 2% sequencing error.

Mismatc	Hyper-Mu	Software	IGHV-G	IGHD-G	IGHJ-G	IGHV-al	IGHD-al	IGHJ-all
h Rate	tation		ene(%)	ene(%)	ene(%)	lele(%)	lele(%)	ele(%)
	Rate							
0.10%	0.10%	IMonitor	98.30	83.97	99.98	81.48	81.41	99.88
		HighV-QUST	87.97	72.90	98.60	69.38	70.81	97.21
		IgBLAST	98.76	75.68	99.83	80.74	73.7	99.73
0.50%	0.10%	IMonitor	98.19	83.86	99.98	81.3	81.28	99.66
		HighV-QUST	87.51	72.73	98.61	68.96	70.66	97.01
		IgBLAST	98.63	75.47	99.83	80.63	73.52	99.5
2%	0.10%	IMonitor	98.02	83.79	99.96	80.46	81.01	98.68
		HighV-QUST	87.72	72.33	98.59	68.43	70.04	96.17
		IgBLAST	98.52	74.61	99.79	79.63	72.22	98.55

Table S2. Simulated IGH with 0.1%, 0.5% and 2% sequencing error and 0.1%

hyper-mutation

Gene	Mismatc h Rate	Hyper- Mutatio n Rate	Software	V-Gene(%)	J-Gene(%)	V-allele(%)	J-allele(%)									
IGK	0.50%	4.00%	IMMonitor	93.57	99.99	86.91	92.70									
		HighV-QUST	73.13	99.97	64.94	93.19										
			IgBLAST	91.53	100.00	85.46	92.94									
IGL	0.50%	4.00%	IMMonitor	100.00	99.57	77.24	98.79									
												HighV-QUST	98.82	97.54	76.85	97.26
			IgBLAST	100.00	99.67	78.25	99.53									
TRA	0.50%	0.00%	IMMonitor	98.35	100.00	86.75	99.39									
			HighV-QUST	100.00	94.12	83.31	93.85									
			IgBLAST	100.00	100.00	85.32	99.93									
			Decombinator	68.36	72.83	-	-									

Table S3. Simulated Data with 0.5% sequencing error (TRA/IGK/IGL) and 4%

hyper-mutation for IGK/IGL

Plasmi	Vanna	Laono	Plasmid	Plasmid	Plasmid	Plasmid	Plasmid	Plasmid
d No.	v gene	J gene	mix 1-1*	mix 1-2*	mix 2-1*	mix 2-2*	mix 3-1*	mix 3-2*
C-01	TRBV10-1	TRBJ2-7	2000	2000	10	10	100000	100000
C-02	TRBV10-2/3	TRBJ2-7	2000	2000	1000	1000	1000	1000
C-03	TRBV11-1/2/3	TRBJ1-3	2000	2000	10	10	100000	100000
C-04	TRBV11-1/2/3	TRBJ1-5	2000	2000	100	100	10000	10000
C-05	TRBV12-3/4	TRBJ2-1	2000	2000	10000	10000	100	100
C-06	TRBV12-5	TRBJ2-1	2000	2000	100	100	10000	10000
C-07	TRBV13	TRBJ1-1	2000	2000	10000	10000	100	100
C-08	TRBV14	TRBJ2-7	2000	2000	100000	100000	10	10
C-09	TRBV15	TRBJ1-6	2000	2000	1000	1000	1000	1000
C-10	TRBV15	TRBJ2-4	2000	2000	100000	100000	10	10
C-11	TRBV16	TRBJ1-1	2000	2000	100000	100000	10	10
C-12	TRBV19	TRBJ1-6	2000	2000	100	100	10000	10000
C-13	TRBV20-1	TRBJ1-4	2000	2000	100000	100000	10	10
C-14	TRBV20-1	TRBJ1-5	2000	2000	10	10	100000	100000
C-15	TRBV20-1	TRBJ2-2	2000	2000	1000	1000	1000	1000
C-16	TRBV24-1	TRBJ1-2	2000	2000	100	100	10000	10000
C-17	TRBV25	TRBJ2-5	2000	2000	10000	10000	100	100
C-18	TRBV27/28	TRBJ2-4	2000	2000	100000	100000	10	10
C-19	TRBV29-1	TRBJ2-3	2000	2000	100000	100000	10	10
C-20	TRBV2	TRBJ2-6	2000	2000	10	10	100000	100000
C-21	TRBV30	TRBJ1-1	2000	2000	1000	1000	1000	1000
C-22	TRBV3-1	TRBJ1-2	2000	2000	10000	10000	100	100
C-23	TRBV4-1/2/3	TRBJ2-7	2000	2000	10000	10000	100	100
C-24	TRBV5-1	TRBJ2-1	2000	2000	100000	100000	10	10
C-25	TRBV5-4/5/6/8	TRBJ2-3	2000	2000	10000	10000	100	100
C-26	TRBV6-1/2/3/5/ 8	TRBJ2-1	2000	2000	10000	10000	100	100
C-27	TRBV6-4	TRBJ2-5	2000	2000	1000	1000	1000	1000
C-28	TRBV6-6	TRBJ1-6	2000	2000	10	10	100000	100000
C-29	TRBV6-9	TRBJ1-3	2000	2000	1000	1000	1000	1000
C-30	TRBV7-2/4/6/7/ 8	TRBJ2-6	2000	2000	10	10	100000	100000
C-31	TRBV7-3	TRBJ2-7	2000	2000	100	100	10000	10000
C-32	TRBV7-9	TRBJ1-4	2000	2000	1000	1000	1000	1000
C-33	TRBV9	TRBJ1-2	2000	2000	100	100	10000	10000

Table S4. Plasmid mixing pattern

Note: * the clone ratio in the sample.

	Sum	High	Low PCR Filter Duality Engage		Effective	Before C	orrection	After	Correction	
Sample	Sum Sequence	Quanty Sequence(%)	Sequen ce(%)	Quanty Correcte d(%)	Correcte d(%)	Data	Base Error(%)	Sequenc e Error (%)	Base Error(%)	Sequence Error(%)
index-1	4,273,571	78.50	9.28	12.21	8.36	3,876,775	0.098	7.304	0.016	1.152
index-2	4,217,557	78.59	9.77	11.64	9.10	3,805,551	0.111	8.628	0.022	1.564
index-3	3,603,556	70.16	16.25	13.59	4.44	3,018,100	0.070	5.218	0.009	0.590
index-10	5,078,119	81.28	8.80	9.92	4.70	4,631,376	0.058	4.359	0.009	0.569
index-11	2,785,059	64.59	18.61	16.80	5.32	2,266,836	0.081	6.484	0.010	0.779
index-12	3,335,881	76.15	10.87	12.98	6.04	2,973,382	0.072	5.885	0.010	0.816

Table S5. Data	process for PCR and	l sequencing ei	rror statistics.

Sample	species	Gene	Library	Experimental	Sequencer	Туре	Amount
				method			
H-B-01	Human	TRB	cDNA	MPCR	Hiseq2500	PE100	lug
H-H-01	Human	IGH	DNA	MPCR	Hiseq2000	PE100	3ug
M001	Human	IGH	DNA	MPCR	Hiseq2500	PE150	1.2ug
M002	Human	IGH	DNA	MPCR	Hiseq2500	PE150	1.2ug

Table S6. Samples information

Table 67	Evenovingontal	docion	for fire	CD4 T		alamaa in	the three	aniltad in
Table 57.	пхрегипента	design	lor live	UJJ4+ I	сен	ciones in	une unree	sdiked in

Clone	TCRB V	TCRB J	CDR3	Mix 1	Mix 2	Mix 3
G	VB8	TRBJ1-1	CASSLGGQGVG	100,000	1000	10
А	VB5.1	TRBJ2-5	CASSPGIAELKETQY	10,000	1000	100
В	VB6.7	TRBJ2-7	CASHTGFVSYEQY	1000	1000	1000
С	VB4	TRBJ1-4	CSVGTGDNEKLF	100	1000	10,000
D	VB4	TRBJ1-4	CSVGQGDNEKLF	10	1000	100,000

mix.

	Peak Memory(MB)	Run Time					
Data set of TRB(10 ⁵ sequences)							
IMonitor ^a	325.88M	12m52s					
IgBLAST ^b	327.95M	27m46s					
Decombinator ^c	209.00M	1m23s					
HighV-QUST ^d	-	-					
Data set of IGH (10 ⁵ sequ	iences)						
IMonitor ^a	226.22M	21m96s					
IgBLAST ^b	196.22M	92m30s					
HighV-QUST ^d	-	-					

 Table S8. Performance of IMonitor and other tools on the simulated dataset.

Note: ^a, run with 1cpu and blast (-a 1); ^b, run with 1cpu and iglast (-num_threads 1);

^c, run with command prompt; ^d, run online, send the results to user after 1-2weeks

IGH V/J Primers	i	TRB V Primers			
IGHV1-18	AGAGTCACCATGACCACAGAC	TRBV2	ATTTCACTCTGAAGATCCGGTCCAC		
IGHV1-2/1-46	AGAGTCACCAKKACCAGGGAC	TRBV3-1	AAACAGTTCCAAATCGMTTCTCAC		
IGHV1-24	AGAGTCACCATGACCGAGGAC	TRBV4-1/2/3	CAAGTCGCTTCTCACCTGAATG		
IGHV1-3/1-45	AGAGTCACCATTACYAGGGAC	TRBV5-1	GCCAGTTCTCTAACTCTCGCTCT		
IGHV1-69/1-f	AGAGTCACGATWACCRCGGAC	TRBV5-4/5/6/8	TCAGGTCGCCAGTTCCCTAAYTAT		
IGHV1-8	AGAGTCACCATGACCAGGAAC	TRBV6-4.1	CACGTTGGCGTCTGCTGTACCCT		
IGH2-70/26/5	ACCAGGCTCACCATYWCCAAGG	TRBV6-8/5/1.2	CAGGCTGGTGTCGGCTGCTCCCT		
IGHV3	GGCCGATTCACCATCTCMAG	TRBV6-9/7/1.1/6	CAGGCTGGAGTCAGCTGCTCCCT		
IGH4	CGAGTCACCATRTCMGTAGAC	TRBV6-4.2	AGTCGCTTGCTGTACCCTCTCAG		
IGHV5-51	CAGCCGACAAGTCCATCAGC	TRRBV6-2/3	GGGGTTGGAGTCGGCTGCTCCCT		
IGHV6-1	AGTCGAATAACCATCAACCCAG	TRBV7-2/4/6/7/8	GGGATCCGTCTCCACTCTGAMGAT		
IGHV7	GACGGTTTGTCTTCTCCTTG	TRBV7-3	GGGATCCGTCTCTACTCTGAAGAT		
IGHJ	CTGAGGAGACGGTGACCRKKGT	TRBV7-9	GGGATCTTTCTCCACCTTGGAGAT		
		TRBV9	CCTGACTTGCACTCTGAACTAAACCT		
		TRBV10-1	CCTCACTCTGGAGTCTGCTGCC		
		TRBV10-2/3	CCTCACTCTGGAGTCMGCTACC		
		TRBV11-1/2/3	GCAGAGAGGCTCAAAGGAGTAGACT		
		TRBV12-3.2/5.2	GAAGGTGCAGCCTGCAGAACCCAG		
TRB J Primers		TRBV12-3.1/4/5.1	GAAGATCCAGCCCTCAGAACCCAG		
TRBJ1.1	CTTACCTACAACTGTGAGTCTGGTG	TRBV13	TCGATTCTCAGCTCAACAGTTC		
TRBJ1.2	CTTACCTACAACGGTTAACCTGGTC	TRBV14	GGAGGGACGTATTCTACTCTGAAGG		
TRBJ1.3	CTTACCTACAACAGTGAGCCAACTT	TRBV15	TTCTTGACATCCGCTCACCAGG		
TRBJ1.4	AAGACAGAGAGCTGGGTTCCACT	TRBV16	CTGTAGCCTTGAGATCCAGGCTACGA		
TRBJ1.5	CTTACCTAGGATGGAGAGTCGAGTC	TRBV18	TAGATGAGTCAGGAATGCCAAAG		
TRBJ1.6	CATACCTGTCACAGTGAGCCTG	TRBV19	TCCTTTCCTCTCACTGTGACATCGG		
TRBJ2.1	CCTTCTTACCTAGCACGGTGA	TRBV20-1	AACCATGCAAGCCTGACCTT		
TRBJ2.2	CTTACCCAGTACGGTCAGCCT	TRBV24-1	CTCCCTGTCCCTAGAGTCTGCCAT		
TRBJ2.3	CCGCTTACCGAGCACTGTCAG	TRBV25-1	GCCCTCACATACCTCTCAGTACCTC		
TRBJ2.4	AGCACTGAGAGCCGGGTCC	TRBV27-1	GATCCTGGAGTCGCCCAGC		
TRBJ2.5	CGAGCACCAGGAGCCGCGT	TRBV28	ATTCTGGAGTCCGCCAGC		
TRBJ2.6	CTCGCCCAGCACGGTCAGCCT	TRBV29-1	AACTCTGACTGTGAGCAACATGAG		
TRBJ2.7	CTTACCTGTGACCGTGAGCCTG	TRBV30-F5	CAGATCAGCTCTGAGGTGCCCCA		

Table S9. TRB and IGH V/J primers

Figure S1. Insertion and deletion length distribution for simulated data.

IGH-VDJ Mutation and deletion/insertion analysis on the public Figure S2. sequences. (A) VDJ mutation number statistics. (B) VDJ deletion/insertion length statistics. The data obtained from IMGT/LIGM-DB sets were "Homo database(http://www.imgt.org/ligmdb/), searched by sapiens", "rearranged", "TRB" or "IGH", and then selected the sequences annotated by manual(Annot. level=="manual") and annotated by V,D,J genes. So these sequences have fairly high level of annotation confidence.

1. Sample Basical Statitstics

```
#Title Seq num Rate of input(%)
                                  Rate of rawdata(%)
Raw seq number(PE=1) 8126815 -
Clean data
            7955514 97.89 97.89
PE read merged 7934499 99.74 97.63
Merged with highquality 7806823 98.13 96.06
V alignment 7692062 98.53 94.65
D alignment 3944006 50.52 48.53
J alignment
            7509383 96.19 92.40
VJ alignment 7419604 95.04 91.29
CDR3 found VJ 7313503 98.57 89.99
CDR3 found byconserve -
                            -
PCR Sequencing correct 6569719 89.83 80.84
Effective data 6188283 94.19 76.14
```

-----Note:-----

Clean_data: filter the Adapter pollution, low quality sequenceEffective_data: filter the sequence: 1. cannot find CDR3;2. V and J strand conflict; 3. CDR3 less than 0bp;4. sequence abundance filter.

2. Sample Further Statistics

in-frame: 5986614 96.74 out-of-frame(stop codon): 33909 0.55 out-of-frame(CDR3 length): 105860 1.71 non-function: 61899 1.00 V gene used: 48 100.00 J gene used: 13 100.00 V-J pairing: 558 89.42 Uniq number(seq nt,seq aa): 1152945 926184 Uniq number(cdr3 nt,cdr3 aa): 204878 182609 Shannon index(seq,seq aa): 16.23 15.74 Shannon index(cdr3 nt,cdr3 aa): 14.47 14.25 Shanono index(V,J,V-J): 3.84 2.54 6.22 Hyper-mutation(base rate, seq rate): 0.00 0.00

Figure S3. Outputs of IMonitor, H-B-01 as an example. Sample basic statistics

show the data procedure, from raw data to effective data, such as paired-end reads merged, V(D)J alignment rate. Sample further statistics, show the multiple statistics based on effective data.

Figure S4. H-B-01 sample output figure of IMonitor. (A) Sequence length distribution. (B) Saturation curve, rarefaction studies of sequences. Sub-sequences are randomly selected and observed unique CDR3 number and predicted CDR3 number (Chao1 corrected algorithm) are calculated. (C) CDR3 nucleotide length distribution. (D) CDR3 abundance distribution. (E) CDR3 amino acid frequencies sectional content. (F) Top ten frequency of CDR3 amino acid. (G) Length distribution of V/D/J gene in CDR3 region. (H) Deletion length distribution of V/D/J gene. (I) Insertion length distribution of between V and D gene, D and J gene. (J) Hyper-mutation, Only for Ig. (K), J gene usage. (L) V gene usage. (M) Three-dimensional graph of V-J pairing.

Figure S5. Error characteristics of 6 plasmid mix samples. (A) Error base rate after sequence filtering by different minimal quality value. For example, Q20 means filter the sequence with at least one base quality less than Q20. (B) Removed data rate after sequence filtering by different minimal quality. (C) Mismatch number distribution, raw sequences (Q0, no filtration) and sequences after filtering by minimal quality 20(Q20). (D) Error base distribution with base quality. Only unique sequences are considered.

Figure S6. V-J pairing dynamics for M002. Day 0 for pre-treatment, Day 15 and

Day 33 for post-treatment.

Figure S7. MiTCR and IMonitor performance in 3 spiked-in samples.

Figure S8. Nucleotide composition of V/J genes. (A) H-H-01 sample. (B) H-B-01 sample.