Supplementary information

Analysis of polygenic mutants suggests a role for Mediator in regulating transcriptional

activation distance in Saccharomyces cerevisiae

Caitlin T. Reavey*, Mark J. Hickman[‡], Krista C. Dobi*¹, David Botstein^{†2}, and Fred Winston*

- File S1 PERL script to calculate the frequency of all SNPs in two matched pools
- Table S1 S. cerevisiae strains
- Table S2 Oligonucleotides
- Table S3 Crosses for bulk segregant analysis
- Table S4 Sequencing coverage of segregant pools
- Table S5 Causal mutant candidates
- Table S6 Number of mutants with >2-fold change in RNA levels in the polygenic mutants
- Table S7 Adjacent gene pairs enrichment
- Figure S1 Evidence for disomy in two of the polygenic mutants
- Figure S2 Western analysis of Med3

File S1

PERL script to calculate the frequency of all SNPs in two matched pools

Usage: cerevisiae VCF diff <vcf-file> <min-counts> <min-fraction> # Input file must be a VCF file created from two samples (e.g., WT and mutant). # When calling the function, the user must specify the minimum reads needed in each sample # (this study used 10) and the minimum fraction of an alternative allele observed in either # of the two samples (this study used 0.5). # This program will ask which column is the WT and which column is the mutant. # Output file is a tab-delimited file with same name as input file, plus the date. # Output file contains the allele descriptions and their counts. # "FRACTION DIFF REF" shows the fraction difference of the reference allele: WT minus mutant. # The closer this value is to 1 (or -1), the greater the difference between WT and mutant. #!/usr/bin/perl use warnings; use strict; use List::Util qw(min max); my \$input = shift; my \$date = ((localtime)[5]+1900)."_".((localtime)[4]+1)."_".((localtime)[3]); my \$output = \$input.\$date.".txt"; open IN, \$input or die \$!; open OUT, ">\$output" or die \$!; select OUT; my \$min num = shift; my \$min fraction = shift; mv %chr=(chrI=>1,chrII=>2,chrIII=>3,chrIV=>4,chrV=>5,chrVI=>6,chrVII=>7,chrVIII=>8, chrIX=>9,chrX=>10,chrXI=>11,chrXII=>12,chrXIII=>13,chrXIV=>14,chrXV=>15,ch rXVI=>16,chrMito=>17,"2-micron"=>18); my %column; \$/="\n"; my \$labels = join "\t", qw/CHROM POS REF ALLELE ALT ALLELE1 ALT ALLELE2 ALT ALLELE3 NUM REF WT NUM ALT1 WT NUM ALT2 WT NUM ALT3 WT NUM REF MUT NUM_ALT1_MUT NUM_ALT2_MUT NUM_ALT3_MUT FRACTION_DIFF_REF/; print \$labels,"\n"; my WT column = "-1"; my \$mutant column = "-1"; while (<IN>) { my @row = split /\t/, \$_;

```
my @new row;
# Meta-information lines
if ($row[0] =~ /^##/) {next;}
# header line: determine order of columns
elsif ($row[0] =~ /^#[A-Za-z0-9]/) {
     my $count=0;
      for (@row) {
           print STDOUT "$count: $_\n";
           $column{$_} = $count;
           $count++;
      }
     print STDOUT "Which column is the WT sample? ";
      chomp ($WT_column = <STDIN>);
      print STDOUT "Which column is the mutant sample? ";
     chomp ($mutant_column = <STDIN>);
     next;
}
# data line (i.e., with mutation)
else {
      $new_row[0] = $chr{$row[$column{"#CHROM"}]};
      $new_row[1] = $row[$column{POS}];
      $new_row[2] = $row[$column{REF}];
     my @MUTATIONS = split /,/, $row[$column{ALT}];
     if (!defined$MUTATIONS[0] || ($MUTATIONS[0] eq "."))
{$new_row[3] = "";}
      else {$new_row[3]=$MUTATIONS[0];}
      if (!defined$MUTATIONS[1] || ($MUTATIONS[1] eq "."))
{$new_row[4] = "";}
      else {$new row[4]=$MUTATIONS[1];}
      if (!defined$MUTATIONS[2] || ($MUTATIONS[2] eq "."))
{$new row[5] = "";}
     else {$new_row[5]=$MUTATIONS[2];}
     my %format column;
     my @format = split /:/, $row[$column{FORMAT}];
     my $count=0;
     my $RA="RA"; my $AA="AA";
      for (@format) {
           $format_column{$_} = $count;
           if ($_ eq "RO")
                                { $RA = "RO"; }
           if ($ eq "AO")
                                   \{ $AA = "AO"; \}
           $count++;
      }
      if ($row[$WT_column] =~ /:/) {
           my @WT = split /:/, $row[$WT_column];
           chomp (@WT);
           $new_row[6] = $WT[$format_column{$RA}];
           my @AA1 = split /,/, $WT[$format_column{$AA}];
```

```
if (!defined$AA1[0] || ($AA1[0] eq "."))
                                                                 {$new_row[7] =
0;}
                 else {$new row[7]=$AA1[0];}
                 if (!defined$AA1[1] || ($AA1[1] eq "."))
                                                                 \{\text{snew}_{row}[8] =
0;}
                 else {$new_row[8]=$AA1[1];}
                 if (!defined$AA1[2] || ($AA1[2] eq "."))
                                                                 \{\text{snew}_{row}[9] =
0;}
                 else {$new row[9]=$AA1[2];}
            }
            else {
                  @new row[6..9] = ("?","?","?","?");
            }
            if ($row[$mutant_column] =~ /:/) {
                 my @MUT = split /:/, $row[$mutant_column];
                 chomp (@MUT);
                 $new_row[10] = $MUT[$format_column{$RA}];
                 my @AA2 = split /,/, $MUT[$format column{$AA}];
                 if (!defined$AA2[0] || ($AA2[0] eq "."))
                                                                 {$new row[11] =
0;}
                 else {$new_row[11]=$AA2[0];}
                 if (!defined$AA2[1] || ($AA2[1] eq "."))
                                                                 {$new_row[12] =
0;}
                 else {$new_row[12]=$AA2[1];}
                 if (!defined$AA2[2] || ($AA2[2] eq "."))
                                                                 {$new_row[13] =
0;}
                 else {$new_row[13]=$AA2[2];}
            }
           else {
                 @new_row[10..13] = ("?","?","?","?");
            }
      }
     my WT = 0;
     my $mut_sum = 0;
     for (@new row[6..9]) {
            if ($_ ne "?") {$WT_sum=$WT_sum+$_;}
      for (@new_row[10..13]) {
            if ($_ ne "?") {$mut_sum=$mut_sum+$_;}
      }
      if ( $WT_sum >= $min_num && $mut_sum >= $min_num ) {
            if ( ( ( max(@new_row[7..9]) / $WT_sum) >= $min_fraction) ||
            ( ( max(@new_row[11..13]) / $mut_sum) >= $min_fraction) ) {
                 $new_row[14] = ($new_row[6]/$WT_sum)-($new_row[10]/$mut_sum);
                 my $line = join "\t", @new_row;
                 print $line, "\n";
            }
      }
}
```

Table S1. S. cerevisiae strains

Strain	Genotype
FY76	MAT a lys2-128δ
FY3045	MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ bph1Δ::kanMX-UAS _{GAL1} 799-
	HIS3 dug2Δ::TRP1-UAS _{GAL1} 806-URA3-natMX
FY3046 (2.0)	MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS _{GAL1} 799-HIS3 dug2∆::TRP1-UAS _{GAL1} 806-URA3-natMX
FY3047 (1.0)	MATα his3 Δ 200 ura3 Δ 0 leu2 Δ 0 trp1 Δ 63 lys2-128 δ sin4 Δ 0::LEU2 bph1 Δ ::kanMX-
	UAS _{GAL1} 799-HIS3 dug2∆::TRP1-UAS _{GAL1} 806-URA3-natMX
FY3048 (1.1)	MATα his3 Δ 200 ura3 Δ 0 leu2 Δ 0 trp1 Δ 63 lys2-128 δ sin4 Δ 0::LEU2 bph1 Δ ::kanMX-
	UAS _{GAL1} 799-HIS3 dug2∆::TRP1-UAS _{GAL1} 806-URA3-natMX grr1-1
FY3049 (1.2)	MATα his3 Δ 200 ura3 Δ 0 leu2 Δ 0 trp1 Δ 63 lys2-128 δ sin4 Δ 0::LEU2 bph1 Δ ::kanMX-
	UAS _{GAL1} 799-HIS3 dug2∆::TRP1-UAS _{GAL1} 806-URA3-natMX mot3-1 grr1-1 sgm1-1
	rim8-1 tma108-1 sgf73-1
FY3050 (2.1)	MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS _{GAL1} 799-HIS3 dug2∆::TRP1-UAS _{GAL1} 806-URA3-natMX yor019w-1
FY3051 (2.2)	MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS _{GAL1} 799-HIS3 dug2∆::TRP1-UAS _{GAL1} 806-URA3-natMX ptr3-1 yor019w-1
FY3052 (2.3a)	MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS _{GAL1} 799-HIS3 dug2∆::TRP1-UAS _{GAL1} 806-URA3-natMX mit1-1 ptr3-1 yor019w-
	1
FY3053 (2.3b)	MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS _{GAL1} 799-HIS3 dug2∆::TRP1-UAS _{GAL1} 806-URA3-natMX msn2-1 ptr3-1

yor019w-1

FY3054 MATa his3 Δ 200 ura3 Δ 0 leu2 Δ 0 lys2-128 δ bph1 Δ ::kanMX-UAS_{GAL1} 799-HIS3 dug2 Δ ::TRP1-UAS_{GAL1}806

- FY3055 MATa his3 Δ 200 ura3 Δ 0 leu2 Δ 0 trp1 Δ 63 lys2-128 δ sin4 Δ 0::LEU2 bph1 Δ ::kanMX-UAS_{GAL1} 799-HIS3 dug2 Δ ::TRP1-UAS_{GAL1}806-URA3
- FY3056 MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-UAS_{GAL1} 799-HIS3 dug2Δ::TRP1-UAS_{GAL1}806 mot3-1 grr1-1 sgm1-1 rim8-1 tma108-1 sgf73-1
- FY3057 MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128 δ sin4Δ0::LEU2 bph1Δ::kanMX-UAS_{GAL1} 799-HIS3 dug2Δ::TRP1-UAS_{GAL1}806 mit1-1 ptr3-1 yor019w-1
- FY3058 MATa his3 Δ 200 ura3 Δ 0 leu2 Δ 0 trp1 Δ 63 lys2-128 δ sin4 Δ 0::LEU2 bph1 Δ ::kanMX-UAS_{GAL1} 799-HIS3 dug2 Δ ::TRP1-UAS_{GAL1}806 msn2-1 ptr3-1 yor019w-1
- FY3059 MATa his3 Δ 200 ura3 Δ 0 leu2 Δ 0 trp1 Δ 63 lys2-128 δ sin4 Δ 0::LEU2 bph1 Δ ::kanMX-UAS_{GAL1} 799-HIS3 dug2 Δ ::TRP1-UAS_{GAL1}806 mot3- 1
- FY3060 MATa his3 Δ 200 ura3 Δ 0 leu2 Δ 0 trp1 Δ 63 lys2-128 δ sin4 Δ 0::LEU2 bph1 Δ ::kanMX-UAS_{GAL1} 799-HIS3 dug2 Δ ::TRP1-UAS_{GAL1}806 grr1-531
- FY3061 MAT α his3 Δ 200 ura3 Δ 0 leu2 Δ 0 trp1 Δ 63 lys2-128 δ sin4 Δ 0::LEU2 bph1 Δ ::kanMX-UAS_{GAL1} 799-HIS3 dug2 Δ ::TRP1-UAS_{GAL1}806 mot3-1 grr1-1
- FY3062 MAT α his3 Δ 200 ura3 Δ 0 leu2 Δ 0 trp1 Δ 63 lys2-128 δ bph1 Δ ::kanMX-UAS_{GAL1} 799-HIS3 dug2 Δ ::TRP1-UASGAL1806 mot3-1 grr1-1
- FY3063 MATα his3 Δ 200 ura3 Δ 0 leu2 Δ 0 trp1 Δ 63 lys2-128 δ sin4 Δ 0::LEU2 bph1 Δ ::kanMX-UASGAL1 799-HIS3 dug2 Δ ::TRP1-UASGAL1806 mot3-1 msn2-1
- FY3064 MATa his3 Δ 200 ura3 Δ 0 leu2 Δ 0 trp1 Δ 63 lys2-128 δ sin4 Δ 0::LEU2 bph1 Δ ::kanMX-UASGAL1 799-HIS3 dug2 Δ ::TRP1-UASGAL1806 msn2-1 sin4 Δ 0

FY3065	MATα his3 Δ 200 ura3 Δ 0 leu2 Δ 0 trp1 Δ 63 lys2-128 δ sin4 Δ 0::LEU2 bph1 Δ ::kanMX-
	UASGAL1 799-HIS3 dug2∆::TRP1-UASGAL1806 mit1-1 msn2-1
FY3066	MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UASGAL1 799-HIS3 dug2 Δ ::TRP1-UASGAL1806 mit1-1 sin4 Δ 0
FY3067	MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UASGAL1 799-HIS3 dug2∆::TRP1-UASGAL1806 mot3-1 mit1-1
FY3068	MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UASGAL1 799-HIS3 dug2∆::TRP1-UASGAL1806 mot3-1 mit1-1 msn2-1
FY3069	MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS _{GAL1} 799-HIS3 dug2∆::TRP1-UAS _{GAL1} 806 MIT1 ptr3-1 yor019w-1
FY3070	MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS _{GAL1} 799-HIS3 dug2 Δ ::TRP1-UAS _{GAL1} 806 mit1-1 PTR3 yor019w-1
FY3071	MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS _{GAL1} 799-HIS3 dug2Δ::TRP1-UAS _{GAL1} 806 mit1-1 ptr3-1 YOR019W
FY3072	MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS _{GAL1} 799-HIS3 dug2 Δ ::TRP1-UAS _{GAL1} 806 MSN2 ptr3-1 yor019w-1
FY3073	MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS _{GAL1} 799-HIS3 dug2 Δ ::TRP1-UAS _{GAL1} 806 msn2-1 PTR3 yor019w-1
FY3074	MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS _{GAL1} 799-HIS3 dug2 Δ ::TRP1-UAS _{GAL1} 806 msn2-1 ptr3-1 YOR019W
FY3075	MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS _{GAL1} 799-HIS3 dug2Δ::TRP1-UAS _{GAL1} 806 mot3Δ0::URA3 grr1-1
FY3076	MATα his3 Δ 200 ura3 Δ 0 leu2 Δ 0 trp1 Δ 63 lys2-128 δ sin4 Δ 0::LEU2 bph1 Δ ::kanMX-
	UAS _{GAL1} 799-HIS3 dug2Δ::TRP1-UAS _{GAL1} 806 mot3-1 grr1Δ0::URA3

FY3077	MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS _{GAL1} 799-HIS3 dug2 Δ ::TRP1-UAS _{GAL1} 806 mit1 Δ 0::URA3 ptr3-1 yor019w-1
FY3078	MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS_{GAL1} 799-HIS3 dug2 Δ ::TRP1-UAS _{GAL1} 806 mit1-1 ptr3 Δ 0::URA3 yor019w-1
FY3079	MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS _{GAL1} 799-HIS3 dug2∆::TRP1-UAS _{GAL1} 806 msn2∆0::URA3 ptr3-1 yor019w-1
FY3080	MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS _{GAL1} 799-HIS3 dug2 Δ ::TRP1-UAS _{GAL1} 806 msn2-1 ptr3- Δ 0::URA3 yor019w-1
FY3081	MAT a his3Δ200 ura3Δ0 leu2Δ0 lys2-128δ bph1Δ::kanMX-UAS _{GAL1} 280-HIS3
	dug2Δ::TRP1-UAS _{GAL1} 806
FY3082	MATa his3Δ200 ura3Δ0 leu2Δ0 lys2-128δ bph1Δ::kanMX-UAS _{GAL1} 1397-HIS3
	dug2Δ::TRP1-UAS _{GAL1} 806
FY3083	MATa his3Δ200 ura3Δ0 leu2Δ0 lys2-128δ bph1Δ::kanMX-UAS _{GAL1} 2027-HIS3
	dug2Δ::TRP1-UAS _{GAL1} 806
FY3084	MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS _{GAL1} 280-HIS3 dug2Δ::TRP1-UAS _{GAL1} 806-URA3
FY3085	MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS _{GAL1} 1397-HIS3 dug2Δ::TRP1-UAS _{GAL1} 806-URA3
FY3086	MATa his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS _{GAL1} 2027-HIS3 dug2 Δ ::TRP1-UAS _{GAL1} 806-URA3
FY3087	MATα his3 Δ 200 ura3 Δ 0 leu2 Δ 0 trp1 Δ 63 lys2-128 δ sin4 Δ 0::LEU2 bph1 Δ ::kanMX-
	UAS _{GAL1} 280-HIS3 dug2Δ::TRP1-UAS _{GAL1} 806 mot3-1 grr1-1
FY3088	MATα his3 Δ 200 ura3 Δ 0 leu2 Δ 0 trp1 Δ 63 lys2-128 δ sin4 Δ 0::LEU2 bph1 Δ ::kanMX-
	UAS_{GAL1} 1397-HIS3 dug2 Δ ::TRP1-UAS_{GAL1}806 mot3-1 grr1-1

FY3089	MATα his3 Δ 200 ura3 Δ 0 leu2 Δ 0 trp1 Δ 63 lys2-128 δ sin4 Δ 0::LEU2 bph1 Δ ::kanMX-
	UAS _{GAL1} 2027-HIS3 dug2Δ::TRP1-UAS _{GAL1} 806 mot3-1 grr1-1
FY3090	MATα his3 Δ 200 ura3 Δ 0 leu2 Δ 0 trp1 Δ 63 lys2-128δ sin4 Δ 0::LEU2 bph1 Δ ::kanMX-
	UAS _{GAL1} 280-HIS3 dug2Δ::TRP1-UAS _{GAL1} 806 mit1-1 ptr3-1 yor019w-1
FY3091	MATα his3 Δ 200 ura3 Δ 0 leu2 Δ 0 trp1 Δ 63 lys2-128δ sin4 Δ 0::LEU2 bph1 Δ ::kanMX-
	UAS _{GAL1} 1397-HIS3 dug2Δ::TRP1-UAS _{GAL1} 806 mit1-1 ptr3-1 yor019w-1
FY3092	MATα his3 Δ 200 ura3 Δ 0 leu2 Δ 0 trp1 Δ 63 lys2-128δ sin4 Δ 0::LEU2 bph1 Δ ::kanMX-
	UAS _{GAL1} 2027-HIS3 dug2Δ::TRP1-UAS _{GAL1} 806 mit1-1 ptr3-1 yor019w-1
FY3093	MATα his3 Δ 200 ura3 Δ 0 leu2 Δ 0 trp1 Δ 63 lys2-128δ sin4 Δ 0::LEU2 bph1 Δ ::kanMX-
	UAS _{GAL1} 280-HIS3 dug2Δ::TRP1-UAS _{GAL1} 806 msn2-1 ptr3-1 yor019w-1
FY3094	MATα his3 Δ 200 ura3 Δ 0 leu2 Δ 0 trp1 Δ 63 lys2-128δ sin4 Δ 0::LEU2 bph1 Δ ::kanMX-
	UAS _{GAL1} 1397-HIS3 dug2∆::TRP1-UAS _{GAL1} 806 msn2-1 ptr3-1 yor019w-1
FY3095	MATα his3 Δ 200 ura3 Δ 0 leu2 Δ 0 trp1 Δ 63 lys2-128 δ sin4 Δ 0::LEU2 bph1 Δ ::kanMX-
	UAS _{GAL1} 2027-HIS3 dug2Δ::TRP1-UAS _{GAL1} 806 msn2-1 ptr3-1 yor019w-1
FY3096	MATa his3Δ200 ura3Δ0 leu2Δ0 lys2-128δ bph1Δ::kanMX-UAS _{GAL1} 799-HIS3
	dug2Δ::TRP1-UAS _{GAL1} 806 UAS _{GAL1} -10Δ::hphMX
FY3097	MATα his3Δ200 ura3Δ0 leu2Δ0 lys2-128δ bph1Δ::kanMX-UAS _{GAL1} 799-HIS3
	dug2Δ::TRP1-UAS _{GAL1} 806 UAS _{GAL1} -10Δ::hphMX MED3-FLAG::natMX
FY3098	MATa his3Δ200 ura3Δ0 leu2Δ0 lys2-128δ bph1Δ::kanMX-UAS _{GAL1} 799-HIS3
	$dug2\Delta$::TRP1-UAS _{GAL1} 806 UAS _{GAL1} -10 Δ ::hphMX sin4 Δ 0::LEU2
FY3099	MATa his3Δ200 ura3Δ0 leu2Δ0 lys2-128δ bph1Δ::kanMX-UAS _{GAL1} 799-HIS3
	$dug2\Delta$::TRP1-UAS _{GAL1} 806 UAS _{GAL1} -10 Δ ::hphMX sin4 Δ 0::LEU2 MED3-
	FLAG::NatMX
FY3100	MATa his3Δ200 ura3Δ0 leu2Δ0 lys2-128δ bph1Δ::kanMX-UAS _{GAL1} 799-HIS3

	$dug2\Delta$::TRP1-UAS _{GAL1} 806 UAS _{GAL1} -10 Δ ::hphMX sin4 Δ 0::LEU2 mot3-1 grr1-1
FY3101	MATa his3Δ200 ura3Δ0 leu2Δ0 lys2-128δ bph1Δ::kanMX-UAS _{GAL1} 799 dug2
	Δ::TRP1-UAS _{GAL1} 806 UAS _{GAL1} -10Δ::hphMX sin4Δ0::LEU2 mot3-1 grr1-1 MED3-
	FLAG::NatMX
FY3102	MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS _{GAL1} 799-HIS3 dug2∆::TRP1-UAS _{GAL1} 806 MOT3 grr1-1 sgm1-1 rim8-1 tma108-
	1 sgf73-1
FY3103	MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS _{GAL1} 799-HIS3 dug2∆::TRP1-UAS _{GAL1} 806 mot3-1 GRR1 sgm1-1 rim8-1 tma108-
	1 sgf73-1
FY3104	MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS _{GAL1} 799-HIS3 dug2 Δ ::TRP1-UAS _{GAL1} 806 mot3-1 grr1-1 SGM1 rim8-1 tma108-
	1 sgf73-1
FY3105	MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS _{GAL1} 799 dug2∆::TRP1-UAS _{GAL1} 806-URA3 ptr3-1
FY3106	MAT a his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS _{GAL1} 799-HIS3 dug2Δ::TRP1-UAS _{GAL1} 806-URA3 yor019w-1-1
FY3107	MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128 δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS _{GAL1} 799 dug2∆::TRP1-UAS _{GAL1} 806-URA3 ptr3-1 yor019w-1
FY3108	MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128 δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS _{GAL1} 799-HIS3 dug2Δ::TRP1-UAS _{GAL1} 806-URA3 mit1-1 ptr3-1 yor019w-1
FY3109	MATα his3Δ200 ura3Δ0 leu2Δ0 trp1Δ63 lys2-128δ sin4Δ0::LEU2 bph1Δ::kanMX-
	UAS _{GAL1} 799-HIS3 dug2Δ::TRP1-UAS _{GAL1} 806-URA3 msn2-1 ptr3-1 yor019w-1

FY2650 MATa his3Δ200 lys2-128d leu2Δ0 ura3Δ0 trp1Δ63 sin4Δ0::LEU2 med3Δ0::LEU2

 $bph1\Delta$::kanMX-UAS_{GAL1}799-HIS3

 FY2651
 MATa ade8-140 his3Δ200 lys2-128d leu2Δ0 ura3Δ0 trp1Δ63 sin4Δ0::LEU2

 med2Δ0::URA3 bph1Δ::kanMX-UAS_{GAL1}799-HIS3

 FY2657
 MATα ade8-140 his3Δ200 lys2-128d leu2Δ0 ura3Δ0 trp1Δ63 sin4Δ0::LEU2

 cdk8Δ0::URA3 bph1Δ::kanMX-UAS_{GAL1}799-HIS3

Strains isolated during the mutant isolation are indicated by additional numbers in parentheses which indicate the stage when they were isolated. Lineage 1 has strains 1.0, 1.1, and 1.2, and lineage 2 has strains 2.0, 2.1, 2.2, 2.3a, and 2.3b.

Table S2. Oligonucleotides

Oligo	Purpose	Sequence
FO8064	replace HIS3 ORF	TATACTAAAAAATGAGCAGGCAAGATAAACGAAGGCAAAGATGTCGA
	with URA3 ORF in	AAGCTACATATAA
	dug2 reporter	
FO8065	replace HIS3 ORF	TATATATATCGTATGCTGCAGCTTTAAATAATCGGTGTCATTAGTTTT
	with URA3 ORF at	GCTGGCCGCATC
	dug2 reporter	
FO6834	Northern probe of	GATCTTTCGAACAGGCCGTA
	HIS3	
FO4995	Northern probe of	ACCTTTGGTGGAGGGAACAT
	HIS3	
FO481	Northern probe of	CCATGGAGGGCACAGTTAAGCCGC
	URA3	
F0483	Northern probe of	CCCTTCCCTTTGCAAATAGTCCTC
	URA3	
FO1324	Northern probe of	GGCCCTGATGATAATG
	SNR190	
FO1325	Northern probe of	GGCTCAGATCTGCATG
	SNR190	
FO3662	delete URA3 from	GTTGGTTGGGTGACCCAACAAATCAT
	dug2 reporter	
FO3663	delete URA3 from	CTATTGAATACTTTAGACAAAATCTCA

dug2 reporter

FO10433	integrate URA3 at	TCGCAACAAAGACATTTTCTATGCCCTTGGTGCTTAAGCAAGATTGT
	site of mot3	ACTGAGAGTGCAC
	mutation	
FO10434	integrate URA3 at	AATTGTTGTAGTTAAAGATGATGTTGTTTTTCTTGAGTTCCTGTGCGG
	site of mot3	TATTTCACACCG
	mutation	
FO10277	replace URA3 with	ACGACAGCACCTAACCATCC
	mot3 allele	
FO10278	replace URA3 with	TCTTCATTTTCGGGAGCTGT
	mot3 allele	
FO10271	integrate URA3 at	AAAAAAATCCAAGAGTTTCTGGTTGTTATAGAGAAACGTAAGATTGTA
	site of grr1	CTGAGAGTGCAC
	mutation	
FO10272	integrate URA3 at	TTTAAGGTTGTCTAGCTCAATTTCGTTCAGTATTTTTTTT
	site of grr1	TATTTCACACCG
	mutation	
FO10273	replace URA3 with	CGCTGAACGGGATTGACATA
	WT GRR1 allele	
FO10274	replace URA3 with	GCTTGGAATGGCAGTATGCA
	WT GRR1 allele	
FO10435	integrate URA3 at	AAAGAAAAAAATGATATTGAAGAAAAATATCAAACTGCCTAGATTGTA
	site of sgm1	CTGAGAGTGCAC
	mutation	

FO10436	integrate URA3 at	GTCTCTCCAAGTCTTTCACTTCCAAAACTGCCTTCGAATGCTGTGCG
	site of sgm1	GTATTTCACACCG
	mutation	
FO10281	replace URA3 with	TCAAAGGCCAACTGGGATAG
	sgm1 allele	
FO10282	replace URA3 with	TCGCCAAGTTTTGACATTGA
	sgm1 allele	
FO10263	integrate URA3 at	AAGCTGAAGAGACCTCCATTCAACTCGATTGAAAATTTACAGATTGTA
	site of mit1	CTGAGAGTGCAC
	mutation	
FO10264	integrate at site of	ATTTTGTTTTATATCTTTTACAGAATAATAAGAGACAATACTGTGCGG
	mit1 mutation	TATTTCACACCG
FO10265	replace URA3 with	GTACTGATTCCGCCGTCATT
	mit1 allele	
FO10266	replace URA3 with	TCAGGGGAGTGGAAGAGTTG
	mit1 allele	
FO10431	integrate URA3 at	AACTTCAACCAACTAACAGAGCAATCGTCATCTTCACTCTAGATTGTA
	site of ptr3	CTGAGAGTGCAC
	mutation	
FO10432	integrate URA3 at	TATCAAGAAATCATTGGAAAGTTTGCAAAAACGTTGGCTCCTGTGCG
	site of ptr3	GTATTTCACACCG
	mutation	
FO10269	replace URA3 with	GCACATGATCTGGACGAAGA
	<i>ptr3</i> allele	

FO10270 replace URA3 with ATGGGGAATCTCGACACGTA

ptr3 allele

FO10397	integrate URA3 at	CCAGCTTTAAGAATGCTTTGATAGGCAATGGGTCGAAAAAAGATTGT
	site of yor019w	ACTGAGAGTGCAC
	mutation	
FO10398	integrate URA3 at	CTGAGGAAGAATATGGTATTAAAGATTTTCTAAACTTTGTCTGTGCGG

- site of *yor019w* TATTTCACACCG
- FO10363 replace URA3 with CCCAGCATTCAAGAAGGAAG
- FO10364 replace URA3 with GCACCGGCACTTTTAACTTT

yor019w allele

FO10453 integrate URA3 at AAGTGTCGTAATAGAATCAACAAAGGAACTCGAGGAGAAAAGATTGT site of *msn2* ACTGAGAGTGCAC

mutation

FO10454 integrate URA3 at GGTCGTTCGTTAGAGTGAACAGATCTCACATGCCTTTTCACTGTGCG site of *msn*2 GTATTTCACACCG

mutation

- FO10451 replace URA3 with TATCACCATTTCCCACAGCA msn2 allele
- FO10452 replace URA3 with TGACAAGCAAATGGTCGTTC
 msn2 allele
- FO10323 delete *MOT3* with TAGGCAAATAGTAAAGGGACATATCATATTTGAGCAATGAAGATTGT *URA3* ACTGAGAGTGCAC

FO10324	delete MOT3 with	ATGAGTGGGAAGGGATATTTTGTGTGTCTATAAAGTCTATCTGTGCG
	URA3	GTATTTCACACCG
FO10317	delete GRR1 with	AAACAGTTTTGCGGTTTCCTTTATACTAAGAAGGTCTATAAGATTGTA
	URA3	CTGAGAGTGCAC
FO10318	delete GRR1 with	AAAGGTGTAGTAGGACAGTAAGTATTCAATGAAATACAACTGTGCGG
	URA3	TATTTCACACCG
FO10519	delete MIT1 with	CAACATTTCAACTAGACACAAGGACAACGTAAATTTCTAAAGATTGTA
	URA3	CTGAGAGTGCAC
FO10520	delete MIT1 with	AAGAAAAGAAAATCGGAGTACTTTTTTAAAATATATTTACCTGTGCGG
	URA3	TATTTCACACCG
FO10521	delete PTR3 with	ACACATACATAGGTACGAAATACACAACTGATAGGCGTTCAGATTGT
	URA3	ACTGAGAGTGCAC
FO10522	delete PTR3 with	GTATACCAGAACCTTAAACATACGTATATATTTAGATGCACTGTGCG
	URA3	GTATTTCACACCG
FO7014	delete MSN2 with	TTTTTCAACTTTTATTGCTCATAGAAGAACTAGATCTAAAAGATTGTAC
	URA3	TGAGAGTGCAC
FO7015	delete MSN2 with	TTATGAAGAAAGATCTATCGAATTAAAAAAATGGGGTCTACTGTGCG
	URA3	GTATTTCACACCG
FO7018	delete MSN4 with	TTCGGCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
	URA3	TGAGAGTGCAC
FO7019	delete MSN4 with	TAGCTTGTCTTGCTTTTATTTGCTTTTGACCTTATTTTTCTGTGCGGT
	URA3	ATTTCACACCG
FO10461	replace kanMX-	ATTCACAACTTTGGTCAAACGCCTTTACAAATATTTCAGGAGATTGTA
	GAL1 with URA3	CTGAGAGTGCAC

FO10462	replace kanMX-	AAGATTGTCTTCTCAAATATTGGCTTCATTGGAACCTTACCTGTGCG
	GAL1 with URA3	GTATTTCACACCG
FO6828	replace URA3 with	TTACCCAGGCGCTGTAAATC
	endogenous	
	BPH1 sequence	
FO6829	replace URA3 with	GGTTACCTGAAACCGAATGC
	endogenous	
	BPH1 sequence	
FO2143	integrate kanMX-	TCTGGGACATGATTAATTTCGAACTGAATTCGAGCTCGTTTAAAC
	<i>GAL1</i> at 280 bp	
FO2054	integrate kanMX-	AAATATCGTAAAGATAAGCATTCGGGAATTCGAGCTCGTTTAAAC
	<i>GAL1</i> at 280 bp	
FO3085	integrate kanMX-	TATGAAGCTTTGGCTTCCCTGGAAAATGCTGAATTCGAGCTCGTTTA
	<i>GAL1</i> at 1397 bp	AAC
FO3086	integrate kanMX-	AGATATGAAGATACTATCATAGCTGAGGAATCATCGCTTCGCTGATT
	<i>GAL1</i> at 1397 bp	AATTACCC
FO6666	integrate kanMX-	CGCAAGAATCACGGGGATATGACGGTTAGCTGAATTCGAGCTCGTT
	<i>GAL1</i> at 2027 bp	TAAAC
FO6667	integrate kanMX-	AGTTTCCAAACAAAGACTTCGTGCTTTAGG
	<i>GAL1</i> at 2027 bp	TCATCGCTTCGCTGATTAATTACCC
FO10659	Flag-tag MED3	GAACAATCTGGAATTAGGTGGTCTGAACATGGATTTCTTGCGGATCC
		CCGGGTTAATTAA
FO10660	Flag-tag MED3	TATACAGATAATTACTATCTTGGATACATAGATGCACCAGGAATTCGA
		GCTCGTTTAAAC

FO10241	delete	TATACATATCCATATCTAATCTTACTTATATGTTGTGGAAGGGAACAA
	endogenous	AAGCTGG
	UAS _{GAL1-10} with	
	hphMX	
FO10242	delete	GCAGCTTTTCCATTTATATATCTGTTAATAGATCAAAAATTATAGGGC
	endogenous	GAATTGG
	UAS _{GAL1-10} with	
	hphMX	
FO10663	ChIP qPCR	GGAAATCAGACGCCAATAGC
	CCW12 UAS	
FO10664	ChIP qPCR	GCCACCCTCACTAAC
	CCW12 UAS	
F02947	ChIP qPCR	AGGCACATCTGCGTTTCAG
	reporter UAS	
FO10665	ChIP qPCR	ACGCTTAACTGCTCATTGCT
	reporter UAS	
FO10679	ChIP qPCR	GCGAAGCGATGAGTAAGGTT
	BPH1 spacer 1	
FO10680	ChIP qPCR	GCGAAGCCCCTCCAGTATAA
	BPH1 spacer 1	
FO2295	ChIP qPCR	ATCGTAAAGATAAGCATTCGGT
	BPH1 spacer 2	
FO4216	ChIP qPCR	TCGTGATAACAGCGCATCTC
	BPH1 spacer 2	

FO4993	ChIP qPCR	GGGCTTTCTGCTCTGTCATC
	HIS3 promoter	
FO5062	ChIP qPCR	CGCAAAAGGTCGCAATATCT
	HIS3 promoter	
FO10671	ChIP qPCR	GCTAGGTGAGAGAAAGCAAAGG
	Chr V untranscribed	
	control	
FO10672	ChIP qPCR	TACGATCTTAGTTCCAATGGTGA
	Chr V untranscribed	I
	control	

Table S3.	Crosses	for bulk	segregant	analysis
-----------	---------	----------	-----------	----------

Cross Total tetrads		Segregants with	Complete tetrads	
		strong phenotype		
FY3049 (1.2) x	282	66 (6.8%)	172 (61%)	
FY3046				
FY3052 (2.3a) x	297	59 (6.4%)	134 (45%)	
FY3047				
FY3053 (2.3b) x	340	42 (4.1%)	129 (38%)	
FY3047				

		Pool size	Number of	
Cross	Segregants	(segregants)	mapped reads	Fold coverage
FY3049 (1.2) x	Wild type	45	12,115,678	89
FY3046				
	Mutant	45	12,364,877	85
FY3052 (2.3a) x	Wild type	48	13,097,764	101
FY3047				
	Mutant	48	14,174,495	97
FY3053 (2.3b) x	Wild type	42	11,391,104	80
FY3047				
	Mutant	42	38,280,078	260

Table S4. Sequencing coverage of segregant pools

In each cross, wild-type segregants were those that were sensitive to 1 mM 3AT and mutant segregants were those resistant to 10 mM 3AT.

	Candidate	Amino acid		Mutant	
Mutant strain	gene	change	Causative?	reads/total read	
FY3049 (1.2)	МОТЗ	N388H	Yes	73/74	
	GRR1	L181stop	Yes	67/79	
	SGM1	L407S	No	79/95	
	SGF73	P84L	No	46/69	
	TMA108	A458V	No	42/67	
	RIM8	P52L	No	46/68	
FY3052 (2.3a)	PTR3	S363stop	Yes	68/68	
	YOR019W	N553K	Weakly	48/97	
	MIT1	H187R	Yes	81/81	
FY3053 (2.3b)	PTR3	N553K	Yes	231/235	
	YOR019W	N553K	Weakly	62/259	
	MSN2	C652stop	Yes	252/252	

Causality was determined by allele replacement for most of the listed mutations as described in Materials and Methods. For three mutations, in *SGF73*, *TMA108*, and *RIM8*, allele replacement was not done. Instead, these mutations were tested during reconstruction of the polygenic mutant and were shown to not confer any mutant phenotype.

Table S6. Number of genes with a two-fold or greater change in RNA levels in the polygenic mutants

	Strain					
	Genes sin4∆0 mot3-1					
Carbon source	affected	1.2	grr1-1	2.3a	2.3b	
Glucose	Up	416	182	145	167	
	Down	158	79	62	82	
Galactose	Up	474	133	146	184	
	Down	426	139	78	133	
Raffinose	Up	313	152	180	172	
	Down	135	84	123	141	

Shown for each strain is the number of genes whose RNA levels change by two-fold or more when the strains are grown in YP medium with the indicated carbon sources. The actual strains used are as follows: 1.2, FY3056; $sin4\Delta 0 mot3-1 grr1-1$, FY3061; 2.3a, FY3057; 2.3b, FY3058.

		Promoter Orientation								
		(Convergent Divergent			Tandem				
		Е	0	p-value	Е	0	p-value	E	0	p-value
	1.2	2.75	8	2.10E-03	1.87	15	1.90E-10	6.07	22	1.20E-07
affinose	sin4∆0 mot3-1 grr1-1	0.613	4	4.30E-04	0.344	4	3.00E-05	0.943	5	4.40E-04
Ř	2.3a	1.08	2	9.50E-02	0.636	5	5.40E-05	1.85	11	6.30E-07
	2.3b	0.873	4	2.10E-03	0.514	8	4.30E-09	1.91	9	3.20E-05
	1.2	5.77	19	3.00E-06	3.63	18	1.10E-08	4.87	23	4.80E-10
Glucose	sin4∆0 mot3-1 grr1-1	0.760	5	1.40E-04	0.488	3	1.60E-03	0.340	4	2.90E-05
	2.3a	0.726	5	1.10E-04	0.323	3	3.50E-04	0.468	8	2.00E-09
	2.3b	1.02	7	1.20E-05	0.424	5	5.70E-06	0.726	8	8.00E-08
Galactose	1.2	6.07	22	1.20E-07	11.89	24	6.00E-04	14.99	35	2.90E-06
	sin4∆0 mot3-1 grr1-1	0.943	5	4.40E-04	2.238	9	1.20E-04	0.754	4	1.10E-03
	2.3a	1.85	11	6.30E-07	1.40	8	1.60E-05	1.40	11	3.20E-08
	2.3b	1.91	9	3.20E-05	1.77	10	2.70E-06	2.08	16	1.00E-10

Table S7. Adjacent gene pairs enrichment

Shown for each strains are the expected number (E) of adjacent gene pairs upregulated given the overall number of upregulated genes, the observed (O) number of upregulated gene pairs, and the p-value for the significance in difference between observed and expected. Analysis was performed for convergent, divergent, and tandem promoter orientation when the strains are grown in YP medium with the indicated carbon sources. The actual strains used are as follows: 1.2, FY3056; *sin4\Delta0 mot3-1 grr1-1*, FY3061; 2.3a, FY3057; 2.3b, FY3058.

Supplemental Figure 1

Figure S1. Evidence for disomy in two of the polygenic mutants. (A) Shown are the normalized levels of sequencing reads across each *S. cerevisiae* chromosome. The elevated reads for chromosomes III and XIV are likely caused by disomy for those chromosomes. The elevated reads for chromosome XII are likely an artifact of the repeated rDNA.

Supplemental Figure 2

Figure S2. Western analysis of Med3. Shown is a representative western looking at levels of

Med3-FLAG. Quantitation of three experiments is shown in Figure 9C.