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Data sets 

In this study we used two published wheat and two published maize 

data sets. The first data set consisted of 599 wheat lines genotyped 

by 1,447 Diversity Array Technology (DArT) markers in the CIMMYT 

Global Wheat Breeding Program (Crossa et al. 2010). Genotypic and 

phenotypic data were downloaded from the corresponding 

supplementary materials.  

The second data set comprised 254 advanced wheat breeding 

lines from the CIMMYT wheat breeding program, genotyped using a 

genotyping-by-sequencing approach (Poland et al. 2012). Genotypic 

and phenotypic data were downloaded from the corresponding 

supplementary materials. 1,576 Single Nucleotide Polymorphism 

(SNP) markers with lowest missing rate (<0.15%) were selected in 

this study. Remaining missing values were imputed based on 

marginal allele frequencies. 

The third data set consisted of 300 maize lines from the 

Drought Tolerance Maize for Africa project of CIMMYT Global Maize 

Program genotyped with 1,148 SNP markers (Crossa et al. 2010). 

Genotypic and phenotypic data were downloaded from the 

corresponding supplementary materials. In this study we focused on 

grain yield, which was examined for 264 lines. 

The forth data set comprised two large half-sib maize panels 

from the flint and dent heterotic pools generated within the European 

PLANT-KBBE CornFed project (Bauer et al. 2013). The dent (flint) 

panel consisted of 10 (11) half-sib families with 847 (833) doubled 

haploid (DH) lines. Genomic data were downloaded from the website 

of National Center for Biotechnology Information (NCBI) Gene 
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Expression Omnibus as data set GSE50558 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50558). 

After quality control for missing rate and minor allele frequency, the 

number of SNP markers used in this study was 31,498 for dent lines 

and 29,466 for flint lines. Field trials were described in Lehermeier et 

al. (2014) and the phenotypic data were downloaded from the 

corresponding supplementary materials.  

Simulation study 

The simulation was based on the first wheat data set (599 wheat 

lines with 1,447 markers, Crossa et al. 2010) and the dent panel of 

the second maize data set (847 lines with 31,498 markers, Bauer et 

al. 2013).  

For each data set we simulated traits in two scenarios: In the 

LE scenario, we randomly selected 100 markers with pairwise LD (r2) 

less than 0.06 as the causal QTL contributing to the trait. The 

additive effects of the 100 QTL were independently sampled as a 

normally distributed random variable with mean 0 and variance 1. 

Then, we randomly sampled 100 pairs (among 5,050 pairs) of 

markers as causal epistatic QTL pairs. The epistatic effects were 

independently sampled as a normally distributed random variable 

with mean 0 and variance 0.5. Setting the heritability to be 0.7, we 

calculated the variance of environmental errors and the error terms 

for each genotype were independently sampled as a normally 

distributed random variable. Finally, we obtained the simulated trait 

values by summing up the additive values, epistatic values and 

environmental errors. In the LD scenario, we just randomly sampled 

100 markers as causal QTL without considering LD and all other 

procedures are the same as the independent case. For each data set 

and each scenario, the simulation was repeated 50 times. 
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Evaluating prediction accuracies 

The prediction accuracies of the three genomic prediction models 

were evaluated by five-fold cross-validation with 20 replications. For 

experimental data sets, the Pearson product-moment correlation 

between predicted and observed total genotypic values of the 

individuals in the test set was used as the measure of prediction 

accuracy. For simulated data sets, the prediction accuracy was 

defined as the correlation between predicted and true genotypic 

values of the individuals in the test set. Standard errors of prediction 

accuracies were estimated based on a bootstrap approach following 

Rutkoski et al. (2012). All models were implemented using the R 

package BGLR (Pérez and de los Campos 2014). 
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