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Non-Central Chi MR Images”
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This supplement contains additional material to complement
the results presented in the main body of the paper. Proofs of
Theorems 1 and 2 are given in Secs. I and II, respectively,
while supplementary figures are found in Sec. III.

I. PROOF OF THEOREM 1

The NCC NLL in (7) is the sum of functions of the form

L (t) =
t2

2σ2
− ln

(
t−(N−1)IN−1

(
tγ/σ2

))
. (S1)

Our proof of Theorem 1 is based on tangent majoriza-
tion of the function L (t), which is easily decomposed
into the strictly convex quadratic term t2/(2σ2) and the
strictly concave (cf. Theorem 2) log-Bessel term ` (t) ,
− ln

(
t−(N−1)IN−1

(
tγ/σ2

))
.

Differentiable concave functions can always be majorized
by their tangents [1]. This means that, for any ti,

` (t) ≤ ` (ti) +∇` (ti) (t− ti) , (S2)

such that

L (t) ≤ t2

2σ2
+ ` (ti) +∇` (ti) (t− ti) , L̃ (t|ti) . (S3)

Eq. (S3), combined with the fact that L̃ (ti|ti) = L (ti),
implies that L̃ (t|ti) is a tangent majorizer for L (t) at the
point ti.

Completing the square in (S3) leads to

L̃ (t|ti) =
1

2σ2

(
t+ σ2∇` (ti)

)2
+Ki, (S4)

where

Ki = ` (ti)− ti∇` (ti)−
σ2

2
(∇` (ti))

2
. (S5)

It remains to derive the form of the gradient∇` (t). Straight-
forward application of the chain rule yields that

∇` (t) = −
∂
∂t

{
t−(N−1)IN−1

(
tγ/σ2

)}
t−(N−1)IN−1 (tγ/σ2)

. (S6)

Using the identity for modified Bessel functions [2, Sec. 9.6]:

∂ (t−vIv (t))

∂t
= t−vIv+1 (t) , (S7)

we have that Eq. (S6) simplifies to

∇` (t) = − γ

σ2

IN
(
tγ/σ2

)
IN−1 (tγ/σ2)

. (S8)

As a result, L̃ (t|ti) can be expressed as

L̃ (t|ti) =
1

2σ2

(
t− γ

IN
(
tγ/σ2

)
IN−1 (tγ/σ2)

)2

+Ki. (S9)

The proof of Theorem 1 is concluded by directly applying the
corresponding L̃ (t|ti) majorizer from (S9) to each of the M
different summands in (9). �

II. PROOF OF THEOREM 2

Theorem 2 was proven for the special case of N = 0 in [3,
Cor. 2]. For N > 0, we have from [3] that

IN (αx) =
(αx/2)

N

Γ (1 +N)
0F1

(
1 +N ;α2x2/4

)
=

(αx/2)
N

Γ (1 +N)
tN (αx) ,

(S10)

where Γ (·) is the Gamma function, and tN (x) denotes the
hyper-geometric function 0F1

(
1 +N ;x2/4

)
. Eq. (S10) im-

mediately leads to

ln
(
x−NIN (αx)

)
= ln

(
(α/2)

N

Γ (1 +N)
tN (αx)

)

= ln

(
(α/2)

N

Γ (1 +N)

)
+ ln (tN (αx)) .

(S11)

It was proven in [3, Prop. 1] that ln (tN (x)) is a strictly convex
function of x for N ≥ 0, which implies that ln (tN (αx))

is also strictly convex for α > 0. Noting that ln
(

(α/2)N

Γ(1+N)

)
is constant, we have that log

(
x−NIN (αx)

)
is also strictly

convex. Therefore, − ln
(
x−NIN (αx)

)
is strictly concave. �
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III. SUPPLEMENTARY FIGURES
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Fig. S1: Representative results from TV denoising of simulated
rSoS (N = 4) data.

Noisy MM GA ST
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Fig. S2: Root-mean-squared error images (computed based
on five noise realizations) for the rSoS TV denoising results
shown in Fig. S1. For easier visualization, the error image
intensities for SNRs 1, 2, 5, and 10 were respectively scaled
by factors of 1.25, 2, 5.56, and 10 relative to the images in
Fig. S1.

MM ST
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Fig. S3: Zoomed regions from Fig. 2, highlighting the rela-
tively uniform smoothing achieved by MM-based TV denois-
ing and the intensity-dependent smoothing achieved by ST-
based TV denoising. Notice that the ST results have a more
“speckled” appearance in higher-intensity image regions, but
are quite smooth in low-intensity image regions.

(a) Rician (single-channel) (b) rSoS (32-channel, with N = 9 for
the best-fit NCC distribution.)

Fig. S4: Empirical distributions of the signal intensity from
background regions of real MR brain data. Best-fit Rician and
NCC distributions are also shown.
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(a) Noisy (NRMSE=0.3009) (b) MM (NRMSE=0.1760)

(c) GA (NRMSE=0.2812) (d) ST (NRMSE=0.2091)

Fig. S5: Results from TV denoising of real rSoS brain data.
Also shown are the NRMSE values for each image.

(a) Noisy (b) MM

(c) GA (d) ST

Fig. S6: Error images for the rSoS TV denoising results shown
in Fig. S5. For easier visualization, the error image intensities
were scaled by a factor of 2 relative to the images in Fig. S5.
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Fig. S7: Quantitative MD and GFA estimation results for the HARDI simulations. In addition to MD and GFA, plots are also
included that show the absolute errors for MD and GFA. The lines and error bars respectively correspond to the means and
standard deviations across 1000 noise realizations.
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(a) Noisy (NRMSE=0.4822) (b) MM (NRMSE=0.2481)

(c) GA (NRMSE=0.4723) (d) ST (NRMSE=0.3767)

Fig. S8: Results from TV denoising of real GRAPPA-
reconstructed rSoS-combined brain data. Also shown are the
NRMSE values for each image.

(a) Noisy (b) MM

(c) GA (d) ST

Fig. S9: Error images for the TV denoising results shown in
Fig. S8. For easier visualization, the error image intensities
were scaled by a factor of 3 relative to the images in Fig. S8.


