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B OpenBUGS code

model {
for(i in 1:NOBS){
z[i, 1:2] ~ dmnorm(z.hat[i, 1:2], omegal,])
z.hat[i,1] <- B[id[i], 1] + B[id[i], 2]*(day[i]l-mean(day[])) + betal.c*sex[i] +
beta2.c*x(agel[i] - mean(agel[])) + beta3.cxtx[i] +
betasd.c*tx[i]l*(day[i]-mean(day[])) #cdrs
z.hat[i,2] <- B[id[i], 3] + B[id[i], 4]1*(day[i]l-mean(day[])) + betal.h*sex[i] +
beta2.h*(age[i] - mean(age[])) + beta3.h*tx[i] +
betad.h*tx[i]*(day[i] -mean(day[])) #hdrs
}

omegal1:2,1:2] ~ dwish(R[,],2)
R[1,1] <- 1

R[2,2] <- 1

R[1,2] <- 0

R[2,1] <- 0

V[1:2,1:2] <- inverse(omegal,])
betal.c ~ dnorm (0.0, .0001)
beta2.c ~ dnorm (0.0, .0001)



beta3.c ~ dnorm (0.0, .0001)
beta4.c ~ dnorm (0.0, .0001)
betal.h ~ dnorm (0.0, .0001)
beta2.h = dnorm (0.0, .0001)
beta3.h ~ dnorm (0.0, .0001)
beta4.h ~ dnorm (0.0, .0001)

for (j in 1:1){

for (k in 1:K){

B[j,k] <- B.rawl[j,k]

}

B.raw[j,1:K] ~ dmnorm (mu.raw[], Tau.B.raw[,])
}
for (k in 1:K){

mulk] <- mu.raw[k]

mu.raw[k] ~ dnorm (0, .0001)

}
Tau.B.raw[1:K,1:K] ~ dwish(W[,], df)
df <- K + 2

Sigma.B.raw[1:K,1:K] <- inverse(Tau.B.rawl[,])
for (k in 1:K){
for (k.prime in 1:K){
rho.B[k,k.prime] <- Sigma.B.rawlk,k.prime]/
sqrt (Sigma.B.rawl[k,k]*Sigma.B.raw[k.prime,k.prime])
}
sigma.B[k] <- sqrt(Sigma.B.rawlk,k])
}
}

C Trace plots and density plots for parameters from
the random effects variance-covariance matrix

The key parameters in the random-effects variance-covariance matrix of the imputation

model are the covariances across scales, that is:

e The covariance of the CDRS random intercept and the HDRS random intercept

e The covariance of the CDRS random intercept and the HDRS random slope



e The covariance of the CDRS random slope and the HDRS random intercept

e The covariance of the CDRS random slope and the HDRS random slope

Figure 1: Trace plots (based on 3 MCMC chains) and density plots for 4 key parameters
from the variance-covariance matrix of the random effects in the imputation model. Plots
are the result of 10,000 MCMC iterations after a 10,000 iteration burn-in. Gelman-Rubin
statistics for all 4 parameters were equal to 1
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These 4 parameters, along with the covariance of the error terms, determine the covari-

ance between the HDRS and CDRS and its change over time. Therefore, these are the key



parameters in terms of generating accurate imputations. Figure 1 presents trace plots (based
on 3 MCMC chains) as well as density plots from 10,000 MCMC iterations (after a 10,000
iteration burn-in period).

As can be seen, there is good mixing among chains and posterior densities are smooth
and unimodal. Further, Gelman-Rubin statistics for all 4 parameters were equal to 1. These

diagnostics suggest that these parameters are identifiable and well-estimated.



D Post-imputation analyses without the use of a cali-

bration sample

Table 1: Observed-only and post-imputation analyses of CDRS and HDRS scores in fluoxe-
tine trials. Here, the imputed values are generated without using the calibration data. The
observed-only HDRS analysis is based on a single trial and does not include a random effect
at the trial level. All other models include trial-specific random effects.

Observed Imputed w/out calibration
Outcome Parameter Est SE  t-val p-val Est SE  t-val p-val
Intercept 54.00 2.56 21.12 <.001 | 54.54 2.12 25.67 <.001
Time -3.79 018 -21.34 <.001 | -3.80 0.17 -21.89 <.001
Tx*Time -1.06 0.21 -492 <.001 | -1.06 0.21 -5.07 <.001
CDRS  SD(by) 5.03 4.57
SD(bg;) 9.91 9.86
SD(by;) 2.52 2.44
Corr(bo;, b1;) -0.46 -0.45
Intercept 22.59 0.67 33.48 <.001 |19.75 1.63 12.11 <.001
Time -3.34 042 -787 <.001 | -3.27 0.29 -11.39 <.001
Tx*Time -0.57 0.55 -1.03 308 | -0.40 0.30 -1.34 182
HDRS  SD(by) NA 1.81
SD(by;) 2.11 5.54
SD(by;) 1.46 0.69
Corr(bo;, b1;)  0.13 -0.68
SD(e;51) 3.97 3.95

SD(bg;): Standard deviation of random trial-level intercepts
SD(bg;): Standard deviation of random subject-level intercepts
SD(by;): Standard deviation of random subject-level slopes
Corr(bg;, by;): Correlation of random intercepts and slopes
SD(e;j;): Standard deviation of residual error



E Partial correlations in calibration sample by treat-

ment group

Table 2: Partial correlation by treatment group and study (controlling for age and gender)
between CDRS and HDRS in the calibration sample.

Study 1 Study 2 Overall
Week Control Treatment | Control Treatment | Control Treatment
0 0.68 0.77 0.39 0.62 0.51 0.65
1 0.74 0.76 0.59 0.64 0.67 0.65
2 0.78 0.78 0.71 0.77 0.73 0.75
3 0.81 0.82 0.74 0.77 0.76 0.77
4 0.83 0.85 0.79 0.76 0.81 0.78
6 0.86 0.84 0.77 0.80 0.81 0.80
8 0.88 0.82 0.84 0.79 0.85 0.80




