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Appendix A 
 

Additional Information:  
Linear Mixed-Effects Models for ERP Analyses  

in Payne, Lee, & Federmeier (2015).  
“Revisiting the incremental effects of context on word processing: 

 Evidence from single-word event-related brain potentials” 

 
This appendix provides additional information about the statistical approach utilized in the current 

paper.  Specifically, this appendix covers the following topics.  
 

1. An overview on linear mixed-effects models (LMMs), parameter estimation, and model fitting 
using the lme4 package in R, including example code and data reported in Payne, Lee, & 
Federmeier (2015). 

2. Estimation of conditional modes of the random effects for group-specific inference. 
3. Comparative and absolute model fit indices for linear mixed-effects models. 

 
Portions of this appendix were adapted from a mini-workshop on using mixed-effects models for 

event-related potential data analyses by Brennan Payne & Joost Rommers in 2014 at the EEG Reading 
Group at the Beckman Institute for Advanced Science and Technology.  
 
A1 Fitting Linear Mixed-Effects Models using the lme4 package in R. 
 

This supplement is not meant to be an exhaustive tutorial on using LMMs, but rather to provide 
an introduction for readers unfamiliar with these methods so that they may understand their 
implementation in the current study. There are several excellent tutorials, reviews, and instructional 
texts available, and readers who are interested in learning more about LMMs are encouraged to 
examine the resources listed at the end of this Appendix.  

 
The prototypical linear mixed-effects model is defined as:  
 

(1) 
    
 
 
 

 
 
 

 
 

The random-effects vector is assumed U ˜ N (0, G), where G  is the variance-covariance 
matrix of the random-effects (i.e., the estimated variance and covariance estimates of the variables 
defined in matrix Z). Further,  ˜ N (0, σ2), where σ2 = var( ). Parameters of the mixed-model are the 
fixed effects Γ and the variance-covariance parameters in G  and σ2.  

y = XΓ+ ZU+ ε

Where :
y = an n-by-1 response vector.
X = an n-by-p fixed-effects design matrix.
Γ = a p-by-1 fixed-effects vector.
Z = an n-by-q random-effects design matrix.
U = a q-by-1 random-effects vector.
ε = an n-by-1 residual error vector.
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The linear mixed-effects model is a special case of models that are commonly used in 
psychophysiology, including repeated measures (mixed-effects) ANOVA and ordinary least-squares 
regression. LMMs are principally useful in modeling data with complex sampling or clustering, such that 
observations in the response vector are non-independent. Statistical dependencies of this sort exist, for 
example, when observations are drawn in a non-random and hierarchically structured manner (e.g., 
repeated measurements across trials within the same subjects).  

 
The model can be conceptualized as being made up of two major components: The fixed-

effects (XΓ) and the random-effects (ZU ). The fixed-effects portion of the model is familiar as the 
classic linear regression model. Parameters from this portion of the model describe the (population-
average) linear effect of covariates, defined in the design matrix X, on the response vector. Random-
effects index variation in individual experimental units (e.g., grouping, blocking, control, or design 
variables). LMMs model the variance-covariance structure of the data by representing group-level 
dependencies (e.g., across subjects, across trials, across time, across populations) as random 
deviations from the population-average fixed effects.  

 
In any linear statistical model, the goal is to find values of the parameter estimates that 

maximize the degree of fit between the model predicted values and the observed data. A “loss” or 
“cost” function quantifies the degree of miss-fit between a model (under certain parameter values) and 
data. Parameters are estimated that seek to minimize this function (or to maximize the inverse of a loss 
function, a utility function). The cost function of a simple linear regression model has a well-understood 
closed-form analytical solution through minimizing the sum of the squared residuals (difference 
between the observed and model predicted values). No such closed form solution exists for linear 
mixed-effects models with an unbalanced design or complex random-effects structures. Instead, 
numerical solutions are used to find model parameters, based on maximum likelihood methods.  

The likelihood () of a set of data is the probability of obtaining that particular set of data given 

the chosen probability distribution model, including unknown parameter values (2).  
 

(2) 
 

 
 
 
 
 
 
 
 

Where yN is the observed data and θ is a given model parameter. The values of the parameters 

that maximize the likelihood () are known as the Maximum Likelihood (ML) Estimates.  

 
ML algorithms find parameter estimates that maximize the likelihood in an iterative “brute-force” 

manner. In an initial step, ML algorithms use reasonable starting values for all model parameters, then 
gradually refine these estimates by searching the parameter space for parameters that maximize (-2 
times the natural log of) the likelihood function, until the algorithm converges to a solution.  
Linear mixed-models can be fit in nearly any commercial software package, including SAS, Stata, 
SPSS, HLM, & MPlus. We will illustrate some examples for fitting LMMs using the lmer function in the 
package lme4 (Bates, Maechler, Bolker, & Walker, 2014) in the R language for statistical computing (R 
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Core Team, 2014). In addition, a number of useful R packages can be used to supplement LMM 
analyses in R. For example, packages such as LMERConvenienceFunctions (Tremblay & Ransjin, 
2013), effects (Fox, 2003), lmerTest (Kuznetsova et al., 2013), and ggplot2 (Wickham, 
2009) contain useful functions for probing, testing, and visualization of effects in mixed-models; 
pbkrtest can be used to calculate approximate (Kenward-Rogers) and parametric bootstrap 
estimates for the likelihood ratio test (Halekoh & Højsgaard, 2014); languageR (Baayen, 2008) 
contains useful tools specific to the analysis of linguistic data, and blme (Chung, Rabe-Hesketh, Dorie, 
Gelman, & Liu, 2013) contains a Bayesian wrapper for the lmer function, allowing for specification of 
prior distributions, for example.  
 

To illustrate basic lmer() syntax, we show a simple example of a random-intercepts model 
(Snijders & Bosker, 2011), which contains one or more fixed-effects and one variance component that 
models variability in the response across levels of a discrete grouping variable. The following 
pedagogical syntax is constructed for an example scenario of a simple repeated-measures lexical 
decision RT experiment with a single factor, isWord, that is dummy coded 0 for non-word and 1 for 
word. A random-effect, subject, accounts for individual differences in mean RT. This model is 
equivalent to the common RM-ANOVA model. Data are organized in long-format, such that a single 
data vector contains all observations for the response variable (and similarly, separate data vectors for 
individual covariates and grouping/clustering variables).  
 
RTmodel.1 <- lmer(RT ~ isWord          #fixed effect 
                   + (1 | SubID)     #random effect  
      data = rtData)       #data.frame 
 
summary(RTmodel.1)           #model summary 

 
The lmer() function is used to fit a linear mixed-effects model. The response vector (y), RT, is 

defined as a function (~) of the fixed effect (isWord) plus a random intercept across subjects (1 | 
SubID). Following, our data.frame (an R object for storing data tables) is defined (rtData). Note that 
the model automatically fits with an intercept term and a residual error term. The “#” syntax is used for 
in-line commenting and is ignored by R when the code is executed. After the model has converged, the 
summary() command prints model information (e.g., estimated parameter values) for the defined 
object (RTmodel.1). This simple code provides a basis for generating more complex models that 
incorporate multiple fixed-effects (and their interactions), as well as multiple random intercepts and 
random slope parameters. Multiple fixed-effects can be added by including more variables to the right 
of the tilde (~). Multiple random intercepts can be added to the model (for example, to control for 
variability across items in a completely crossed design) by adding + (1 | ranEff) , where ranEff is 
a data vector describing levels of a discrete random variable (e.g., an item identifier). Lastly, some 
covariates can be allowed to vary randomly over subjects or items (e.g., the effect of frequency may 
vary from one subject to the next). For example, the code below describes a slightly more complex 
model, building off the model defined above. 
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RTmodel.2 <- lmer(RT ~ isWord + workingMemory + timeOfDay #more fixed terms 
      + isWord:workingMemory             #cross-level interaction  
                    + (1 + isWord | subID)             #random slope: isWord 
           + (1 | itemID)           #random intercept: item 
      data = rtData)                          #data.frame 
 
summary(RTmodel.2)             #model summary 

 
The lmer() function, by default, uses a restricted maximum likelihood algorithm (REML) . With 

smaller sample sizes, REML provides a less-biased estimate of variance components than ML 
estimates but, in most cases, the two approaches converge to very similar solutions (see Bates, 2000). 
One important point to note is that model comparison with REML is limited because the fixed-effects 
portion of models must remain identical in order to compare their likelihoods. Thus, ML estimation 
should be used for model comparison. The anova() command in R automatically re-estimates models 
under ML estimation (given an lmer object initially fit with REML estimation) in order to calculate valid 
comparative fit indices (see section A3 below). 
 

Given this simple tutorial, readers can understand the code used to fit the LMMs in the current 
paper. The code and output from the two major analyses presented in the paper (Model 1 and Model 2) 
are presented below. Note that the code and the corresponding data file for fitting these models are 
available for download from GitHub here: https://github.com/payne12/singleWordEEG. In order to run 
the R code in this document, one needs to install R and the lme4 package. Model 1, which was fit to 
test sentence context as a moderator of word position in open-class words, is presented below.  
 
lmeModel1 <-lmer(meanAmpEEG ~ zWordOrder + C1 + C2  
                 + zWordOrder:C1 + zWordOrder:C2   
                 + (1 | SubID) 
                 + (1 | chan) 
                 + (1 | words) 
                 + (0 + zWordOrder:C1 | SubID) 
                 + (0 + zWordOrder:C2 | SubID),   
                 data = centroParietal_OpenClass) 
summary(lmeModel1) 

 
In this model, mean EEG amplitude within the N400 latency band is defined as a function of a 

series of fixed-effects: word order, sentence context (defined by two contrasts; see the text for details), 
and interactions between sentence context and word position. Similar to the above code snippets, 
random effects (random intercepts and slopes) are defined after the fixed portion of the model is 
written. Note that the “0 +” syntax fits random slope variance estimates across a defined factor 
without including covariances (see Barr et al., 2013; see also the flexLambda development branch of 
lme4 for alternative variance-covariance structures).  

 
The summary() function provides several pieces of information. First, information on the 

estimation method, model formula, and data used are presented, as well as basic information on model 
convergence. Following, a table of random-effect estimates is presented:  
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Random effects: 
Groups   Name         Variance  Std.Dev. 
words    (Intercept)    3.70050  1.9237   
SubID    zWordOrder:C2  0.11948  0.3457   
SubID.1  zWordOrder:C1  0.19703  0.4439   
SubID.2  (Intercept)    0.57796  0.7602   
chan     (Intercept)    0.01818  0.1348   
Residual               53.51642  7.3155 

 
The first column (Groups) specifies the grouping variable indicated by the random-effect 

specification of the model (Z) . Name specifies if the variable is a random intercept or a random slope 
estimate. For slope estimates, the name of the variable is indicated. The last two columns represent the 
estimated variance parameters in G . The last row is the residual variance estimate. Following this, the 
fixed-effects table is printed (along with an optional correlation matrix of the fixed-effect vectors).  
 
Fixed effects: 
  Estimate  Std. Error   t value 
(Intercept)    0.62046    0.16730   3.709 
zWordOrder     0.55298    0.03156  17.519 
C1            -0.63189    0.03950 -15.998 
C2            -0.61269    0.03924 -15.614 
zWordOrder:C1 -0.45994    0.09390  -4.898 
zWordOrder:C2 -0.50095    0.07751  -6.463 

 
The fixed-effect estimates Γ are presented, along with their standard errors. The reported t-

value is a simple Wald statistic (Estimate divided by Standard Error). While these t-values are valid and 
may be used for statistical inference, note that p-values are not printed along with the t-statistics. This is 
because exact p-values and degrees of freedom calculations do not exist for these models (see 
Baayen et al., 2008 for a discussion), though a number of approximate p-value methods do exist. 
Statistical inference may also be conducted based on likelihood ratio tests comparing nested models 
(via the anova or drop1 functions). One may additionally request confidence intervals to aid in 
statistical inference. A number of different confidence intervals (e.g., traditional Wald-based, 
bootstrapped, or profile-likelihood) can be computed for the parameters of a lmer model via the 
confint() function. This allows for the quantification of variability around effect sizes (e.g., 
Cummings, 2013) and traditional null-hypothesis statistical inference may be used by evaluating 
whether 0 is contained within the confidence interval. 

 
The code for Model 2, which was fit to examine the effects of accumulating sentence context on 

the effects of frequency and orthographic neighborhood, is included on the following page. Note that a 
number of variables are entered into the model as control variables or covariates. As in linear 
regression, these variables are simply entered into the model; their status as a control variable is only 
dictated by our interpretation.   
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lmeModel2 <- lmer(meanAmpEEG ~  zWordOrder + zLog_Freq_HAL + zOLD20  #lexical  
                  + C1 + C2  #sentence context factors 
                  + zWordOrder:(zLog_Freq_HAL + zOLD20) #two-way interactions 
                  + C1:(zWordOrder + zLog_Freq_HAL + zOLD20)  
                  + C2:(zWordOrder + zLog_Freq_HAL + zOLD20) 
                  + zLog_Freq_HAL:zOLD20  
                  + zWordOrder:C1:zLog_Freq_HAL #three-way interactions 
                  + zWordOrder:C2:zLog_Freq_HAL  
                  + zWordOrder:C1:zOLD20   
                  + zWordOrder:C2:zOLD20  
                  + zLength + zConc + zSentLength #covariates 
                  + (1 | SubID) #random effect structure 
                  + (1 | chan) 
                  + (1 | words) 
                  + (0 + zWordOrder:C1:zLog_Freq_HAL| SubID) 
                  + (0 + zWordOrder:C2:zLog_Freq_HAL| SubID) 
                  + (0 + zWordOrder:C1:zOLD20| SubID) 
                  + (0 + zWordOrder:C2:zOLD20 | SubID), 
                  data = centroParietal_OpenClass)  
summary(lmeModel2) 

 
The appended output for this model is included below. First, the random-effects: 
 
Random effects: 
Groups   Name                      Variance Std.Dev. 
words    (Intercept)                  3.44775 1.8568   
SubID    zWordOrder:C2:zOLD20         0.21434 0.4630   
SubID.1  zWordOrder:C1:zOLD20         0.16504 0.4063   
SubID.2  zWordOrder:C2:zLog_Freq_HAL  0.24270 0.4926   
SubID.3  zWordOrder:C1:zLog_Freq_HAL  0.36901 0.6075   
SubID.4  (Intercept)                  0.57371 0.7574   
chan     (Intercept)                  0.01817 0.1348   
Residual                             53.24778 7.2971   

 
Of key interest are the fixed-effect factors coding for three-way interactions between word 

frequency/orthographic neighborhood, word position, and sentence context (C1/C2). The word 
frequency interactions were reliable, whereas the neighborhood interactions were not, indicating the 
key dissociation between the effects of contextual constraint on lexical processing that were the focus 
of the current paper. 
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Fixed effects: 
         Estimate  Std. Error t value 
(Intercept)                  0.738147   0.170153   4.338 
zWordOrder                   0.703975   0.033846  20.799 
zLog_Freq_HAL               -0.207005   0.095903  -2.158 
zOLD20                       0.189629   0.085600   2.215 
C1                          -0.702608   0.039973 -17.577 
C2                          -0.666154   0.039595 -16.824 
zLength                      0.040550   0.023838   1.701 
zConc                       -0.323842   0.076033  -4.259 
zSentLength                 -0.109941   0.021611  -5.087 
zWordOrder:zLog_Freq_HAL    -0.548812   0.035994 -15.247 
zWordOrder:zOLD20           -0.057298   0.035775  -1.602 
zWordOrder:C1               -0.535151   0.042480 -12.598 
zLog_Freq_HAL:C1             0.537880   0.045303  11.873 
zOLD20:C1                    0.178799   0.044660   4.004 
zWordOrder:C2               -0.563952   0.042169 -13.374 
zLog_Freq_HAL:C2             0.555302   0.044800  12.395 
zOLD20:C2                    0.102871   0.044928   2.290 
zLog_Freq_HAL:zOLD20         0.007082   0.063506   0.112 
zWordOrder:zLog_Freq_HAL:C1  0.396009   0.123997   3.194 
zWordOrder:zLog_Freq_HAL:C2  0.552062   0.103956   5.311 
zWordOrder:zOLD20:C1         0.013106   0.090885   0.144 
zWordOrder:zOLD20:C2         0.026112   0.100018   0.261 

 
A2 Best Linear Unbiased Predictors of the Random Effects 
 

Once a mixed model has been fit to the data, one may wish to examine specific levels of 
random effects— for example, if one’s goal is to estimate the effect of word position on N400 amplitude 
for a specific subject, channel, or word. In LMMs, the best linear unbiased predictors (also known as 
conditional modes, posterior means, or empirical Bayes estimates) of the random effects can be 
computed. BLUPs are not directly estimated as part of the model-fitting procedure, but rather are 
approximate estimates of unobserved latent variables (i.e., the random effects). BLUP calculation in 
lme4, given a fitted mixed model, is described in Bates, 2013 (p. 22-25). Conceptually, BLUPs can be 
understood as estimates of group-specific deviations of the mean combined with the overall population 
mean effect. 

 
BLUPs are so-called shrinkage estimators in that group-specific estimates are “shrunk” towards 

the grand mean differentially more for extreme and less reliable levels, producing more reliable 
estimators (Gelman, Hill, & Yajima, 2012 provide an accessible review and explanation of the 
computational benefits of shrinkage in mixed models). Briefly, group-specific deviations (e.g., across 
particular subjects, items, channels) from the grand-mean are modeled as samples from a (typically) 
normal population distribution with some estimated variance. By assuming a parametric distribution, 
large deviations from the population mean result in a larger penalty, whereby such deviations are 
differentially “pulled” toward the grand average. Importantly, the degree of this penalty varies as a 
function of the sample size at the level of the grouping variable, which is an important factor in 
considering missing data and unbalanced designs within LMMs. For example, a subject with 50 valid 
trials will provide much more precise estimates (and will contribute more toward the population average 
effect), whereas a subject with only 8 valid trials will be less stable and will be shrunk towards the 
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population mean (providing less information). This weighting feature accommodates unbalanced 
designs nicely, whereas traditional analyses typically lose this information (e.g., where the mean 
amplitude an ERP component made up of 8 trials is treated similarly to one made up of 50 trials, 
although see Luck, 2014 for a weighted average method to overcome this issue that is conceptually 
similar).   

 
Although BLUPs are biased toward the mean, they possess the statistical property that, for a 

randomly drawn group, BLUPs have smaller mean-squared error. Thus, the error over all groups will be 
smaller for BLUPs compared to estimates that do not take into account the overall population effects 
(e.g., computing separate regression equations for each level of a grouping variable; cf. Dambacher et 
al., 2006). This tool can be very powerful for exploring the random-effects structure of one’s data. In the 
current study, for example, we calculated by-channel BLUPs of the word position effect in a whole-head 
analysis and used the resulting BLUPs to create scalp topography plots, which would otherwise be 
difficult to estimate and visualize. BLUPs can be calculated using the ranef() function in lme4 (Bates, 
2013). 

 
A3 Comparative and Absolute Goodness-of-Fit Indices  
 

In Table 2, we report conditional and absolute fit statistics for the major models fit to the data 
(Model 1, Model 2), and a null model (no fixed-effects) used as a baseline comparison. This section 
describes the comparative and absolute fit indices used in the current study.  
 

Deviance Test. The deviance test (also known as the likelihood ratio test; see Agretsi, 2002; 
Snijders & Bosker, 2011) is used to compare the difference in model fit between successive (nested) 
models. This test statistic is calculated as the difference between –2 times the natural logarithm of the 
likelihood for a full model and a nested model (with fewer fixed effect parameters) and follows an 
approximate χ2 distribution with degrees of freedom (df) equal to the difference in parameters between 
the full and nested models. Thus, test-statistics can be formulated for relative improvement in model fit 
across successive models.  

 
Information Criteria. Information criteria (IC) based assessments of relative model fit are utilized 

in model comparison for LMMs (see Scealey & Welsh, 2013). Two common measures, the Akakie 
Information Criteria (AIC; Akakie, 1973) and the Bayesian Information Criteria (BIC; Schwarz, 1978) are 
commonly reported. Both measures are derived from the likelihood plus some parameter dm, reflecting 
a penalty for model complexity (i.e., number of additional parameters). The (marginal) AIC utilized in 
the lme4 package is as follows:   

  
(3)     AIC: -2ln(L) + 2dm 

 
Where L is the likelihood, dm (the penalization parameter) = p + q, where p is the number of 

fixed-effect parameters (length of Γ) and q is the number of unknown parameters in the variance-
covariance matrix G . While the value of AIC cannot be directly interpreted, a model with comparably 
smaller values of AIC indicates a better model fit. BIC uses a slightly different penalty parameter, 
imposing a stronger penalty with increasing model complexity. BIC is commonly obtained by taking the 
marginal AIC and replacing the constant (2) in the penalty by log(n) to obtain: 
 
(4)     BIC: -2ln(L) + log(n)dm 

 
Similar to the AIC, BIC values that are smaller indicate a better fitting model. The benefit to IC-

based measures is that they can be used to compare non-nested models, unlike the deviance test. 
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Comparisons of the relative selection properties of these two IC statistics can be found in the literature 
(Yang, 2005).  
 

Absolute Fit (approximate R2 measures). The R2 coefficient is an oft-used and favorite 
summary statistic to quantify the absolute goodness-of fit of fixed-effect models, such as OLS 
regression, and ANOVA. However, a comparable R2 measure for (generalized) LMMs does not exist, 
due to the added complexity of the random-effects structure in the mixed-model (see Sniders & Bosker, 
1994; 2011, Nakagawa & Schielzeth, 2013). In a simple linear regression model, only the residual 
variance is considered. However, in GLMMs, there may be many variance components, and we may be 
interested in understanding changes in one, some, or a combination of the variance parameters. In 
addition, it is not uncommon for some variables to reduce residual variance while simultaneously 
increasing the variance of an estimated random-effect, which can result in negative R2 values (Snijders 
& Bosker, 1994), clearly calling into question to veracity of R2 measures in LMM contexts. In strictly 
hierarchical LMMs, some researchers have proposed separate R2 values for each level. This 
interpretation cannot be extended to more complex models with (partially) crossed random effects (cf. 
Baayen et al., 2008), however. Thus, exact R2 measures do not currently exist for LMMs. However, we 
report two approximate R2 statistics (that are not without their limitations; see Johnson, 2014; 
Nakagawa & Schielzeth, 2013; and Nagelkerke, 1991), defined below:  

 
Pseudo-R2 : This statistic is simply the squared correlation between the model predicted values 

and the observed values in the data: 
 

(4)       
 

 
This definition has intuitive appeal, cannot be negative, and is easily calculated (see Singer & Willet, 
2003), but is limited in that it ignores any structure imposed on the data by the random effects. 
 

Conditional R2. More recently, Nakagawa and Schielzeth (2013) and Johnson (2014) have 
developed R2 type measures, derived from estimated variance components, which can be applied 
to arbitrarily complex mixed-effects models. Their conditional R2 (cR2) describes the proportion of 
variance explained by the combination of the fixed and random factors:  

 
 

(5) 
 

 
!
!
!
!
!
!
!
!
!
Johnson (2014) provides an extension of this statistic to accommodate random slope estimates. This 
function is implemented in the R.squaredGLMM function in the MuMIn package in R.   
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