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Figure S1. Performance of P+T when causal markers cluster. Performance of
P+T (LD-pruning followed by thresholding) for an alternative genetic architecture
where causal markers cluster. The results are averaged over 3000 simulated traits
with 200K simulated genotypes where the average fraction of causal variants p was
let vary. The simulated genotypes are linked, where we simulated independent
batches of 100 markers where the squared correlation between adjacent variants in
a batch was fixed to 0.9. For each simulated 100 SNP region of LD, we sampled the
fraction of causal markers within a region from a Beta(p,1-p) distribution, ensuring
that the expected fraction of causal markers across the genome is still p. This will
cause causal variants to cluster in some regions of the genome. As expected, the
impact of LD on the prediction accuracy of P+T is greater when causal variants
cluster, and still substantial for small values of p.
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Figure S2. Comparison of five different shrinks in the absence of LD. Bpred
corresponds to LDpred without LD and can be derived analytically (see Materials
and Methods for details). The marginal (least square) effect estimate is plotted
against the shrunk estimate for the five different shrinks. Bpred denotes the
analytical solution to LDpred, which can be derived in the absence of LD (see
Appendix A for details). The Bpred shrink shown here assumes that the heritability
is 0.5 and the training sample size is 10,000 and the number of markers is 60,000.
Similarly, the LASSO shrink shown here corresponds to the (marginal) posterior
mode effect under a Laplace prior for the causal effects. Compared to P-value
thresholding, and LASSO, Bpred can be viewed as a smoother shrink.
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Figure S3. Comparison of methods using simulated genotypes without LD. The
four subfigures a-d correspond to different genetic architectures where we vary p,
the fraction of variants with (non-zero) effects drawn from a Gaussian distribution.
Bpred denotes the analytical solution to LDpred, which can be derived in the
absence of LD (see Appendix A for details). As expected, Bpred outperforms P-value
thresholding in the absence of LD, although not by much.
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Figure S4. Comparison of methods using simulated genotypes with LD. The
four subfigures a-d correspond to different genetic architectures where we vary p,
the fraction of variants with (non-zero) effects drawn from a Gaussian distribution.
We simulated marginal least square effect estimates with LD (see Materials and
Methods for details). This enabled us to evaluate the behavior of the methods at
large sample sizes. The LD structure consisted of 100 SNP regions where adjacent
markers had r?=0.9. For validation we simulated 200000 SNPs in 2000 individuals.
For each point in the plot we averaged the results over 100 independent phenotype
simulations keeping the simulated genotypes fixed (see Materials and Methods for
details). Note that when p=0.001, the chance of two causal variants being in LD is
very small (~1%), and thus the improvement from accounting for LD in LDpred is
negligible compared to P+T.
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Figure S5. Comparison of methods when effects follow a Laplace distribution.
Here the genotypes were simulated with LD using same simulation setup as in
Figure S4, except the effect estimates were drawn from a Laplace mixture
distribution instead of Gaussian mixture distribution. The change in prior appears to
have minimal effect on the shape of the curve and the relative performance.
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Figure S6. Prediction accuracy for methods as a function of LD reference
sample size. Following the simulation setup from before (see Figure S$4.) we
simulated marginal least square effect estimates with LD (see Materials and
Methods for details). We simulated segments of 100 SNPs where adjacent markers
had r?=0.9. We simulated in total 200000 SNPs and 2000 validation individuals. For
each point in the plot we averaged the results over 100 independent phenotype
simulations keeping the simulated validation genotypes fixed (see Materials and
Methods for details). In addition, we simulated an LD reference panel with varying
sample size along the x-axis. From these plots we see that a LD reference panel with
more than 1000 individuals is necessary to ensure accurate LDpred scores. The
accuracy of LDpred appears to be more sensitive to poor LD estimates than both
P+T and LDpred-inf. Note that the Unadjusted PRS does not depend on LD
information and is therefore expected to be a straight line, and thus providing a
baseline.
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Figure S7. Comparisons to other methods using simulated traits and real
WTCCC genotypes. As expected COJO2 performs close to optimal with sufficient
training data, or more precisely, when the ratio (Nh?)/(Mp) is approximately larger
than 10. The comparison between the two types of LD-pruning clearly
demonstrates the advantage of informed LD-pruning over indiscriminate LD-
pruning, which randomly prunes either marker of a pair of markers in LD. For both
LD-pruning strategies a pair of markers was considered in LD if r¢>0.2. When
LDpred is compared to conditional joint analysis (COJO), LDpred outperforms COJO
as long as the data does not overwhelm the prior, i.e. when (Nh?)/(Mp) is not
sufficiently large (<10). For most of the diseases considered in this paper, current
sample sizes are still not large enough for joint estimates to yield accurate risk
scores.
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Figure S8. Boxplots of calibration slopes for simulations in Figure 2. Boxplots of
calibration slopes for the four prediction methods evaluated in Figure 2 for p=0.001
(the fraction of variants with non-zero effects). The subfigures a-d correspond to
different number of SNPs used, ranging from 30,004 SNPs on chromosome 1 in a) to
376,901 SNPs or the full genome in d). If the prediction conditional on the true
value is unbiased then we expect a slope of one. A slope of less than one implies that
the predicted value is mis-calibrated by a factor of 1/slope. Results for other values
of p (p=1,; p=0.1; p=0.01) gave similar results, and even stronger bias for P+T (LD-
pruning followed by P-value thresholding).
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Figure S9. A spike and slab prior. An illustration of a spike and slab prior with a
Gaussian slab.




Prediction Method

Accounts for LD?

Accounts for non-
infinitesimal genetic

Comments

architecture?

Unadjusted No. No.

polygenic risk

score

LD-pruning Yes". Yes. A heuristic that discards

followed by P- information from pruned and

value thresholding thresholded markers.

(P+T)

LDpred-inf Yes. No. An analytical solution that
assumes an infinitesimal prior
for effects.

LDpred Yes. Yes. A Gibbs sampler that assumes a

point-normal mixture prior for
effects.

Table S1. Overview of methods. A list of the main polygenic risk score methods
(using summary association statistics as input) considered in this study. (*Although
P+T prunes SNPs in high LD, it ignores bias induced by linked causal markers.)



Disease | Prediction accuracy Unadjusted PRS Pruning + LDpred- | LDpred
measurement using all SNPs Thresholding inf
T1D Observed scale R? 0.1064 0.3195 0.1062 0.3832
Nagelkerke R? 0.1442 0.4228 0.1438 0.5084
Liability scale R? 0.0426 0.0934 0.0426 0.1037
AUC 0.6915 0.8410 0.6912 0.8738
T2D Observed scale R? 0.0360 0.0465 0.0404 0.0467
Nagelkerke R? 0.0488 0.0631 0.0547 0.0633
Liability scale R? 0.0257 0.0327 0.0287 0.0329
AUC 0.6094 0.6243 0.6180 0.6275
CAD Observed scale R? 0.0250 0.0349 0.0290 0.0333
Nagelkerke R? 0.0338 0.0473 0.0393 0.0451
Liability scale R? 0.0191 0.0263 0.0221 0.0253
AUC 0.5880 0.6087 0.5963 0.6043
CD Observed scale R? 0.0428 0.0485 0.0461 0.0824
Nagelkerke R? 0.0585 0.0661 0.0630 0.1122
Liability scale R? 0.0148 0.0167 0.0159 0.0267
AUC 0.6212 0.6313 0.6279 0.6693
RA Observed scale R? 0.0483 0.1151 0.0462 0.1354
Nagelkerke R? 0.0656 0.1540 0.0627 0.1801
Liability scale R? 0.0239 0.0508 0.0229 0.0579
AUC 0.6277 0.6994 0.6267 0.7162
BD Observed scale R? 0.0707 0.0876 0.0798 0.0816
Nagelkerke R? 0.09578 0.1185 0.1080 0.1105
Liability scale R? 0.0308 0.0371 0.0342 0.0349
AUC 0.6552 0.6744 0.6662 0.6682
HT Observed scale R? 0.0306 0.0424 0.0348 0.0376
Nagelkerke R? 0.0414 0.0574 0.0471 0.0509
Liability scale R? 0.0258 0.0351 0.0292 0.0314
AUC 0.6005 0.6180 0.6072 0.6109
Table S2. Numerical values of results displayed in Figure 3. The values are

displayed on four different R? or AUC scales. To transform the prediction R? to

liability scale we used the Lee et al. R? transformation3 using values of disease
prevalence specified in Supplementary Table 2.




Disease Optimal Optimal P-value LDpred LDpred Assumed
fraction of threshold for estimated estimated disease
causal Pruning + heritability heritability on | prevalence

markers Thresholding liability scale
used in
LDpred

T1D 0.001 106 1.3250 0.7258 0.005

T2D 0.03 1 0.6206 0.5125 0.03

CAD 0.03 1 0.6160 0.5181 0.035

CD 0.01 0.0001 0.7974 0.2904 0.001

RA 0.0001 106 0.9097 0.5145 0.0075

BD 0.1 1 0.9695 0.4959 0.005

HT 0.03 1 0.6216 0.5939 0.05

Table S3. P+T and LDpred parameters for methods evaluated in Figure 3. The
heritabilities are calculated as averages over 5 cross validations. The Lee et al.

heritability transformation* was used to obtain the heritability on the liability scale.
The LD window size used in the simulations was 400 SNPs.




Disease | Unadjusted PRS using all SNPs | Pruning + Thresholding | LDpred-inf | LDpred
T1D 0.0082 0.4301 3.2282 0.6365
T2D 0.0056 0.0278 1.2678 1.0198
CAD 0.0058 0.0231 2.1214 1.6566
CD 0.0059 0.0231 1.4159 0.8570
RA 0.0069 0.3163 2.3133 0.7755
BD 0.0076 0.0249 1.2348 1.1472
HT 0.0055 0.0301 1.7345 1.7039

Table S4. Calibration comparison for methods evaluated in Figure 3. We report
the slope, where a value close to 1 represents a well-calibrated prediction. LDpred
yields the most appropriately calibrated predictions.



Disease | Prediction accuracy Unadjusted PRS Pruning + LDpred- | LDpred
measurement using all SNPs Thresholding inf
SCZ- Observed scale R? 0.1591 0.1510 0.1870 0.1898
MGS Nagelkerke R? 0.2119 0.2014 0.2488 0.2528
Liability scale R? 0.0616 0.0594 0.0688 0.0694
AUC 0.7294 0.7248 0.7499 0.7519
SCZ-ISC | Observed scale R? 0.1169 0.0970 0.1334 0.1367
Nagelkerke R? 0.1574 0.1304 0.1803 0.1836
Liability scale R? 0.0518 0.0446 0.0578 0.0585
AUC 0.6988 0.6784 0.7127 0.7165
MS Observed scale R? 0.0316 0.0674 0.0363 0.0840
Nagelkerke R? 0.0474 0.0978 0.0512 0.1198
Liability scale R? 0.0149 0.0302 0.0170 0.0368
AUC 0.6169 0.6714 0.6187 0.6918
BC Observed scale R? 0.0071 0.0324 0.0092 0.0386
Nagelkerke R? 0.0097 0.0437 0.0119 0.0519
Liability scale R? 0.0040 0.0184 0.0052 0.0220
AUC 0.5489 0.6052 0.5549 0.6156
T2D Observed scale R? 0.0159 0.0247 0.0214 0.0273
Nagelkerke R? 0.0212 0.0330 0.0309 0.0365
Liability scale R? 0.0112 0.0170 0.0149 0.0187
AUC 0.5747 0.5854 0.5825 0.5953
CAD Observed scale R? 0.0109 0.0101 0.0124 0.0125
Nagelkerke R? 0.0146 0.0137 0.0168 0.0170
Liability scale R? 0.0085 0.0080 0.0097 0.0098
AUC 0.5612 0.5557 0.5645 0.5647
Table S5. Numerical values of results displayed in Figure 4. The numerical

results are shown on four different R? or AUC scales.




Trait Prediction accuracy Unadjusted PRS Pruning + LDpred- | LDpred
measurement using all SNPs Thresholding inf
Height | R? 0.0927 0.0841 0.0906 0.1014
PC-adjusted R? 0.0697 0.0634 0.0656 0.0853
Risk Score + PC R? 0.1205 0.1146 0.1166 0.1353

Table S6. Prediction accuracy for height. Height and the polygenic risk score for
height is stratified by population structure. The prediction accuracy is therefore

substantially reduced when we account for the first 5 principal components.
Interestingly, LDpred improves the PC-adjusted prediction accuracy by 30%

compared to P+T.




Diesease Prediction Unadjusted Pruning + LDpred-inf LDpred
accuracy PRS using Thresholding
measurement all SNPs

T2D Observed scale R? 0.0022 0.0109 0.0023 0.0095
Nagelkerke R? 0.0029 0.0175 0.0030 0.0126

Liability scale R? 0.0011 0.0055 0.0012 0.0048

AUC 0.5247 0.5633 0.5249 0.5573

CAD Observed scale R? 0.0029 0.0058 0.0030 0.0048
Nagelkerke R? 0.0039 0.0078 0.0040 0.0065

Liability scale R? 0.0023 0.0046 0.0024 0.0038

AUC 0.5284 0.5418 0.5289 0.5374

Table S7. Additional validation for T2D and CAD when training on WTCCC
data. Prediction accuracy for type-2 diabetes and coronary artery disease when

training on WTCCC cases and controls and predicting into the WGHS data.




Disease Optimal P-value Optimal Gaussian LDpred/ LD- GWAS LDpred LDpred estimated Assumed
threshold for mixture weight pruning window | sample size estimated heritability on prevalence
Pruning + (fraction of causal size (# of SNPs) used in heritability liability scale
Thresholding markers) for LDpred LDpred
SCZ-MGS | 0.1 0.3 500 65K 0.5738 0.4231 0.01
SCZ-ISC 0.1 0.3 500 65K 0.4718 0.3479 0.01
MS 0.001 0.01 400 27K 0.3694 0.1321 0.001
BC 0.00003 0.003 400 50K 0.1934 0.1124 0.01
T2D 0.00003 0.1 300 69K 0.2061 0.1582 0.0075
CAD 0.1 1 300 86K 0.2943 0.2494 0.035

Table S8. Model parameters for results in Figure 4. Parameters inferred or assumed by P+T and LDpred for results displayed
in Figure 4. The Lee et al. heritability transformation>2 was used to obtain the heritability on the liability scale.




Disease Unadjusted PRS using all Pruning + Thresholding | LDpred-inf LDpred
SNPs
SCZ-MGS 0.0063 0.0467 0.3845 0.3918
SCz-ISC 0.0130 0.0407 0.4683 0.4413
msS 0.0089 0.0717 0.9092 0.2011
BC 0.0017 0.1327 1.2323 0.5650
T2D 0.0032 0.1002 0.6421 0.4057
CAD 0.0035 0.0137 0.2244 0.1868

Table S9. Calibration slopes for methods evaluated in Figure 4. We report
the slope, where a value close to 1 represents a well-calibrated prediction.
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Schizophrenia Prediction Unadjusted Pruning + LDpred- LDpred
Cohort accuracy PRS using Thresholding inf
measurement all SNPs
MGS Observed 0.1591 0.1510 0.1870 0.1898
(European scale R?
ancestry) Nagelkerke 0.2119 0.2014 0.2488 0.2528
R?
Liability 0.0616 0.0594 0.0688 0.0694
scale R?
AUC 0.7294 0.7248 0.7499 0.7519
JPN1 Observed 0.0477 0.0702 0.0691 0.0695
(Japanese scale R?
ancestry) Nagelkerke 0.0635 0.0944 0.0923 0.0929
R?
Liability 0.0232 0.0323 0.0319 0.0320
scale R?
AUC 0.6276 0.6527 0.6523 0.6531
TCR1 Observed 0.0570 0.0616 0.0704 0.0717
(Chinese scale R?
ancestry) Nagelkerke 0.0761 0.0821 0.0939 0.0956
R?
Liability 0.0274 0.0294 0.0329 0.0336
scale R?
AUC 0.6331 0.6391 0.6483 0.6488
HOK2 Observed 0.0253 0.0306 0.0374 0.0373
(Chinese scale R?
ancestry) Nagelkerke 0.0414 0.0511 0.0609 0.0609
R?
Liability 0.0187 0.0225 0.0271 0.0271
scale R?
AUC 0.6176 0.6250 0.6352 0.6352
AFAM Observed 0.0170 0.0151 0.0279 0.0280
(African scale R?
American Nagelkerke 0.0233 0.0202 0.0382 0.0383
ancestry) R?
Liability 0.0095 0.0084 0.0152 0.0152
scale R?
AUC 0.5745 0.5682 0.5936 0.5936

Table S10. Prediction accuracy for schizophrenia risk scores when validating
in non-European populations. The accuracy is reported on four different R? or

AUC scales.
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Scz Genetic Optimal P- Optimal LDpred/ GWAS
cohort ancestry value Gaussian LD- sample
threshold for mixture pruning size
Pruning + weight window used in
Thresholding (fraction of size (# of LDpred
causal SNPs)
markers)
for LDpred
JPN1 Japanese 0.1 0.3 1000 65000
(Tokai)
TCR1 Chinese 0.1 0.3 1000 65000
(Singapore)
HOK2 Chinese 1 1 1000 65000
(Hong
Kong)
AFAM African 0.3 1 400 69000
American

Table S11. Parameters inferred or assumed by P+T and LDpred for analysis of the

non-European validation samples in Table $10.
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