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Rainfall and typhoid fever cases in Blantyre, Malawi 

As a preliminary analysis, we examined the association between rainfall and the 

occurrence of culture-confirmed typhoid fever cases at Queen Elizabeth Central Hospital 

(QECH) in Blantyre, Malawi.  We obtained data on daily rainfall between 2001 and 2010 

from the Chileka and Chichiri weather stations in Blantyre.  We averaged the data from 

the two stations and aggregated it by week of the year.  We then calculated the Pearson’s 

correlation coefficient (ρ) between the average weekly rainfall in Blantyre and the total 

number of typhoid fever cases at QECH by week of the year from 1998-2014 (Figure 

S1a) at lags varying from 0 to 51 weeks.  We found that rainfall and weekly typhoid 

cases were significantly and positively correlated at lags of 6 to 21 weeks (ρ>0.33, 

p<0.05), with the peak correlation occurring at a lag of 13 weeks (ρ=0.82). 

 

We hypothesized that the lag between the peak in rainfall and the peak in typhoid cases 

could be explained by differences between when the rate of transmission from susceptible 

to infectious individuals (βp+βw) peaks (which is independent of the prevalence of 

infection) versus when the force of infection (λp+λw) peaks (per susceptible rate of 

infection, which is proportion to the number of currently infectious individuals and 

bacteria in the environment), as well as reporting delays associated with the time from 

infection to seeking care and being diagnosed with typhoid fever at QECH.  Furthermore, 

we assumed that rainfall would primarily affect the rate of long-cycle transmission.  

Therefore, we assumed the peak in βw would coincide with the peak in seasonal rainfall. 
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Since we did not have rainfall data for all years, and to simplify the analysis, we assumed 

that βw varied according to a sinusoidal seasonal forcing function.  Thus,  

 
  
βw(t) = β0 1+ qcos

2π t −φ
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where t is time in weeks, β0 is the mean transmissibility parameter for long-cycle 

transmission, q is the amplitude of variation (estimated), and φ is the seasonal offset 

parameter (corresponding to the week of peak transmissibility).  We estimated φ by 

fitting a cosine curve to the average weekly rainfall data (Figure S1b) using least squares, 

then fixed φ at this value for all subsequent analyses. 

 

Model fitting procedure 

We fit our model to the data on culture-confirmed cases of S. Typhi at QECH from 1996 

to 2015 by maximum a posteriori (MAP) estimation.  We assumed uniform prior 

distributions for all model parameters.  We calculated the log-likelihood of each model 

assuming that the observed number of cases in week w and age group a (Cw,a) is Poisson-

distributed with a mean equal to the model-predicted number of clinical infections over 

the duration of infectiousness times the reporting fraction (Dw,a = fδI1,w,a): 

 
  
LL = Cw,a

a
∑

w
∑ log Dw,a( )− Dw,a − log

i=1

Cw ,a

∑ (i) .   

Since we only had data on the age of cases beginning in 2010, we fit the model to the 

data up to February 2010 by summing the model-predicted number of cases each week 

across all age groups. 
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We initialized each model assuming a baseline state distribution P0 in January 1950, then 

simulated the model and discarded the burn-in period prior to 1996.  We assumed P0 = 

{S1,I1,R,S2,I2,C}, where: 

	
  

!!!

S1 =
0.9Na −10 for!a<30
0.89Na −10 for!a≥30

⎧
⎨
⎪

⎩⎪

I1 =10 for!all!a
R =0 for!all!a
S2 =0.1Na −10 for!all!a
I2 =10 for!all!a

C0 =
0 for!a<30

0.01Na for!a≥30
⎧
⎨
⎪

⎩⎪

	
  	
  

where Na is the estimated population size in age group a in 1950.  We ensured that the 

modeled population size and age distribution appeared consistent with the observed 

demographics in Blantyre district (Figure S2).   

 

To estimate the parameters of each model, we sampled 1,000 parameter sets from a 

reasonable range of parameters using Latin hypercube sampling (Table 2).  We calculated 

the log-likelihood for each sampled parameter set then minimized the negative log-

likelihood of each model, minus the associated prior distributions, using a simplex search 

method beginning at the top ten parameter sets for each model (using the “fminsearch” 

command in MATLAB v7.14).  The best-fit model for each scenario corresponded to the 

parameter set that yielded the highest posterior probability. 
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Finally, we calculated the Bayesian information criterion (BIC) for each best-fit model to 

compare models with a different number of estimated parameters across the different 

scenarios (Table 2). 

 
Contribution of acute infections versus chronic carriers to the force of infection 

To examine how the role of chronic carriers in transmission changes over time, we 

calculated the time-varying force of infection for acute infections (λA) versus chronic 

carriers (λC), where: 

 
  
λA(t) = β p (I1(t)+ rI2(t))+ βw(t)W

I1(t)+ rI2(t)
(I1(t)+ rI2(t)+C(t))N (t)

, 

 
  
λC (t) = β pC(t)+ βw(t)W C(t)

(I1(t)+ rI2(t)+C(t))N (t)
. 

 

Sensitivity to assumption of frequency- versus density-dependent transmission 

In Scenario 1, we make the assumption that long-cycle transmission is density dependent 

in order to examine the hypothesis that increased population density in Blantyre could 

explain the recent epidemic of typhoid fever.  As a base case, we wanted to explore the 

support for hypotheses underlying Scenarios 2-4 independent of Scenario 1.  Therefore, 

we assumed long-cycle transmission was frequency dependent for Scenarios 2-4.   

 

However, it is possible that increases in transmission related to the increasing population 

density may partially explain the observed pattern of typhoid cases in Blantyre in 

combination with one (or more) of the other hypotheses.  We therefore refit the models 

under Scenarios 2-4 allowing for density-dependent long-cycle transmission in order to 



	
   6	
  

examine the sensitivity of our conclusions to this assumption.  Overall, the best-fit model 

parameters and overall model fits (as indicated by BIC) were similar under both 

frequency- and density-dependent transmission assumptions (Table 2, Table S1).  

Interestingly, the estimated value of r (the relative infectiousness of carriers) decreased 

substantially for Scenario 3, suggesting that the period of low incidence in the 

1990s/2000s can be explained by either transmission from chronic carriers or lower 

population density.
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Table S1.  Model parameter estimates and Bayesian information criteria (BIC) for best-

fit models for Scenarios 2-4 assuming density-dependent long-cycle transmission. 

 

Parameter definition Symbol Scenario 2 Scenario 3 Scenario 4 
Basic reproductive number for 
short-cycle transmission 

R0,p 2.0 2.6 3.7 

Basic reproductive number for 
long-cycle transmission 

R0,w 0-0.55 0-0.81 0-1.1 

Amplitude of seasonal forcing 
(long-cycle transmission) 

q 0.90 1.0 0.85 

Rate of waning immunity to 
clinical disease (years-1) 

ε 1.5 6.2x10-6 2.6x10-6 

Relative infectiousness of chronic 
and short-term carriers 

r 0.033 0.069 0.32 

Reporting fraction f 0.0058 0.0027 0.0027 
Proportionality factor between 
incidence of S.  Enteritidis 
infection and observed incidence 
of invasive disease 

mX 414 - - 

Duration of cross-immunity 
(weeks) 

1/χ 442 - - 

Beginning week of increase in the 
duration of infectiousness or 
transmission rate 

t0 - 2 May 2010 8 May 2011 

End week of increase in duration 
of infectiousness or transmission 
rate 

t1 - 20 July 
2014 

3 March 
2013 

Magnitude of increase in duration 
of infectiousness or transmission 
rate 

m - 1.5 2.8 

BIC   6449 5966 6017 
aR0,w varied with population size in Scenario 1; the values listed correspond to the range of R0,w 
between January 1996 and February 2015. 
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Figure S1. Seasonal variation in typhoid cases at Queen Elizabeth Central Hospital and 

rainfall in Blantyre, Malawi. (a) Total number of culture-confirmed S. Typhi cases 

between 1998-2014 by week of the year is plotted in dark blue, while the average weekly 

rainfall (in millimeters) between 2001-2010 is plotted in light blue. (b) Average weekly 

rainfall is plotted along with the best-fit cosine curve (with estimated mean, amplitude, 

and offset) in black. 
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Figure S2. Population size and age distribution of Blantyre district, Malawi. (a) The 

model simulated population size is plotted in red, while the observed monthly population 

size of Blantyre district is represented by the blue x’s. (b) The observed (blue) and model 

simulated (red) population age distribution in plotted. 
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Figure S3. Contribution of acute infections and chronic carriers to the overall force of 

infection. The log-transformed force of infection for acute infections (black) and chronic 

carriers (red) are plotted for (a) Scenario 1, (b) Scenario 2, (c) Scenario 3, and (d) 

Scenario 4. 
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