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Web Appendices for “Asymptotically Unbiased Estimation of Exposure Odds Ratios in 

Complete Records Logistic Regression” by Bartlett et al. 

 

WEB APPENDIX 1 

In this appendix we give derivations for the conditions under which the complete records 

analysis (CRA) logistic regression exposure association is estimated without bias 

(asymptotically). We assume that the logistic regression model in equation 1 of the main paper 

is correctly specified. This means there is no interaction between C and X, and so the odds ratio 

exp(βX) can be expressed as 

exp⁡(𝛽𝑋) = ⁡
𝑃(𝑌 = 1|𝑋 = 𝑥 + 1, 𝐶 = 𝑐)
𝑃(𝑌 = 0|𝑋 = 𝑥 + 1, 𝐶 = 𝑐) ⁡× ⁡

𝑃(𝑌 = 1|𝑋 = 𝑥, 𝐶 = 𝑐)
𝑃(𝑌 = 0|𝑋 = 𝑥, 𝐶 = 𝑐) (2) 

where x and c denote arbitrary values of X and C. CRA consists of estimating the logistic 

regression model in those participants for whom R = 1. To derive the odds ratio (OR) for X 

estimated by CRA, consider first the probability in the top left of equation 2. The value of this 

probability in the complete records is equal to 

𝑃(𝑌 = 1|𝑋 = 𝑥 + 1, 𝐶 = 𝑐, 𝑅 = 1)

= ⁡
𝑓(𝑌 = 1, 𝑥 + 1, 𝑐, 𝑅 = 1)

𝑓(𝑥 + 1, 𝑐, 𝑅 = 1)

= ⁡
𝑃(𝑅 = 1|𝑌 = 1, 𝑥 + 1, 𝑐)𝑓(𝑌 = 1, 𝑥 + 1, 𝑐)

𝑃(𝑅 = 1|𝑥 + 1, 𝑐)𝑓(𝑥 + 1, 𝑐)

= ⁡
𝑃(𝑅 = 1|𝑌 = 1, 𝑥 + 1, 𝑐)

𝑃(𝑅 = 1|𝑥 + 1, 𝑐)
𝑃(𝑌 = 1|𝑥 + 1, 𝑐) 

Using the same argument we can find corresponding expressions for the values of the other 

three probabilities, conditional on R = 1. The OR estimated for X in a CRA is thus 
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exp(𝛽𝑋
𝐶𝑅) = ⁡

𝑃(𝑅 = 1|𝑌 = 1, 𝑥 + 1, 𝑐)
𝑃(𝑅 = 1|𝑥 + 1, 𝑐)

𝑃(𝑌 = 1|𝑥 + 1, 𝑐)

𝑃(𝑅 = 1|𝑌 = 0, 𝑥 + 1, 𝑐)
𝑃(𝑅 = 1|𝑥 + 1, 𝑐)

𝑃(𝑌 = 0|𝑥 + 1, 𝑐)
⁡

×⁡

𝑃(𝑅 = 1|𝑌 = 0, 𝑥 + 1, 𝑐)
𝑃(𝑅 = 1|𝑥, 𝑐)

𝑃(𝑌 = 0|𝑥, 𝑐)

𝑃(𝑅 = 1|𝑌 = 1, 𝑥 + 1, 𝑐)
𝑃(𝑅 = 1|𝑥, 𝑐)

𝑃(𝑌 = 1|𝑥, 𝑐)
⁡

= ⁡
𝑃(𝑅 = 1|𝑌 = 1, 𝑥 + 1, 𝑐)𝑃(𝑌 = 1|𝑥 + 1, 𝑐)

𝑃(𝑅 = 1|𝑌 = 0, 𝑥 + 1, 𝑐)𝑃(𝑌 = 0|𝑥 + 1, 𝑐)
⁡

×⁡
𝑃(𝑅 = 1|𝑌 = 0, 𝑥, 𝑐)𝑃(𝑌 = 0|𝑥, 𝑐)

𝑃(𝑅 = 1|𝑌 = 1, 𝑥, 𝑐)𝑃(𝑌 = 1|𝑥, 𝑐)
= ⁡𝜆 exp(𝛽𝑋) 

where 

𝜆 = ⁡
𝑃(𝑅 = 1|𝑌 = 1, 𝑥 + 1, 𝑐)𝑃(𝑅 = 1|𝑌 = 0, 𝑥, 𝑐)

𝑃(𝑅 = 1|𝑌 = 0, 𝑥 + 1, 𝑐)𝑃(𝑅 = 1|𝑌 = 1, 𝑥, 𝑐)
 

CRA will therefore give asymptotically unbiased estimates of the OR for X whenever 𝜆 = 1. This 

result can be seen as a (small) extension of that given by Kleinbaum, Morgenstern and Kupper 

(Selection bias in epidemiologic studies. Am J Epidemiol. 1981;113(4):452-463) for selection 

bias, with our result additionally allowing for confounders C. 

 

Outcome-dependent missingness 

Suppose that missingness is related to outcome Y, but given Y, is independent of X and C, i.e. 

P(R = 1|X,Y,C) = P(R = 1|Y). Then 

𝜆 =
𝑃(𝑅 = 1|𝑌 = 1)𝑃(𝑅 = 1|𝑌 = 0)

𝑃(𝑅 = 1|𝑌 = 0)𝑃(𝑅 = 1|𝑌 = 1)
= 1 
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such that CRA is asymptotically unbiased for βX (and in fact is also asymptotically unbiased for 

βC). 

 

Covariate-dependent missingness 

Now suppose that missingness is dependent on the covariates, i.e. X and/or C, and given these, 

is independent of Y, i.e. P(R = 1|X,Y,C) = P(R = 1|X,C).  Then 

𝑃(𝑌 = 1|𝑋, 𝐶, 𝑅 = 1) =
𝑓(𝑌 = 1, 𝑋, 𝐶, 𝑅 = 1)

𝑓(𝑋, 𝐶, 𝑅 = 1)

=
𝑃(𝑅 = 1|𝑌 = 1, 𝑋, 𝐶)𝑃(𝑌 = 1|𝑋, 𝐶)𝑓(𝑋, 𝐶)

𝑃(𝑅 = 1|𝑋, 𝐶)𝑓(𝑋, 𝐶)

= 𝑃(𝑌 = 1|𝑋, 𝐶) 

such that CRA will give asymptotically unbiased estimates of βX and βC, and also β0 if the study 

is a cohort design. 

 

Missingness dependent on outcome and confounder 

Suppose now that missingness depends on Y and C, but given these is independent of X, i.e., 

P(R = 1|X,Y,C) = P(R = 1|Y,C). Then,  

𝜆 =
𝑃(𝑅 = 1|𝑌 = 1, 𝑐)𝑃(𝑅 = 1|𝑌 = 0, 𝑐)

𝑃(𝑅 = 1|𝑌 = 0, 𝑐)𝑃(𝑅 = 1|𝑌 = 1, 𝑐)
= 1 

and so CRA will again be asymptotically unbiased for βX (but in general, will be biased for the 

other parameters). 
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Missingness dependent on X and Y 

In general, if missingness depends jointly on X and Y (and possibly also C), CRA is biased for βX. 

However, there is a class of mechanisms for which CRA is still asymptotically unbiased for βX. 

Specifically, if P(R = 1|X,Y,C) = s(X,C)t(Y,C) for some functions s(X,C) and t(Y,C), then 

𝜆 =
𝑠(𝑥 + 1, 𝑐)𝑡(𝑌 = 1, 𝑐)𝑠(𝑥, 𝑐)𝑡(𝑌 = 0, 𝑐)

𝑠(𝑥 + 1, 𝑐)𝑡(𝑌 = 0, 𝑐)𝑠(𝑥, 𝑐)𝑡(𝑌 = 1, 𝑐)
= 1 

and βX is estimated without bias (asymptotically). 
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WEB APPENDIX 2 

In this appendix we describe the results presented in Table 2 of the main paper regarding what 

conclusions might be reasonably drawn regarding the missingness mechanism based on fitting 

a logistic regression model for missingness. We argue under the implicit assumption that both 

the exposure X and confounders C have independent associations with Y. We first consider 

cases where only the exposure, the outcome, or some of the confounders are partially 

observed, and then consider the more complicated case where a combination are partially 

observed. 

Missingness in a confounder 

We first suppose that there are missing values in a confounder C1 and let C2 denote the other 

(fully observed) confounders, so that C = (C1,C2). Missingness can be investigated by fitting a 

logistic regression model for the binary observation indicator R (indicating whether C1 is 

observed), with X, Y and the other confounders C2 as covariates. The first part of Table 2 

describes the possible results of this analysis. For each possibility, we describe the missingness 

mechanism(s) which are plausible given the result, and whether the CRA logistic regression 

exposure OR is asymptotically unbiased. 

If the logistic regression model for missingness indicates missingness is associated with X and or 

C2, but given these, not Y, missingness can plausibly be assumed to be covariate dependent, 

and consequently CRA is asymptotically unbiased for the exposure and confounder 

associations. In a cohort study such an assumption may be quite plausible a priori since 

missingness at study entry can only be associated independently with the future outcome due 
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to the presence of some other cause of outcome U, not included in the outcome model of 

interest, which itself affects missingness in the confounder C1. 

Alternatively, if this analysis indicates missingness is independent of exposure X, but depends 

on Y and possibly components of C2, the CRA estimate of the exposure OR is again expected to 

be asymptotically unbiased (missingness dependent on outcome and confounder). 

Lastly suppose that we find missingness in C1 is associated with both X and Y, and possibly the 

other confounders C2. In this case, the obvious interpretation is that X and Y both affect 

missingness in C1, and unless the mechanism satisfies the special independence condition 

described earlier, the CRA exposure OR estimate is biased. However, there exist other 

alternative explanations under which the CRA exposure OR estimate is asymptotically unbiased. 

Suppose that missingness in C1 depends on the value of C1 and X (but not Y). Since C1 cannot be 

included in the logistic model for R, an association between R and Y would be a consequence of 

the effect of C1 on R and the independent association of C1 with Y. In this case we would have 

covariate dependent MNAR missingness, but the CRA would be asymptotically unbiased. A 

further possibility consistent with the observed data is that missingness depends on Y and C1 

(but not X). Again since C1 cannot be included in the model for R, the observed association 

between R and X might be the result of correlation between X and C1 and the dependence of R 

on C1. In this case the CRA exposure OR is again asymptotically unbiased. In this situation 

contextual knowledge is critical in order to judge which of these scenarios is thought to be 

plausible, and hence whether the CRA exposure OR is asymptotically unbiased. 
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Missingness in exposure X 

As for the case of missingness in a confounder, if missingness in X appears to be conditionally 

independent (given the confounders C) of Y, CRA logistic regression is expected to be 

asymptotically unbiased for both exposure and confounder associations (covariate dependent 

missingness). If missingness in X is found to be related to Y, but not to the confounders, then an 

assumption of outcome dependent missingness is plausible, such that the CRA exposure OR 

estimate is asymptotically unbiased. This conclusion is justified by the fact that if missingness 

also in truth depended on X, this would (in general) induce an association between R and some 

of the confounders (conditional on Y), since the confounders are associated with X. 

If missingness in X is found to be related jointly to Y and one or more confounders, from the 

data alone we cannot verify whether the CRA is asymptotically unbiased for the exposure OR. 

The conclusion we would most obviously draw is that missingness depends on outcome Y and 

confounders C, such that the exposure OR is asymptotically unbiased. However, alternative 

explanations are also quite possible, under which the association is biased. One is that 

missingness depends on X and Y, and the observed association between R and some of the Cs is 

due to the effect of X on R and the correlation between X and these Cs. In this case, the CRA 

exposure OR is generally biased. Alternatively, missingness could depend on X and C, and the 

observed association between R and Y (conditional on C) is induced by the independent 

association between X and Y and the effect of X on R. In this case of covariate dependent 

missingness, the CRA is asymptotically unbiased. Thus again, in this situation, contextual 

knowledge is critical to determining which missingness assumption is plausible. 
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Outcome missingness 

In this setting we can investigate whether missingness in the outcome is related to X and/or C. 

Suppose first that we find that missingness in Y is associated with X, but not C. In this case, it 

would usually be reasonable to assume that missingness depends only on X, such that the CRA 

is asymptotically unbiased for the exposure and confounders associations. Such a conclusion is 

justified by the fact that if missingness also depended on Y, this would induce an association 

between R and one or more of the confounders. 

If missingness is found to be independent of X conditional on C, this suggests an assumption of 

missingness dependent on outcome and confounder is reasonable, such that the CRA exposure 

OR is again asymptotically unbiased. 

If missingness in Y is found to be associated with X and C the natural interpretation is that 

missingness is independent of Y, conditional on X and C (covariate dependent missingness), 

such that the CRA is asymptotically unbiased. However again there are alternative explanations 

consistent with the observed data. Missingness could depend on Y and C, and the independent 

association between X and Y induces an association between R and X (conditional on C). In this 

case the CRA exposure OR is asymptotically unbiased. Alternatively, missingness could depend 

on X and Y, with the independent association of C with Y inducing the association between R 

and C (conditional on X). In this case the exposure OR is generally estimated with bias. Thus 

again here contextual knowledge is essential in order to gauge the plausibility of the different 

assumptions. 
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Missingness in multiple variables 

The preceding considerations focused on situations where only one variable (or a block of 

variables which are either all observed or all missing) contains missing values. In reality studies 

often suffer from missing values in multiple variables involved in the outcome model. This 

inevitably complicates the process of investigating the missingness mechanisms and thereby 

judging whether the CRA is likely to give asymptotically unbiased exposure OR estimates. A 

simplification that may be possible is that if the rate of missingness in a variable is very low (e.g. 

less than 5%), one might choose to essentially assume that it is fully observed for the purposes 

of investigating the missingness mechanisms of the other partially observed variables and for 

deciding whether the CRA logistic regression exposure OR is asymptotically unbiased.  

Suppose first that multiple confounders are partially observed, but that the exposure and 

outcome are fully observed. In this case we can treat the partially observed confounders as a 

vector C1 and proceed as described previously for a single partially observed confounder, 

thereby ignoring in our investigation of missingness any observed values in components of C1 

when at least one component is missing. 

Now suppose that two or more of X, Y and C are partially observed. If C is partially observed, we 

again divide C into those partially observed (C1) and those which are fully observed (C2). In 

some situations it may be reasonable to assume that the different missingness processes are 

independent, conditional on X, Y and C. In this case, the CRA exposure OR is asymptotically 

unbiased provided each missingness mechanism falls within one of the classes described 

previously. The problem thus reduces to determining whether each mechanism falls within one 
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of the described classes, and each missingness mechanism can be investigated separately as 

previously described for the case of missingness in one variable. 

Unfortunately a difficulty which then arises is that an analysis of missingness in one variable 

suffers from missingness in the other variable(s). There are a myriad of possibilities for what 

analyses of missingness might indicate in this situation and what conclusions we might 

reasonably draw (if any) from them. As an example, suppose we have missingness in X and 

confounders C1. In this case a logistic regression model for the observation indicator RX with 

covariates Y and C will exclude those records with at least one confounder missing, leading to a 

loss of precision and potentially bias (in the estimates of the model for RX), unless RX and RC1 are 

conditionally independent given Y and C. Nevertheless, if this CRA of missingness suggested 

missingness in X was conditionally independent of Y conditional on C, it may be reasonable to 

assume RX depends only on C. Such a conclusion may be reasonable since if the exclusion of 

those records with confounders missing from the analysis for RX induces bias, it is arguably 

unlikely to cause bias such that RX and Y appear conditionally independent given C if in truth 

they are not. 

The preceding considerations demonstrate that with missingness in multiple variables the 

investigation of missingness using the observed data becomes considerably more difficult. In 

consequence, study specific contextual knowledge regarding missingness mechanisms becomes 

commensurately more important. Nevertheless, we believe a combination of careful analysis of 

the observed data and contextual considerations can often give sufficient credibility for a 

particular assumption about missingness. 


