Supplemental Experimental Procedures

Fasting Studies; Plasma and Liver Metabolite Analysis

Age and sex matched mice were randomly divided into *ad libitum* chow fed or fasting groups. The fasting period was 24 h from 09:00 – 09:00. Blood glucose and lactate were measured at the beginning and end of the fasting period. Mice were subsequently sacrificed by asphyxiation with CO_2 , and plasma was collected from the inferior vena cava, and stored on ice with EDTA to prevent clotting. Blood was then centrifuged at 8,000 x g for 8 min to separate cells and plasma. Livers were frozen in liquid nitrogen and stored at -80°C for later analysis.

Plasma triglyceride and cholesterol concentrations were measured by Infinity colorimetric assay kits (Thermo Fisher Scientific). Plasma non-esterified fatty acids and total ketone concentrations were measured using enzymatic assays (Wako Diagnostics). Plasma urea was assessed by a commercial assay kit (Abnova). Plasma insulin was measured by an immunoassay (Singulex) by the Core Laboratory for Clinical Studies at Washington University. Liver triglyceride was measured by solubilizing 100 mg liver tissue in saline and solubilizing lipid with 0.5% sodium deoxycholate. Liver TAG was then determined by colorimetric assay (Thermo Fisher Scientific). Liver glycogen was measured by colorimetric assay (Sigma).

Metabolic Tolerance Tests and Streptozotocin-Induced Insulin Deficiency

Pyruvate tolerance tests (PTT), alanine tolerance tests (ATT), and glucose tolerance tests (GTT) were performed after an overnight (16 h) fast and while housed on aspen chip bedding. Mice were injected i.p. with 2 g/kg body weight Na-pyruvate (PTT), 2 g/kg body weight L-alanine (ATT), or 1 g/kg body weight D-glucose (GTT) dissolved in sterile saline. Insulin tolerance tests were performed by injecting i.p. 0.75 U/kg body weight insulin (Humulin), after a short 2 h fast. For all tolerance tests, blood glucose and lactate were measured using a One-Touch Ultra

glucometer (LifeScan) and a Lactate Plus lactate meter (Nova Biomedical), respectively with a single drop of tail blood at T= 0, 15, 30, 60, 90, and 120 minutes after challenge. GTT and ITT in db/db crossed mice were performed similarly, but after 4 h fast.

A subset of mice was injected with a single dose of 180 μ g/g body weight streptozotocin (STZ; Santa Cruz Biotechnology) to render mice insulin-deficient. Blood glucose and lactate was measured daily pre-STZ injection and for six days following STZ injection at 15:00.

Pyruvate and Alanine Mitochondrial Transport Assays

Mitochondria were isolated from fresh mouse livers by differential centrifugation and resuspended in assay buffer containing 120 mM KCl, 1 mM EGTA, 5 mM KH₂PO₄, and 10 mM HEPES, pH 7.4. Measurements of pyruvate or alanine uptake of the isolated mitochondria were performed in 100 µl assay buffer containing 50-100 µg mitochondrial protein, 2 µM of ¹⁴C-pyruvate or ³H-alanine for 3 min at room temperature. The mitochondrial-bound ¹⁴C -pyruvate and ³H -alanine were separated from the reactants by filtration through a nitrocellulose membrane filter (0.2 µm) and repeated washing with ice cold assay buffer. ¹⁴C-pyruvate and ³H-alanine radioactivity in the nitrocellulose filters were determined by scintillation counting. Nonspecific uptake of ¹⁴C-pyruvate and ³H-alanine were determined by pretreatment of a subset of mitochondria with either 20 µM UK-5099 to inhibit MPC activity or 500 µM unlabeled alanine to limit ³H-alanine uptake. Specific uptake was expressed as DPM/mg/min.

Hepatocyte Glucose Production Assay

All experiments were performed 10-12 hours after the hepatocytes were plated. To determine rates of glucose production, hepatocytes were washed twice with PBS and then incubated for 2 h

in Hank's balanced salt solution (HBSS) containing 127mM NaCl, 3.5 mM KCl, 0.44 mM KH_2PO_4 , 4.2 mM NaHCO₃, 0.33 mM Na₂HPO₄, 1 mM CaCl₂, 20 mM HEPES, pH 7.4. Media was removed and hepatocytes were washed with fresh HBSS, and incubated for 3 h in HBSS containing glucagon (100 ng/ml) alone or with 5 mM sodium pyruvate in the absence or presence of either 2.5 μ M UK-5099, 15 μ M MSDC-0602, or 500 μ M amino-oxyacetate (AOA). At the end of this incubation period, the media was collected and assayed for glucose concentrations with a glucose oxidase-based glucose assay kit (Sigma). Rates of glucose production were expressed as μ g glucose/mg cell protein/h.

Quantitative RT-PCR

Total RNA was isolated using the RNAzol method (RNA-Bee, Tel-Test). cDNA was made by use of a reverse transcription kit (Invitrogen), and real-time PCR was performed using an ABI PRISM 7500 sequence detection system (Applied Biosystems) and a SYBR green master mix. Arbitrary units of target mRNA were corrected by measuring the levels of *36B4* mRNA. The sequences of the oligonucleotides are available upon request.

Western Blotting

Whole-cell lysates from tissue or isolated primary hepatocytes were collected in HNET buffer containing protease and phosphatase inhibitors. Lysates were normalized to protein concentration, denatured, and run down Criterion precast PAGE gels (BioRad). Antibodies used were α -Tubulin (Sigma), and MPC1 and MPC2 (gifts from Michael Wolfgang).

Palmitate Oxidation Measurement

Palmitate oxidation rates were assessed in lysates from primary hepatocytes using [³H]palmitate as previously described (Chen et al., 2008).

Mitochondrial Respiration and Membrane Potential

Isolated primary hepatocytes were permeabilized with digitonin, and high-resolution respirometry was conducted using an Oxygraph O2k (Oroboros Instruments). 0.5×10^6 cells was suspended in 2 mL respiration for each trace. Respiratory substrates utilized were 5 mM pyruvate/2 mM malate, 10 mM glutamate/2 mM malate, or 5 mM succinate with 0.5 μ M rotenone. All substrates were used in the presence of 2 mM ADP.

Respiration was performed with the same substrate concentrations as above with 50 μ g of mitochondria isolated by differential centrifugation. 15 μ M MSDC-0602 and 10 μ M UK-5099 were used to inhibit pyruvate-stimulated respiration.

Mitochondrial membrane potential was assessed by plating isolated hepatocytes onto Tissue-Tek chamber slides, and staining with 100 nM tetramethylrhodamine, ethyl ester, perchlorate (TMRE) in HBSS for 30 min. Hepatocytes were then washed twice with HBSS and imaged on an inverted fluorescence microscope (Nikon Instruments). Average TMRE fluorescence per cell was determined with ImageJ (NIH).

References Cited

Chen, Z., Gropler, M.C., Norris, J., Lawrence, J.C., Jr., Harris, T.E., and Finck, B.N. (2008). Alterations in hepatic metabolism in fld mice reveal a role for lipin 1 in regulating VLDL-triacylglyceride secretion. Arterioscler Thromb Vasc Biol *28*, 1738-1744.

SUPPLEMENTAL FIGURE LEGENDS

Supplemental Figure 1, related to Figure 1 and Figure 2, further characterization of LS-*Mpc2^{-/-}* mice.

(A) Body weights of 13 week old mice. (B) Relative liver weights of 13 week old mice. (C) Indirect calorimetry, energy expenditure, spontaneous activity, and H₂O/food consumption as measured in Phenomaster metabolic cages. (D) Blood glucose concentrations during an i.p. glucose tolerance test (GTT) after an overnight fast. (E) Blood lactate concentrations during the GTT. (F) Blood glucose concentrations during an i.p. insulin tolerance test (ITT) after a 2 h fast. (G) Blood lactate concentrations during the ITT. Data expressed as mean \pm S.E.M. *p \leq 0.05 for fl/fl vs. LS-*Mpc2*^{-/-}. [†]p \leq 0.05 for light vs. dark.

Supplemental Figure 2, related to Figure 3, body and tissue weights and blood lactates or LS-*Mpc2*^{-/-} mice crossed into the db/db background.

(A) Weekly body weights of fl/fl and LS-*Mpc2*^{-/-} mice crossed into the db/db background. (B) Gonadal white adipose tissue (WAT) and (C) subcutaneous WAT weights from mice crossed into the db/db background. (D) Relative liver weights and (E) liver triglyceride content from mice crossed into dbdb background. (F) Weekly blood lactate concentrations of fl/fl and LS-*Mpc2*^{-/-} mice crossed into the db/db background. Data expressed as mean \pm S.E.M. *p \leq 0.05 for fl/fl vs. LS-*Mpc2*^{-/-}. [†]p \leq 0.05 for dbWT vs. dbdb. Table S1. Hepatocyte cellular organic and amino acid and extracellular glucose U-¹³C-pyruvate isotopomers with MPC inhibition, related to experiments in Figure 2.

			Isotopomer Distribution									
Metabolite	Genotype	Treatment	Ν	10	M1	M2	M3	M4	M5	M6	(ng/mL)	
Lactate -	fl/fl	Vehicle	74.80 ±	0.77	2.88 ± 0.15	3.70 ± 0.14	19.13 ± 0.73				611.81 ± 20.67	
		UK-5099	72.81 ±	0.37	2.33 ± 0.25	2.94 ± 0.15	21.92 ± 0.78				772.92 ± 206.24	
		MSDC-0602	72.64 ±	0.35	2.04 ± 0.55	3.28 ± 0.37	22.05 ± 0.57				577.82 ± 2.63	
	,	Vehicle	74.74 ±	1.82	2.34 ± 0.22	3.35 ± 0.17	20.57 ± 0.42				622.09 ± 3.93	
	LS-Mpc2 ^{-/-}	UK-5099	73.57 ±	0.38	1.73 ± 0.40	2.59 ± 0.20	22.11 ± 0.23				839.12 ± 193.97	
		MSDC-0602	74.26 ±	0.11	2.06 ± 0.14	3.09 ± 0.22	20.59 ± 0.48				639.94 ± 54.19	
		Vehicle	66.65 ±	1.77	6.69 ± 0.22	11.05 ± 0.32	15.61 ± 2.31				137.31 ± 21.68	
	fl/fl	UK-5099	58.07 ±	1.55†	5.18 ± 0.23†	6.55 ± 0.16†	30.19 ± 1.94†				188.02 ± 7.92	
Pvruvate		MSDC-0602	54.18 ±	2.39†	7.70 ± 0.30	10.89 ± 0.23	27.24 ± 1.85†				179.05 ± 15.79	
i yruvute	1	Vehicle	67.20 ±	1.92	4.25 ± 0.56*	6.07 ± 0.25*	22.48 ± 2.72*				189.71 ± 52.04	
	LS-Mpc2 ^{-/-}	UK-5099	57.29 ±	3.44	4.45 ± 0.23	6.12 ± 0.01	32.15 ± 3.21				273.07 ± 2.65*	
		MSDC-0602	59.20 ±	1.59†	3.87 ± 0.50*	5.36 ± 0.36*	31.57 ± 2.45				270.58 ± 10.20*	
		Vehicle	30.65 ±	2.42	7.61 ± 0.22	25.09 ± 1.07	19.32 ± 0.21	9.17 ± 0.80	7.21 ± 0.40	0.97 ± 0.14	1336.06 ± 82.39	
	fl/fl	UK-5099	42.06 ±	1.47†	9.79 ± 0.23†	23.13 ± 0.67	15.93 ± 0.12†	5.45 ± 0.38†	3.41 ± 0.41†	$0.24 \pm 0.12^{+}$	575.06 ± 14.31†	
Citrate		MSDC-0602	30.86 ±	1.70	8.21 ± 0.38	26.37 ± 0.69	18.03 ± 0.22†	9.22 ± 0.70	6.53 ± 0.76	0.79 ± 0.15	835.28 ± 3.75†	
	1	Vehicle	38.69 ±	0.13	9.38 ± 0.14*	23.83 ± 0.21	17.67 ± 0.63	6.10 ± 0.03	4.17 ± 0.53*	0.15 ± 0.07*	480.50 ± 11.25*	
	LS-Mpc2 ^{-/-}	UK-5099	37.42 ±	1.80	9.47 ± 1.30	24.91 ± 1.15	16.44 ± 0.37	7.39 ± 0.68	3.98 ± 0.90	0.40 ± 0.01†	365.16 ± 5.72*†	
		MSDC-0602	<mark>42.89</mark> ±	0.40*†	10.85 ± 0.94	24.07 ± 1.68	13.58 ± 0.66*†	5.53 ± 0.03*†	2.89 ± 0.22*	0.19 ± 0.06*	374.59 ± 33.06*	
		Vehicle	90.60 ±	1.55	2.03 ± 0.25	4.90 ± 0.79	1.05 ± 0.21	1.42 ± 0.30			472.49 ± 8.63	
	fl/fl	UK-5099	93.04 ±	1.27	2.42 ± 0.37	3.52 ± 0.66	0.48 ± 0.09†	0.54 ± 0.16†			445.14 ± 15.52	
Succinate		MSDC-0602	92.43 ±	0.38	1.92 ± 0.10	3.78 ± 0.27	0.90 ± 0.09	0.97 ± 0.12			432.36 ± 8.44†	
	LS- <i>Mpc</i> 2 ^{-/-}	Vehicle	94.91 ±	0.01	1.84 ± 0.22	2.37 ± 0.13*	0.44 ± 0.03*	0.44 ± 0.04*			380.94 ± 2.92*	
		UK-5099	92.40 ±	0.70	2.58 ± 0.26	3.52 ± 0.63	0.73 ± 0.11	0.76 ± 0.21			398.22 ± 6.06	
		MSDC-0602	91.62 ±	0.20†	3.39 ± 0.19*	† 3.80 ± 0.02†	0.56 ± 0.02†	0.62 ± 0.03†			412.14 ± 0.91†	
Malate	fl/fl LS- <i>Mpc</i> 2 ^{-/-}	Vehicle	42.07 ±	0.15	12.09 ± 0.07	21.36 ± 0.12	18.26 ± 0.21	6.22 ± 0.25			467.18 ± 51.53	
		UK-5099	58.31 ±	0.89†	12.75 ± 0.14†	15.81 ± 0.44†	9.67 ± 0.32†	3.45 ± 0.28†			177.80 ± 35.31†	
		MSDC-0602	48.21 ±	0.15†	12.18 ± 0.71	19.80 ± 0.40	14.09 ± 0.08†	5.72 ± 0.54			244.24 ± 24.55†	
		Vehicle	<mark>53.12</mark> ±	0.39*	12.44 ± 0.69	17.11 ± 0.01*	12.57 ± 0.10*	4.76 ± 0.99			146.05 ± 10.61*	
		UK-5099	55.06 ±	0.39†	12.74 ± 1.04	17.06 ± 0.42	10.58 ± 0.16†	4.56 ± 0.07			136.49 ± 8.43	
		MSDC-0602	59.20 ±	1.93	12.79 ± 1.25	14.90 ± 0.28*†	8.97 ± 0.04*†	4.13 ± 0.36			135.98 ± 1.74*	
	ci /ci	Vehicle	56.13 ±	5.00	6.61 ± 2.03	17.79 ± 4.72	8.32 ± 2.60	8.19 ± 0.44	2.96 ± 1.10		19.15 ± 3.76	
	fl/fl	UK-5099	66.42 ±	3.10†	5.43 ± 1.40	16.12 ± 0.38	6.74 ± 0.84	3.32 ± 0.39†	1.97 ± 0.08		11.06 ± 0.49	
αKG		MSDC-0602	53.51 ±	6.37	6.18 ± 1.40	21.66 ± 2.76	9.80 ± 0.79	5.74 ± 0.46†	3.12 ± 0.97		11.47 ± 0.12	
	LS- <i>Mpc</i> 2 ^{-/-}	Vehicle	69.65 ±	1.11	5.97 ± 2.29	13.28 ± 0.79	5.26 ± 2.18	4.52 ± 0.73*	1.32 ± 0.53		8.65 ± 0.70*	
		UK-5099	64.62 ±	5.01	6.09 ± 0.73	15.84 ± 2.05	7.18 ± 1.64	4.23 ± 0.26	2.04 ± 0.34		10.20 ± 0.02	
		MSDC-0602	73.08 ±	1.25	3.74 ± 1.72	13.67 ± 1.20	3.52 ± 0.27*	3.27 ± 0.67	2.71 ± 0.21		11.96 ± 1.56	
	c) (c)	Vehicle	50.65 ±	0.21	4.54 ± 0.25	6.66 ± 0.03	39.67 ± 0.02				2.83 ± 0.01	
	ti/ti	UK-5099	55.16 ±	0.59†	3.73 ± 0.27	4.39 ± 0.18†	38.21 ± 1.07				1.40 ± 0.03†	
Alanine		MSDC-0602	51.63 ±	0.40	3.26 ± 0.62	5.04 ± 0.66	41.66 ± 1.67				3.16 ± 0.12	
	10.00-1-	Vehicle	53.51 ±	0.09*	4.03 ± 0.15	5.19 ± 0.19*	38.73 ± 0.24				2.45 ± 0.25	
	LS-Mpc2'	UK-5099	53.53 ±	1.06	3.24 ± 0.58	3.99 ± 0.51	40.76 ± 2.23				1.54 ± 0.06	
		MSDC-0602	<u>55.17</u> ±	0.33*	4.11 ± 0.37	4.74 ± 0.30*	37.54 ± 1.05				2.08 ± 0.12*	
	CI / CI	Vehicle	39.07 ±	0.52	11.22 ± 0.06	22.13 ± 0.21	20.86 ± 0.07	6.72 ± 0.19			7.01 ± 0.27	
	ti/ti	UK-5099	55.06 ±	0.57†	11.95 ± 0.21	17.17 ± 0.31†	12.35 ± 0.42†	3.46 ± 0.05†			2.05 ± 0.067	
Aspartate		MSDC-0602	44.31 ±	0.541	11.99 ± 0.51	21.31 ± 1.04	16.52 ± 0.417	5.87 ± 0.42			4.44 ± 0.59T	
	10 10-1-	Vehicle	44.72 ±	0.37*	12.97 ± 0.29*	20.67 ± 0.16*	16.79 ± 0.16*	4.85 ± 0.08*			2.46 ± 0.09*	
	LS-Mpc2 ^{-/-}	UK-5099	49.51 ±	0.23*1	12.23 ± 0.84	19.62 ± 0.66	13.98 ± 0.08†	4.67 ± 0.33			1.43 ± 0.11*†	
		IVISDC-0602	52.39 ±	0.86*1	13.3/ ± 0.92	18.28 ± 0.17†	<u>12.17 ± 0.20*†</u>	3.78 ± 0.031	7.00	2.00 . 0.00	1.54 ± 0.03*†	
	£1 /£1	Vehicle	24.42 ±	0.09	11.93 ± 0.05	22.42 ± 0.01	21.21 ± 0.04	9.46 ± 0.01	7.90 ± 0.20	2.66 ± 0.00	1/0.04 ± 1.10	
Glucose (µM)	TI/TI	UK-5099	33.63 ±	U./UT	12.92 ± 0.18†	20.55 ± 0.23†	18.53 ± 0.17†	7.22 ± 0.05†	5.38 ± 0.06T	1.79 ± 0.021	114.4/ ± 4.02Ť	
		IVISDC-0602	28.20 ±	U.3UT	12.55 ± 0.137	21.93 ± 0.017	20.13 ± 0.08T	8.38 ± 0.09T	6.64 ± 0.03T	2.17 ± 0.04T	130.93 ± 4.85T	
	LS- <i>Mpc</i> 2 ^{-/-}		29.00 ±	0.04*	$12.33 \pm 0.09^{*}$	21.37 ± 0.05*	$20.10 \pm 0.02^{*}$	8.21 ± 0.03 [★]	0.09 ± 0.00*	2.29 ± 0.05*	$124.17 \pm 3.45^{*}$	
		UK-5099	34.49 ±	2.07	12.28 ± 0.42	19.79 ± 0.56	19.78 ± 0.13*	7.52 ± 0.25	5.58 ± 0.25	2.06 ± 0.03*1	107.59 ± 5.14	
		IVISDC-0602	35.04 ±	0.03*T	12.31 ± 0.35	19.82 ± 0.14*†	18.11 ± 0.19*†	7.10 ± 0.12*†	5.60 ± 0.04*↑	$2.02 \pm 0.19^*$	119.86 ± 6.60	

* p < 0.05 WT vs KO within treatment</p>

 $\uparrow p < 0.05$ Vehicle vs treatment within genotype

	Veh	icle	Streptozotocin				
-	<u>fl/fl</u>	<u>LS-Mpc2^{-/-}</u>	<u>fl/fl</u>	<u>LS-Mpc2^{-/-}</u>			
Plasma Insulin (pg/mL)	573.0 ± 91.9	661.5 ± 66.1	$146.9\pm22.4^{\text{t}}$	$140.9\pm17.3^{\texttt{t}}$			
Plasma Free Fatty Acids (mM)	0.62 ± 0.13	0.85 ± 0.15	$1.59\pm0.24^{\rm T}$	1.10 ± 0.10			
Plasma Total Ketones (mM)	0.14 ± 0.03	0.27 ± 0.07	$0.67\pm0.21^{\rm T}$	$0.52\pm0.08^{\rm T}$			
Plasma TAG (mg/dL)	41.1 ± 5.23	32.8 ± 3.8	$152.9\pm34.0^{\rm t}$	$89.1\pm17.5^{\rm t}$			
Plasma Cholesterol (mg/dL)	64.1 ± 4.4	55.2 ± 3.0	$95.6\pm14.4^{\textrm{t}}$	$67.8\pm1.3^{\rm t}$			

Table S2. Plasma and liver characteristics in vehicle or STZ-injected mice, related toFigure 3.

 $^{\dagger}\ p < 0.05$ Saline vehicle vs Streptozotocin

		ad-li	b fed	24 h fast					
	—	<u>fl/fl</u>	$LS-Mpc2^{-/-}$	<u>fl/fl</u>	$LS-Mpc2^{-/-}$				
Plasma Insulin	(pg/mL)	708.1 ± 83.2	631.3 ± 121.3	$183.5\pm32.7^{\textrm{t}}$	$174.8\pm44.6^{\textrm{t}}$				
Plasma Free Fatty Aci	ds (mM)	0.51 ± 0.05	0.53 ± 0.12	$1.15\pm0.18^{\rm *}$	$1.36\pm0.13^{\rm t}$				
Plasma Total Keton	es (mM)	0.12 ± 0.01	0.20 ± 0.06	$1.36\pm0.14^{\rm t}$	$1.55\pm0.20^{\rm t}$				
Plasma TAG	(mg/dL)	62.6 ± 14.3	61.8 ± 7.1	53.8 ± 7.7	$74.4\pm5.9^*$				
Plasma Cholesterol	(mg/dL)	66.8 ± 3.6	70.9 ± 2.7	74.7 ± 4.6	$81.0\pm3.1^{\rm t}$				
Plasma Urea (mM)		14.26 ± 0.68	15.23 ± 0.90	$18.13\pm1.42^{\textrm{t}}$	17.40 ± 1.49				
Liver TAG (µg/mg	g wet wt)	3.34 ± 0.37	2.99 ± 0.39	$25.69\pm4.53^{\textrm{t}}$	$32.05\pm2.72^{\textrm{t}}$				
ss /cle	Gls1	1.0 ± 0.07	1.13 ± 0.12	1.30 ± 0.22	1.56 ± 0.16				
gene in 'A cy	Gls2	1.0 ± 0.06	1.12 ± 0.11	1.30 ± 0.20	1.22 ± 0.16				
n of mes e TC	Glud1	1.0 ± 0.05	1.07 ± 0.05	1.01 ± 0.13	1.05 ± 0.09				
enzy enzy or th	Ogdh	1.0 ± 0.12	0.98 ± 0.04	$1.77\pm0.06^{\rm t}$	$2.61\pm0.36^{\textrm{t}}$				
Expre ling - ysis e	Sdha	1.0 ± 0.08	1.05 ± 0.09	1.03 ± 0.16	$1.55\pm0.13^{*^{\text{t}}}$				
atic H ncoc inoly	Mdh2	1.0 ± 0.11	0.83 ± 0.09	$1.69\pm0.25^{\rm *}$	$1.54\pm0.12^{\rm t}$				
Hep; e utam	Cs	1.0 ± 0.07	0.93 ± 0.07	0.99 ± 0.15	1.06 ± 0.10				
ßl	l Idh2	1.0 ± 0.09	1.06 ± 0.06	$1.45\pm0.15^{\rm T}$	$2.86\pm0.46^{\ast^{\ddagger}}$				

 Table S3. Plasma and liver characteristics and liver Glutaminolysis and TCA cycle gene

 expression in fed and fasted mice, related to Figure 4.

* p < 0.05 fl/fl vs LS- $Mpc2^{-/-}$

 $\Phi\ p < 0.05$ fed vs fasted

Table S5. Hepatocyte cellular organic and amino acids and extracellular glucose U-¹³C-pyruvate isotopomers with ALT inhibition, related to experiment in Figure 7.

				Isotopomer Distribution										Concentration										
Metabolite	Genotype	Treatment		M0 M1			L		M2		M3		M4				M5		M6	(n;	(ng/mL)			
Lactate	fl/fl	Vehicle	84.28	±	5.83	2.03	±	0.62	2.63	±	0.79	11.31	±	4.66								597.35	±	16.21
		AOA	82.23	±	3.10	2.74	±	0.28	3.26	±	0.68	11.76	±	2.26								529.87	±	32.64
	LS-Mpc2 ^{-/-}	Vehicle	82.01	±	4.28	1.87	±	0.29	2.53	±	0.49	16.34	±	2.45								606.87	±	8.94
		AOA	75.54	±	1.88	1.09	±	0.08*†	1.35	±	0.15*†	22.02	±	1.72†								721.70	±	90.90
Pyruvate	fl/fl	Vehicle	60.01	±	4.27	9.02	±	1.44	14.06	±	1.90	16.91	±	1.29								138.86	±	9.13
		AOA	50.84	±	1.71	6.34	±	1.70	9.12	±	2.13	33.70	±	2.14†								222.90	±	30.68†
	$1S-Mnc2^{-/-}$	Vehicle	63.21	±	2.49	6.16	±	1.20	8.50	±	1.52*	22.13	±	1.88*								135.88	±	37.67
	25 111922	AOA	54.86	±	0.11†	1.33	±	0.08*†	1.72	±	0.06*†	41.85	±	0.38*†								301.76	±	66.78†
	fl/fl	Vehicle	30.88	±	1.07	8.23	±	0.38	24.67	±	0.52	20.05	±	0.44	8.82	±	0.39	6.56	± 0.41	0.79	± 0.12	1051.43	±	168.45
Citrate		AOA	36.18	±	5.85	8.18	±	0.71	23.80	±	2.20	16.50	±	1.69	8.62	±	0.94	6.02	± 0.48	0.69	± 0.08	917.03	±	77.68
Citrate	$LS-Mpc2^{-/-}$	Vehicle	42.17	±	2.03*	9.62	±	0.16*	21.76	±	1.20*	18.84	±	0.73	4.57	±	0.89*	3.00	± 0.71*	0.04	± 0.09*	425.84	±	34.44*
		AOA	67.22	±	1.71*†	11.25	±	0.42*†	12.56	±	1.1*†	6.26	±	0.4*†	1.13	±	0.18*†	1.37	± 0.17*	0.20	± 0.05*	243.66	±	45.42*†
	fl/fl	Vehicle	89.55	±	0.88	2.58	±	0.34	5.30	±	0.39	1.10	±	0.09	1.47	±	0.13					525.46	±	30.79
Succinate		AOA	89.55	±	0.81	2.86	<u>±</u>	0.13	4.99	±	0.40	1.17	±	0.13	1.44	±	0.15					496.20		44.35
	LS-Mpc2 ^{-/-}	Vehicle	93.97	±	0.55*	2.29	±	0.29	2.94	±	0.34*	0.38	±	0.04*	0.42	±	0.03*					467.05	±	49.83
		AOA	97.19	±	0.24*†	1.55	±	0.10*†	1.09	±	0.12*†	0.13	±	0.01*†	0.04	±	0.01*†					466.49	±	44.65
Malate	fl/fl	Vehicle	42.00	±	0.26	13.38	±	0.75	21.59	±	0.19	16.90	±	0.81	6.13	±	0.12					352.12	±	69.71
		AOA	41.75	±	1.61	14.34	±	0.48	23.57	±	0.69†	13.28	±	0.76†	7.06	±	0.63					292.55	±	66.95
	LS-Mpc2 ^{-/-}	Vehicle	54.38	±	0.87*	12.94	±	0.41	16.86	±	0.23*	12.30	±	0.29*	3.52	±	0.83*					162.13	±	13.95*
	- 1	AOA	76.24	±	1.36*†	10.33	±	0.34*†	8.00	±	0.62*†	4.39	±	0.30*†	1.04	±	0.42*†					95.61	±	10.21*†
	fl/fl	Vehicle	42.56	±	5.88	9.15	±	1.11	24.42	±	2.89	11.80	±	1.51	7.75	±	0.22	4.32	± 0.59			20.77	±	1.80
αKG		AOA	34.36	±	1.18	9.97	±	0.78	28.35	±	0.53	13.34	±	0.27	9.22	±	0.13†	4.76	± 0.13			44.72	±	4.77†
	LS- <i>Mpc</i> 2 ^{-/-}	Vehicle	61.57	±	4.69*	8.29	±	1.66	17.65	±	2.54*	7.04	±	1.41*	3.82	±	0.50*	1.63	± 0.30*			11.33	±	1.57*
		AOA	69.42	±	0.32*	8.17	±	0.71	14.13	±	0.57*	5.25	±	0.05*	1.79	±	0.23*†	1.24	± 0.33*			22.48	±	2.97*†
	fl/fl	Vehicle	50.39	±	0.21	6.04	±	0.88	7.97	±	0.76	37.07	±	1.52								2.49	±	0.20
Alanine		AOA	57.64	±	0.32†	2.03	<u>+</u>	0.13†	3.86	±	0.16†	37.85	±	0.40								3.81	±	0.16†
	LS-Mpc2 ^{-/-}	Vehicle	55.48	±	1.19*	4.34	±	0.20	5.64	±	0.29*	35.92	±	1.64								2.24	±	0.16
		AOA	61.86	±	1.06*†	0.74	±	0.05*†	0.96	±	0.04*†	37.87	±	1.11								2.91	±	1.09
Aspartate	fl/fl	Vehicle	39.34	±	0.33	11.58	±	0.23	21.73	±	0.25	20.98	±	0.14	6.37	±	0.22					7.64	±	0.40
		AOA	40.48		1.54	12.77	±	0.21†	24.06	±	0.851	15.66	±	0.53†	7.03	±	0.47					3.39	±	0.26†
	LS-Mpc2 ^{-/-}	Vehicle	47.19	±	1.46*	12.55	±	0.27*	19.65	±	0.60*	16.89	±	0.19*	3.72	±	0.65*					4.06	±	0.93*
		AOA	64.19	±	0.99*†	12.06	±	0.15*	14.01	±	0.39*†	8.00	±	0.31*†	1.74	±	0.19*†					1.15	±	0.33*†
	fl/fl	Vehicle	24.61	±	0.27	11.30	±	0.36	22.04	±	0.22	21.37	±	0.11	9.52	±	0.09	8.25	± 0.23	2.91	± 0.15	162.14	±	4.59
Glucose (μM)		AOA	24.24	±	0.78	11.14	±	0.40	21.72	±	0.33	21.53	±	0.11	9.91	±	0.15†	8.42	± 0.09	3.04	± 0.11	141.48	±	4.40
	LS-Mpc2 ^{-/-}	Vehicle	29.74	±	0.44*	12.08	±	0.15*	21.26	±	0.13*	20.05	±	0.03*	7.97	±	0.14*	6.58	± 0.07*	2.32	± 0.03*	131.40	±	4.44*
		AOA	45.95	±	0.94*†	12.53	±	0.4*	16.93	±	0.12*†	15.31	±	0.2*1	4.53	±	0.19*†	3.36	± 0.03*†	1.39	± 0.09*†	98.13	±	11.41*†

* p < 0.05 WT vs KO within treatment

↑ *p* < 0.05 Vehicle vs AOA within genotype

Figure S1

Figure S2

