
Supplementary Figures 

 

Supplementary Figure 1 Fabrication process. The devices were fabricated via sequential 
transfer of graphene, metal contact deposition, deep trench etching, HfO2 deposition (atomic 
layer deposition) followed by TiN pillar formation (sputtering and lift-off) A thin layer (5nm) of 
Al2O3 was deposited before the graphene transfer process to promote graphene adhesion to the 
surface. First, single layer graphene is transferred on to a dielectric surface with 5 nm Al2O3 and 
100 nm of SiO2. The transfer method is identical to the previous works1-3. Monolayer graphene 
grown on copper foil with chemical vapour deposition method was purchased (Single Layer 
Graphene on Copper foil: 2 inch × 2inch, Graphene supermarket) and the monolayer quality was 
confirmed with Raman spectroscopy (Supplementary Figure 2c). Ti/Pt (3 nm/30 nm) layers are 
deposited by evaporation and patterned by lift-off process. 60 nm of SiO2 (LPCVD) is deposited. 
Then these processes are repeated twice for two layers of single layer graphene; 50 nm ALD 
Al2O3 is deposited on the top layer for etch hard mask. A trench is etched down to the bottom 
SiO2 layer followed by 5nm of HfOx (ALD) which is conformally deposited as the active 
resistive switching layer and 200 nm of TiN electrode is deposited by sputtering and patterned 
via lift-off. The contacts are opened via dry etching.   

 

 

 

 

 



 
 

 

 

Supplementary Figure 2 Verification of graphene thickness and quality. a, 
Actual device image. The Raman laser scanned area is highlighted in blue. The scale bar is 15 
µm. b, A 2D Raman spectra map of D peak to G peak ratio (ID/IG) after the complete fabrication 
process. This ratio is a known indicator of the disorders in graphene films. The ID/IG value is 
limited to approximately 0.1, indicating a low defect density in the film4. The inset shows a 
typical Raman spectrum of monolayer graphene with weak D-peak intensity after the complete 
fabrication process. Minimized physical disturbance and the low fabrication temperature (<300 
°C) were essential to maintaining the high quality graphene. The scale bar is 10µm. c, A 
histogram of ID/IG ratio of Supplementary Figure 2b. The median value is 0.12. A typical Raman 
spectrum of the scanned area is shown as the inset.  

 

 

 

 

 

 

 



 
 

            

Supplementary Figure 3 Comparison of power consumption.  Programming voltages, 
currents, and power consumptions from the recent reports5-23 on low power RRAMs were 
plotted. With one of the lowest SET/RESET voltages ever recorded, the SET and the RESET 
power consumption of the demonstrated GS-RRAM (shown as red stars above) exhibit 
extremely low values. From a practical application point of view, the process that consumes the 
most power (SET or RESET) is plotted for other works, since the larger value determines the 
power delivery requirements for the chip. 

 

 

 

 

 

 

 

 

 



 
 

 

                  

Supplementary Figure 4 Comparison of energy consumption. Comparison of 
programming energy for GS-RRAM and other emerging non-volatile memories with respect to 
cell area. The switching energy for GS-RRAM is one of the lowest. RRAM references are 5,11,24-

47, CBRAM references are 48-56, PCM references are 57-76, and STT-MRAM references are77,78, 
repectively. 

 

 

 



 
 

 
 
Supplementary Figure 5 Oxygen bonding in the graphene electrode. Although 
graphene is widely known to be inert, the edge and the broken bonds at the defect sites are more 
active compared to the basal plane of the graphene sheet. Typical graphene oxide Raman 
signature is the pronounced D peak79. (The intensity of G peak, on the other hand, is associated 
with the number of graphene layers and this may or may not be related to the graphene oxide.) D 
peak is also a strong indication of broken carbon bonds (i.e. dislocations, defects) and is 
pronounced in graphene ribbons with the edges exposed. These broken carbon bonds are more 
likely to be terminated with oxygen atoms. We specifically found an area in one of devices 
where the graphene was damaged and the edge was exposed. This edge is composed of broken 
carbon bonds similar to defects/dislocations at the basal plane and can be detected with the D 
peak intensity map as shown below in Supplementary Figure 3. An interesting aspect is that the 
defect region (bright area) highlighted with red circles seems to be created/annihilated (or even 
shifted) after consecutive SET and RESET process. Several past research results confirm that 
graphene broken bonds (dislocations) can be created/annihilated and shifted depending on which 
state is more thermodynamically favorable80,81. More importantly, this indicate that these oxygen 
binding phenomenon is reversible as previous work82 suggested. As indicated in the reference82, 
the oxygen may form a covalent bond at the defect sites of graphene after the SET process and 
the process is reversed during the RESET process. Another important observation is that the 
point defects seems to be created and annihilated randomly but at the edge, the bright colored 
region is pervasive regardless of whether it is after the SET or the RESET process. This may 
indicate that the edge is always oxidized when it is in contact with the HfOx. The oxidized edge 
seems to have little effect on switching endurance of the device. We have switched the device 
more than 1600 times to observe that the memory function did not degrade (Fig. 4c). 
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Supplementary Figure 6 Degradation of memory window for Pt-RRAM with 30 µA 
SET compliance. Pt-RRAM devices with lower SET compliance than 80 µA suffers from 
memory window degradation as shown in the plot. This is expected since PtRRAM’s HRS is 
significantly more conductive compared to GRRAM due to the larger area of the Pt bottom 
(passive) electrode.  

 

 

 

 

 

 



 
 

 

Supplementary Figure 7 Total resistance value from the as-fabricated wafer with 
circular transmission line test structure83 as a function of gap distance. From the 
Y-intercept = 2RC = 591Ω. The corresponding contact resistance RC between the graphene and 
the metal (Ti/Pt) contact was found to be 295Ω with specific contact resistance of 9.3Ω·cm. With 
the slope of 21.2 Ω µm-1, the sheet resistance of graphene (Rsh,G) is extracted to be 6.7kΩ per 
square. Pristine, exfoliated graphene without environmental doping is reported to have sheet 
resistance value of ~6 kΩ per square.84. From our ID/IG Raman map (Supplementary Figure 2), 
the defect level was not significant after dielectric deposition (LTO, 300°C). Considering the low 
D-peak level in our graphene, the resulting Rsh,G is in close agreement with that of a pristine 
graphene that is void of any dopants or defects 85-87. Since the measurements are done on the as-
fabricated wafers, small discrepancies may arise from the process conditions. For Ti/Pt layer (Ti 
1 nm/Pt 5 nm), the sheet resistance Rsh,Pt was extracted to be 558Ω from 20 TLM measurements. 
The Pt sheet resistance is also in agreement with the literature 88. Graphene is approximately ×20 
thinner than the Ti/Pt layer and ×12 more resistive, showing slightly superior conductance with 
similar thicknesses. However, it should be noted that atomically thin metal such as Pt layer tends 
to form discontinuous island, and a sharp nonlinear increase in sheet resistance is observed as the 
thickness decreases 88. 

 
 

 

 

 



 
 

                         

Supplementary Figure 8 The I-V curve of GS-RRAM without the HfOx layer (inset: 
linear scale).  The I-V curve of GS-RRAM without the HfOx layer (inset: linear scale). The 
total resistance of the GS-RRAM device without the HfO2 is close to 6 kΩ, which is only a 
fraction of HRS resistance. This strongly indicates that the series resistance Rseries (i.e. Rsh,G + 
Rc) of GS-RRAM is not the major factor that contributes to the increases of the HRS resistance 
in GS-RRAM. On the contrary, this outcome suggests that the difference between the Rswitch of 
GS-RRAM (Rint,G + Rfilament,G) and Pt-RRAM (R int,Pt + Rfilament,Pt) determines the HRS of GS-
RRAM and Pt-RRAM, respectively.  

                           

Supplementary Figure 9 Forming of GS-RRAM. The top electrode is the TiN electrode 
during the forming process. Forming curves are collected from 10 cells with 5µA compliance 
current. Inset: forming voltage distribution.  



 
 

                
Supplementary Figure 10 Arrhenius type plot of the wait time versus 1/T extracted 
from Fig. 4b. The sudden transitions to the OFF state in Fig. 4b corresponds to the rupture of 
the oxygen vacancy based filament by the diffusion of oxygen ion towards HfOx layer. The 
activation energy of the barriers can be extracted from temperature dependence of the 
characteristic dwell time for RESET transition (Arrhenius equation in Methods). From the linear 
fitting of retention time in logarithm scale versus reciprocal temperature, we estimate of the 
activation energy Ea for ion migration in graphene to be 0.92 eV. 

 

 

Supplementary Figure 11 Typical DC I-V switching and HRS/LRS characteristics 
of bottom layer and top layer of GS-RRAM.  The GS-RRAM in the bottom layer exhibited 
even lower RESET current with similar SET voltages. However, there were some discrepancies 
in the RESET voltages for bottom and top layer. Importantly, the overall RESET power is still 
similar due to lower RESET current. Qualitatively similar memory windows were observed for 
top and bottom devices.  The lowest memory window in the second layer is still above 10×. 
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Supplementary Table 1 Analysis of the number of achievable stacks with a 
dielectric thickness of 6nm. The achievable number of stacks can be calculated using the 
equation for reliability projection from reference 88. Total stack height = R×F/T (R is the etching 
aspect ratio, F is the lithographic half pitch, and T is the combined thickness of the plane 
electrode and the dielectric in between). Assuming SiO2 thickness of 6 nm, half-pitch of 22nm, 
and etch angle increase of just 1°, the maximum graphene RRAM stacks possible will be 200 
stacks compared to the 60 stacks possible with  Pt-RRAM. With an operating voltage of 0.2V in 
our GS-RRAM and a higher etching angle, we expect the number of possible graphene RRAM 
stacks to increase even more since a thinner dielectric can be used. 
 

 

 

 

 

 

 

 



 
 

Supplementary Notes 

Supplementary Note 1   3D vertical cross-point architectures 

          A pressing imperative for RRAM technology is to adopt a bit-cost-effective 3D 
architecture satisfying the requirements of performance metrics (density, latency, and energy 
consumption), which surpass those of 3D stackable multi-bit NAND Flash technology. Many 
industry/research groups 89-93 are actively working on variations of 3D vertical cross-point 
architectures as shown in Supplementary Fig. S1. The graphene RRAM in this work (with pillar 
electrode and planar graphene electrode) is compatible with all the 3D vertical cross-point 
architectures recently introduced 89-93.   

The integration density of such 3D architectures depends on the number of stacks which 
is limited by the plane electrode thickness, the sheet resistance of the plane electrode, the 
dielectric thickness (related to the programming voltages and cross-talk), the pillar etch angle, 
the lithographic pitch, and the resistance of the pillar/plane electrode 88,94.  

Since the total pillar height is limited, a thin device structure will be important for ultra-
high density storage88,94. However, there is a fundamental limitation on how thin the metal plane 
electrode can be.  

There has been a recent report of an RRAM structure with a sub-5nm thick vertical TiN 
electrode 95. Although it is possible to form such sub-5nm metal electrodes, the main challenge 
lies not in the thickness of the metal, but in the high sheet resistance. All metal films are known 
to exhibit a steep exponential increase in sheet resistance as the thickness decreases under 10 
nm88,96. This is because extremely thin metal films tend to form discontinuous islands, and thin 
dielectric layers are formed on the grain boundaries96. Such high sheet resistance of the plane 
electrode will result in a significant voltage drop on the electrode and severely degrade the 
write/read margin of the 3D RRAM structure88,94, which limits the integration density. Hence, 
producing a sub-5nm conducting film with a low enough sheet resistance for 3D RRAM is a 
difficult task without using special methods or materials.  

Graphene’s sheet resistance per thickness is significantly lower than that of any metal. 
Graphene has been experimentally proven through the use of doping technique97 to have sheet 
resistance as low as 125 - 200 Ω per square1,86,97 with a monolayer thickness. These levels of 
resistance are something impossible to achieve (at such thickness) with conventional metal. 
From the measurements, graphene exhibited superior sheet resistance value per thickness (i.e. 
graphene is 20× thinner and 12× more resistive) compared to Pt after fabrication (Supplementary 
Section 7). Considering the nonlinear increase of Pt sheet resistance in such a scale, the actual 
sheet resistance of Pt when it is as thin as graphene will be drastically higher.  

It is also important to note that metal contact to graphene is an ohmic contact, and the 
contact resistance is relatively low due to the graphene’s semi-metallic nature97. An optimized 



 
 

metal/graphene specific contact resistivity is 7.5×10-8 Ω cm2 98. This value is smaller than that of 
both Al and Pt contact to degenerately N-doped silicon (2×1020cm-3) as shown in 99. 

From the analysis in the previous work88, the required dielectric thickness is 
approximately 6 nm of SiO2 in between each layer if the devices are to work with operating 
voltages of 3V (much higher than the 0.2V required for our GS-RRAM). The 6 nm SiO2 is 
required since it can maintain a lifetime > 10 years at the operating voltage of 3V based on the 
breakdown voltage and the time dependent dielectric breakdown (TDDB) lifetime extrapolation 
for PECVD SiO2 sandwiched between metal electrodes100. Finally, graphene (3Å) is 
significantly easier to etch vertically than Pt (6nm) during pillar formation. (Graphene is simply 
etched with weak O2 plasma treatment.) This property is highly beneficial since the etch angle is 
a very important factor that determines the number of achievable stacks 88,94.  

Supplementary Note 2 Comparison of using graphene as an oxygen detector 
(previous work, ref82) and for oxygen storage (this work) 

In RRAM devices, the resistive switching is attributed to the formation (SET) and the 
subsequent rupture (RESET) of nanoscale conductive filaments involving oxygen ion 
migration14,101-106. A generally accepted theory claims that the filament formation is based on the 
oxygen ion movement from the switching material.  

It is fairly well known that the oxygen function as dopants in graphene, and the doping 
level of graphene can be observed with Raman spectroscopy82,107,108. We have previously 
monitored the oxygen ion in a RRAM structure by inserting graphene film between the TiN layer 
and HfOx

82. 
The memory structures in our previous work and the current work are very different. In the 

previous work, the SET electrode is the TiN and the RESET electrode is the Pt. In our work, the 
SET electrode is the graphene edge and the RESET electrode is the TiN. Also the previous work 
is a planar structure and the current work is a vertical structure. 

 Although both previous and current work report low power consumption, the mechanisms 
for achieving low power consumption are fundamentally different. In the previous work, the low 
power was due to reduced RESET current from the high built-in series resistance of inter-layer 
graphene. The overall SET/RESET voltages (~2V) have few differences between structures 
“with” and “without” graphene interlayer.  
In the current work, we see a drastic difference in SET/RESET voltages between GS-RRAM 
(~0.2V) and the Pt-based device (~1.5 to 2V). This is because the graphene, instead of the TiN 
layer, is used as the SET electrode. Here we are using graphene as a stand-alone oxygen 
reservoir, unlike in the previous work. The lowering of SET/RESET voltage is related to the lack 
of a TiOxN1-x barrier layer in the HfOx/graphene interface, and the ease of oxygen diffusion 
across the graphene electrode as explained in the main text. 
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