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Supplementary Figure 1: Generating and equilibrating the OF state of GlpT. a,b Initial
stage of generating GlpT OFa state using a 60-ns long nonequilibrium simulation (based on
(Q1, Q7) collective variables), followed by gradual release of the restraint (from t =60 to
100 ns) and unbiased MD (from t =100 to 150 ns) (a,b). Panel a shows the Cα RMSD of
helical regions of the protein relative to the crystal structures of GlpT (brown), FucP (black),
and XylE (gray). Panel b shows the internal Cα RMSD of helical regions of the NTD and CTD
domains with respect to the initial conformation (i.e., IF∗). While the initial conformations of
Set 1 (Fig. 1c) were selected from the simulation whose RMSD analysis is shown in panels a,b,
we further equilibrated the generated OFa state; Panel c shows Cα RMSD of helical regions
of the protein relative to the snapshot at t = 150 ns. d,e Equilibration of OFa and OFb states
generated using Simulation Sets 1 and 6, respectively. f,i Equilibration of final OFa, OFb, IFb
and IFa states extracted from Simulation Set 13 (using PHSM algorithm).
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Supplementary Figure 2: Illustration of rotational changes in TM helices using a simpli-
fied representation. Each helix is represented by a straight rod (built using the VMD plugin
Bendix [1]) whose top and bottom surfaces are shown from the peri- (top panels) and cytoplas-
mic (bottom panels) sides, respectively. Solid curves, schematically, represent the peri- (top
panels) and cytoplasmic (bottom panels) loops, respectively while dashed lines approximately
represent the pseudosymmetry plane. The conformational dynamics of GlpT involves inter-
nal conformational changes of helices, e.g., bending, which is not captured in these simplified
representations.
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Supplementary Figure 3: Coupling between global and local conformational changes. a
QPC1, b <H1,H7>, c <H5,H11>, d Dmin between K46 and D274 side chains, e local helical
bending angle [2] at P277 on TM helix H7 (defined based on the Cα atoms of residues 274–
277), and f χ1 side-chain dihedral angle of residue H165 on TM helix H5, averaged over all
conformations sampled for each image. g Representative conformations of TM helices H1/H7
(top) and H5 (bottom) in OFa (red), IFa (blue), OFb (light red), and IFb (light blue) conforma-
tions. Salt-bridge forming residues K46 and D274 (top), residue H165 (bottom), and Pi (top
and bottom) are shown in licorice representation. h Dmin of phosphate and a select number of
residues in the lumen (with a minimum Dmin (among all images) between 3 and 3.5 Å). See
Fig. 4 for the definition of Dmin. The error bars represent the standard deviation (see Analysis
techniques in Methods). S3
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Supplementary Figure 4: Salt bridge dynamics within the lumen. Dmin of the salt-bridge
forming residues within the lumen (excluding that of K46-D274 which is shown in Supplemen-
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state in which R269 is involved in substrate binding (Fig. 4f). In the two other cases, salt-bridge
formation is limited to a few images. K46-E299 and R45-D274 salt-bridges form only briefly
(images 108–110, and 91–93, respectively) while the protein conformation is close to IFa. The
error bars represent the standard deviation (see Analysis techniques in Methods).

S4



1α1

1α7

2α72α1

1α2

1α8
2α8

2α2 1α3

1α9

2α9
2α3

1α4

1α10

2α10

2α4

1α5

1α11

2α11
2α5x

i

j  y

q=sin - ûθ2

θ

1α1

1α7

2α7
2α1

1α5

1α11 2α11

2α51α4
1α10

2α10

2α4

1α2

1α8
2α8

2α2

1α3
1α9

2α9

2α3

x
i

k  z

a

b

c

PAPC1

PAPC2

PAPC3

PAPC4

PAPC5

{PAPC}

ω1,7 ω2,8 ω3,9 ω4,10 ω5,11 ω6,12 {ω}

20.3  2.8  9.4  9.7  9.9 12.8 64.9

 0.7  0.5  0.9  0.7  1.5  3.5  7.8

 1.7  0.6  0.1  0.3  0.0  2.0  4.8

 1.4  0.4  0.2  0.1  0.3  2.0  4.5

 0.6  0.3  0.2  0.1  0.4  1.0  2.6

27.3  8.0 13.7 12.5 14.5 24.0 100

QPC1

QPC2

QPC3

QPC4

QPC5

{QPC}

Q1,7 Q2,8 Q3,9 Q4,10Q5,11{Q}
0.1%

1%

10%

100%

40.2  5.5  5.9  6.1  6.5 64.1

 4.1  2.6  0.5  4.5  2.1 13.8

 0.8  1.5  1.6  0.8  0.6  5.3

 0.4  0.5  0.4  0.7  1.4  3.4

 0.4  1.8  0.3  0.1  0.2  2.8

48.2 14.1 10.9 13.9 12.9 100

d                             e

Supplementary Figure 5: Dimensionality reduction. a–c Geometric illustration of dominant
quaternion principal components. Here QPCl =

∑
i(a

l
i · qi + a′li · q′i) and αli =

√
λla

l
i in

which qi is the vector part of Qi (see Methods), ail is the coefficient of this vector in the lth QPC
eigenvector, and λl is the lth QPC eigenvalue (or the variance of QPCl based on all sampled
conformations). The direction of αli indicates the axis of rotation while its magnitude indicates
the amount of rotational change relative to the other helices/QPCs. a Periplasmic view of GlpT
structure (right) and a visual illustration of the vector part (q) of an orientation quaternion, in
which û and θ are the axis and angle of rotation. b Projection of αli onto the xy (or ij) plane
for l = 1, 2. c Projection of αli onto the xz (or ik) plane for l = 1, 2. Note that membrane
normal is along the z (or k) axis. It is clear that TM helix H7 contributes the most to both
QPC1 and QPC2. d,e Fraction of variance explained by different d principal-axis principal
components (PAPC) and e quaternion principal components (QPC), for different TM helices.
Ql,m denotes the orientation quaternions associated with helices l and m while ωl,m denotes
the roll axes of these helices (i.e., the third principal axis component of each helix). {Q} and
{ω} denote the quaternions and roll axes of all helices (except for H6 and H12 in the former
case), respectively. {QPC} and {PAPC} denote all quaternion and principal-axis principal
components, respectively.
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Supplementary Figure 6: RMSD-based analysis of 150 sampled images. a Pairwise Cα-
RMSD of all 150 images. The first 300 Cα principal components (PCs) of all sampled confor-
mations, which explain∼99.00% of the variance, were used to estimate the RMSDs. The mean
value and standard deviation of each PC of each image was estimated, and the pairwise RMSDs
and their associated standard deviations were calculated. The standard deviations of pairwise
RMSDs are between 0.4 and 0.8 Å. Pairwise RMSDs and their standard deviations are listed
in Supplementary Table 3 for a select number of images. b–d Comparison between different
sampled GlpT conformations and a select number of MFS crystal structures. TM helical region
Cα-RMSD of 150 images (averaged over all sampled conformations for each image) with re-
spect to crystal structures of GlpT [3], FucP [4], and XylE [5] which are in IFa, OFa, and OFb
conformations, respectively. 306, 292, and 284 residues were used in the definition of RMSDs,
for GlpT, FucP, and XylE reference structures, respectively. For FucP and XylE the selection of
residues was based on structural alignment of the entire protein (in the OFa conformation) (us-
ing VMD’s MultiSeq [6]); however, only the TM helical regions were used in the calculation of
RMSDs. The error bars represent the standard deviation (see Analysis techniques in Methods).
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Supplementary Figure 7: Lumen pore radius analysis. a,b Pore radius at different z posi-
tions along 150 simulated images of GlpT, averaged over sampled conformations of each image
(with no reweighting). The pore radius along the z axis (membrane normal) for each confor-
mation was measured with HOLE [7] using all protein and phosphate atoms. Green line in
b shows the position of the substrate along the z axis. c Same as b for images 30–90. Red,
magenta, and blue lines represent the pore radius and its z position at periplasmic gate, central
bottleneck, and cytoplasmic gate which are defined, at each image, as the minimum pore radius
in z ∈ [−20,−10], z ∈ [−5, 5], and z ∈ [10, 20] , respectively (z values are in Å). The most
frequently involved residues in the periplasmic gate, central bottleneck, and cytoplasmic gate
determined from HOLE analysis along with their frequency (bracketed values) relative to the
most frequent one in each case are as follows: (i) Periplasmic gate: S401 (1), S397 (0.8), S70
(0.7), L69 (0.6), and Y270 (<0.1); (ii) Central bottleneck: Y393 (1), Y266 (0.4), S73 (0.3),
W138 (0.3), Y76 (0.1), H165 (0.1), Y42 (<0.1), Q134 (<0.1), Y270 (<0.1), I72 (<0.1), and
Y38 (<0.1); (iii) Cytoplasmic gate: L373 (1), V146 (0.6), I157 (0.2), L370 (0.1), M145 (<0.1),
and V158 (<0.1). d Projection of the same lines shown in c onto the 2D space of Image Index
and Pore Radius. The error bars represent the standard deviation (see Analysis techniques in
Methods). S7
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Supplementary Figure 8: Lumen water content analysis. Average water count at the
periplasmic gate, central bottleneck, and cytoplasmic gate, estimated for different images. The
definitions of the gates and the central bottleneck are similar to those used for pore radius (Fig. 3
and Supplementary Fig. 7). A bin size of 1 Å along z was used to generate the histograms used
for the analysis. The error bars represent the standard deviation (see Analysis techniques in
Methods).
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Supplementary Figure 9: Energetic effects of R45K mutation. a,b,d,e Forward (R45K;
red) and reverse (K45R; blue) nonequilibrium work distributions obtained from FGTI [8, 9]
simulations for four major simulated states of GlpT:Pi complex including OFa, IFa, OFb, and IFb
(see Nonequilibrium alchemical free energy calculations in Methods and Supplementary Note
2 for simulation details). c,f,g,h Relative conformational (c,f) and binding (g,h) free energies of
R45K mutant with respect to the WT protein for different states of GlpT:Pi complex including
apo (c) and bound (f) states for conformational free energies and OF (g) and IF (h) for binding
free energies. The free energies are estimated employing both CGI (solid lines) and BAR (dotted
lines) methods using different number of FGTI simulations (x axis) while the same number of
forward and reverse simulations are used for each free energy estimate. i The free energies
associated with WT OFa, IFa, OFb, and IFb states (black dotted lines) estimated from Simulation
Set 13 (Fig. 1e) used along with CGI-based relative free energy estimates (red arrows) to find
the free energies associated with OFa, IFa, OFb, and IFb states of R45K mutant (red dotted
lines). Based on the relative population of IF and OF states, the effective relative binding free
energy was found to be dominated by the relative binding free energy of the highly populated
IF state (i.e., ∆IF,OF is negligible), which is 4.40±0.89 kcal/mol (h). Note that binding affinity
of wild-type GlpT to G3P is only ∼2.5 times higher than that to Pi [10] while our calculations
show more than 3 orders of magnitude decrease in GlpT’s binding affinity to Pi due to R45K
mutation. For a more direct comparison to R45K mutant experimental results [11], however, our
simulations may be repeated with G3P. see Nonequilibrium alchemical free energy calculations
in Methods for error estimates. S9
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Supplementary Figure 10: H165 pKa predictions. Predicted pKa values of binding site
residue H165 for different images averaged over 1% of all collected snapshots, (i.e., 80 con-
formations for each image, collected every 0.5 ns) estimated using PROPKA 3.1 [12, 13]. The
error bars show the sample standard deviations (a) and the range in which predicted pKa’s were
observed (b). MolProbity 4.1 [14] was used to determine the protonation state of H165 for
a select number of conformations at IFa, IFb, TSb, OFb, OFa, and TSa states which indicated
a Nδ-only protonation—which was also predicted for GlpT crystal structure (PDB:1pw4) and
was the basis of our initial model and all simulations performed. We note that the possibility of
H165 protonation or proton transfer between H165 Nδ and Nε as well as Pi cannot be ruled out,
particularly, if other conformational pathways not sampled in our simulations are accessible (or
become accessible upon proton transfer). The error bars represent the standard deviation (see
Analysis techniques in Methods).
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Supplementary Figure 11: Comparison of initial apo and Pi-bound state transition BEUS
simulations. PMF reconstructed in representative 2D spaces from (Q1, Q7) based on Simula-
tion Sets 1 and 8 sampling IFa ↔OFa transition (left panels) and IFb ↔OFb transition (right
panels), respectively. a,b PMF in terms of different interhelical angles (see Fig. 2). In the Pi-
bound simulations, the protocol which only involves protein conformational changes does not
result in a stable OFb GlpT. The conformation denoted as IMb (an intermediate Pi-bound state)
is a local minimum which was used as a reference structure for follow-up Simulation Sets 9
and 10. c,d PMF in terms of two collective variables constructed from principal-axis principal
components (PAPC) of Simulation Sets 1 and 8. PAPC‖ is the first PAPC of Simulation Set 8
while the first PAPC of Simulation Set 1 is decomposed to PAPC‖ and PAPC⊥. It reveals that
the (Q1, Q7) based protocol fails to induce a conformational change along PAPC⊥.
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Supplementary Figure 12: Coupling between substrate translocation and protein confor-
mational changes. PMF reconstructed from the 2D BEUS simulation (Simulation Set 10)
sampling part of the IFb ↔OFb transition. ∆RMSD = RMSDOFb

− RMSDIMb
and ZPi

represent the conformational change of the protein and translocation of the phosphate within
the binding site, respectively. IF′b and OF′b conformations were two local minima resulted from
this set of simulations. The former is a not-fully-relaxed IFb conformation and the latter is a
locally stable Pi-bound OF structure which may represent a second pathway for the IFb ↔OFb
transition.
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Supplementary Figure 13: Post-hoc string method (PHSM). PMF reconstructed from sev-
eral patches of BEUS simulations including Simulation Sets 1, 4, 6, and 8–10 in terms of a,b
(PAPC‖,ZPi) and c,d (PAPC⊥,ZPi). See Fig. S11 for the definition of PAPCs. b,d Visual illus-
tration of the PHSM algorithm. Gray line is the projection of the initial pathway (resulted from
a non-parametric version of lowest free energy path algorithm [15]; see Supplementary Note 3)
onto the given 2D space. The solid black line is the projection of the converged PHSM pathway
onto the same space. The gray-scale spectra in b show the individual samples projected onto the
given space colored based on their converged Voronoi cell ranging from white (OFb minimum)
to black (IFb minimum). The dotted lines in d show the evolution of the PHSM pathway prior
to convergence.
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Supplementary Table 1: List of the BEUS and SMwST simulations.

Simulation Set Transition Technique Initial Conformations Exchange Rate ∗
1 IFa ↔OFa BEUS NE † (crystal structure ‡) 32%
2 SMwST Set 1 (using PHSM) -
3 BEUS Set 2 (using PHSM) 22%
4 IFa ↔IFb BEUS IFa (from Set 1) 35%
5 BEUS Set 4 (using PHSM) 23%
6 OFa ↔OFb BEUS OFa (from Set 1) 34%
7 BEUS Set 6 (using PHSM) 23%
8 IFb ↔OFb BEUS NE (Set 4) 23%
9 BEUS IMb

§ (from Set 8) 36%
10 BEUS NE (Set 9) 16%
11 SMwST Sets 4,6,8,9,10 (using PHSM) -
12 BEUS Set 11 (using PHSM) 51%
13 Full Cycle BEUS Sets 3,5,7,12 (using PHSM) 30%

∗Only the nearest neighbor exchange rate is reported.
†NE denotes nonequilibrium pulling simulations whose initial conformations are given in the brackets. For the

description of these simulations in each case see Methods and Supplementary Note 1.
‡An equilibrated model (IF∗a) based on the crystal structure of GlpT was available from previous studies [16,

17] which was used as the initial conformation for these nonequilibrium pulling simulations (see Methods and
Supplementary Note 1).
§IMb is an “intermediate” conformation which appeared as a local minimum in Set 8.
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Supplementary Table 2: Autocorrelation time τac associated with different collective variables
obtained from the final BEUS simulation (Set 13).

τac (ps) τac (ps) τac (ps) τac (ps)
Image Index 1039±64∗ QPC1 741±51 PC1 1312±67 χ1(H165) 200±44
ZPi 770±68 QPC2 528±40 PC2 1242±73 Dmin(K46−D274) 625±45
Q7 668±45 QPC3 503±40 PC3 1457±73† Dmin(R45− Pi) 865±68
Q′7 612±47 QPC4 612±39 PC4 1359±71 Dmin(R269− Pi) 1076±73

∗The mean and standard deviation of the mean, reported based on 150 independent trajectories/replicas.
†The largest autocorrelation time among ∼200 quantities whose autocorrelation times were calculated.
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Supplementary Table 3: Pairwise Cα-RMSD of different states in Å.

OFa OFb TSb IFb IFa TSa
OFa 0.00± 0.58∗ 2.26± 0.54 3.34± 0.59 3.83± 0.58 4.42± 0.57 2.06± 0.63
OFb 2.26± 0.54 0.00± 0.48 1.91± 0.54 3.09± 0.53 4.17± 0.57 3.01± 0.57
TSb 3.34± 0.59 1.91± 0.54 0.00± 0.60 1.52± 0.58 3.70± 0.58 2.85± 0.63
IFb 3.83± 0.58 3.09± 0.53 1.52± 0.58 0.00± 0.57 2.27± 0.56 2.71± 0.62
IFa 4.42± 0.57 4.17± 0.57 3.70± 0.58 2.27± 0.56 0.00± 0.55 2.65± 0.61
TSa 2.06± 0.63 3.01± 0.57 2.85± 0.63 2.71± 0.62 2.65± 0.61 0.00± 0.66

∗The mean value of Cα-RMSD between the two images representing the given states along with the standard
deviation estimated using principal component analysis (see Supplementary Fig. 6).
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Supplementary Note 1

Sampling Protocol Details

IF↔OF transition of apo GlpT. The crystal structure of GlpT is in the IF state, and no OF

conformation is currently available experimentally. We have recently proposed a knowledge-

based empirical approach for inducing large-scale conformational changes which can be used

for generating unknown states [18]. This approach differs from conventional methods (e.g.,

targeted MD [19] or homology modeling) in that it allows for a more systematic exploration

of the configuration space using many different biasing protocols. The generated pathways

are compared based on (i) the amount of nonequilibrium work required to induce the desired

conformational change, and (ii) a set of knowledge-based criteria on the quality of the pathway.

The relevance of the nonequilibrium work is due to the fact that the optimum pathway will

be later used for free energy calculations and high work values indicate sampling irrelevant

pathways (including the end state) and/or slow convergence [18, 20]. In practice, we have

observed that suboptimal biasing protocols could result in undesired distortion of the protein;

however, such protocols often require high work values as well.

Alternating access mechanism is one such criterion in that no intermediate should be gen-

erated which is accessible to both sides of the membrane simultaneously. Stability of the gen-

erated state (OF state in the case of GlpT) is another criterion (i.e., the generated state should

remain open to the periplasm and closed to the cytoplasm after removing the bias). Some of

the protocols used to induce the IF→OF transition include: (i) homology-model based tar-

geted MD [19] using the structure of FucP transporter, a GlpT homolog crystallized in the OF

state [4], (ii) orientation based pulling of TM helices towards a repeat-swapped model of OF

GlpT constructed based on the inverted-topology repeat hypothesis [21, 22, 23], (iii) imposing

orientation changes on NTD and CTD bundles such that an orientation quaternion was defined
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for each bundle, and a 10◦ rotation around the axis parallel to both membrane and the pseu-

dosymmetry plane was imposed on both domains in the opposite direction (from the periplas-

mic side), and (iv) imposing orientation changes on specific helices of NTD and CTD bundles

including (a) H1/H3/H4/H5 and H7/H9/H10/H11, (b) H1/H3 and H7/H10 and (c) H1 and H7

only. The latter was the most successful protocol based on the criteria briefly described above.

The optimum protocol was thus designed by using (Q1, Q7) collective variables and fine-tuning

the force constant to result in the lowest total work [18]. The protocol was repeated several

times to examine its reproducibility.

The alternating access mechanism was examined by monitoring the water content and the

pore size of the lumen (similar to the analysis shown in Fig. 3 and Supplementary Figs. 7,8).

The RMSD with respect to FucP crystal structure [4], which is in the OF state, was monitored

during the IF→OF simulation as well which shows a nearly linear decrease from∼6.5 (for IF∗a)

to ∼3.2 Å during the nonequilibrium pulling simulations (Supplementary Fig. 1a). A similar

trend is observed for the RMSD with respect to the XylE crystal structure [5], which is also

in the OF state, while the trend is reversed when the RMSD is calculated with respect to the

GlpT crystal structure [3], which is in the IF state (Fig. S1A). Comparing these global RMSD

changes to those measured for the two NTD and CTD subdomains reveal that the two subdo-

mains stay more or less intact while the protein undergoes a large-scale global conformational

change (Supplementary Fig. 1b). This observation, which is in line with the rocker-switch

mechanism [3], also rules out the possibility of any major distortion in the protein during the

transition. The stability of the resulting OF state was examined by performing a 50-ns unbiased

simulation (Supplementary Figs. 1a,b). The equilibrium simulation of OF state was extended

for another 250 ns which confirmed the relative stability of the model (Supplementary Fig. 1c).

We performed a set of BEUS simulations based on the optimum protocol and transition path-

way (Simulation Set 1). 12 windows/replicas were used with centers defined in the (Q1, Q7)
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space. The initial conformations were selected from the nonequilibrium and subsequent equi-

librium simulations discussed above and shown in Figs. S1A,B. The force constant and the

window centers were empirically adjusted to result in a roughly similar rate of exchange be-

tween neighboring windows (ranging between 26% to 40% in production runs). The exchange

was only attempted between the immediate neighboring windows (using a deterministic odd-

even scheme [24]) with an interval of 2 ps for each unique pair. The window centers (in terms

of angular deviation from the reference structure IF∗a) for window i = 0, . . . , 11 were 1, 2, 3, 4,

4.8, 5.5, 6, 6.5, 7.5, 8.1, 9, and 10◦, with force constants 400, 400, 500, 450, 500, 550, 600, 500,

500, 500, 500, and 600 kcal/(mol×rad2), respectively. The free energy map confirmed the rele-

vance of the transition pathway by showing a local low-energy minimum for the OF state and a

relatively low barrier for the transition (Supplementary Fig. 11a). The last conformations from

the two windows associated with IFa and OFa minima were equilibrated for 50 ns with no bias

and used as initial conformations for the binding/unbinding BEUS simulations discussed below.

The OFa state was equilibrated for an additional 100 ns to examine its stability (Supplementary

Fig. 1d).

Substrate binding/unbinding in the IF and OF states. The first set of substrate binding

simulations (Simulation Set 4) was performed by placing the phosphate at different ZPi posi-

tions along the lumen within the equilibrated IFa, replacing the closest water molecule. Two

Cl− ions were removed from the bulk to keep the system neutral and the system was minimized

for 2,000 steps. The window center (force constant) for window i = 0, . . . , 29 is -45 (0.002),

-42 (0.002), -35 (0.002), -30 (0.05), -26.5 (0.05), -25 (0.05), -24 (0.05), -23 (1), -22 (0.5), -21

(0.5), -20 (0.5), -19 (0.5), -18 (1), -17.5 (2), -17 (3), -16.5 (4), -16 (3), -15.5 (2), -15 (1), -14

(1), -13 (1), -12 (1), -11 (1), -10.5 (1), -10 (1), -9.5 (1), -9 (1), -8.5 (1.5), -8.3 (3), and -8.15 Å

(6 kcal/(mol×Å2)), respectively. Note that the reported window centers are ZPi − ∆Z. The
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exchange rate between the neighboring windows ranged between 14 to 50%. The exchange

was attempted between each window and its first, second, or third neighboring window from

each side using a deterministic scheme with an interval of 6 ps for each unique pair. A simi-

lar set of BEUS simulations was performed for the OF conformation (Simulation Set 6). The

window center (force constant) for window i = 0, . . . , 29 is 35 (0.01), 31.5 (0.01), 28 (0.01),

25 (0.01), 23 (0.01), 20 (0.015), 17 (0.025), 15 (0.045), 13 (0.055), 11 (0.075), 10 (0.095), 8.5

(0.1), 7 (0.12), 6 (0.14), 4 (0.12), 2.5 (0.1), 1.5 (0.1), 0 (0.02), -1.5 (0.1), -2 (0.15), -2.5 (0.07),

-3.5 (0.1), -4.5 (0.12), -5 (0.1), -5.5 (0.09), -6 (0.07), -6.5 (0.1), -7.5 (0.07), -8.15 (0.1), and -

9 Å (0.1 kcal/(mol×Å2)). The exchange rate between the neighboring windows ranged between

17 to 41%. The final conformations of the windows associated with the minima IFb and OFb

from these simulations were equilibrated for 50 ns with no bias. The OFb conformation was

equilibrated for an additional 100 ns to examine its stability (Fig. 1e).

IF↔OF transition in the Pi-bound state. We first repeated the protocol based on the (Q1,Q7)

collective variables used for the IFa ↔OFa transition. The nonequilibrium simulations required

a lower work; however, the resulting conformation did not stay open (to the periplasmic side

of the membrane) in following unbiased simulations. We also repeated the BEUS simulations

based on this protocol (Simulation Set 8) which showed the resulting conformation (IMb) was

perhaps a transient state (Supplementary Fig. 11). We used 24 replicas to cover the same space

in (Q1, Q7) covered in our apo BEUS simulations (Simulation Set 1). An empirical approach

(similar to that used in Simulation Set 1) was employed to choose the centers and force constants

which resulted in an exchange rate of 12–35% between neighboring replicas. We observed a

significant difference in the binding site conformation of the IFb and OFb states generated from

Simulation Sets 4 and 6, respectively. The IMb conformation obtained from Simulation Set

8 (Supplementary Fig. 11) was used to initiate a new set of BEUS simulations to capture the
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movement of the substrate within the binding site (Simulation Set 9). Using ZPi as the reaction

coordinate (similar to Simulation Sets 4 and 6 discussed above), we sampled 15 windows with

centers (ZPi − ∆Z) at 5.5, 3.0, 1.7, 0.5, -1.0, -2.2, -2.6, -3.2, -3.6, -4.2, -4.7, -5.1, -5.8, -6.7,

and -8.7 Å along ZPi with force constant ranging between 0.1 to 0.2 kcal/(mol×Å2) with an

exchange rate of 23–47%. There was no significant conformational change observed in these

simulations and could not generate a stable OFb conformation. The conformations resulted from

Simulation Set 9 were driven towards the OFb conformation using a 5-ns nonequilibrium sim-

ulation of force constant 100 kcal/(mol×Å2) based on collective variable ∆RMSD (repeated

for all 15 replicas). We then used the generated conformations in a 2D BEUS simulation to

capture the coupling between the substrate translocation within the binding site and the global

conformational change of the protein (Simulation Set 10). Supplementary Figure 12 shows the

PMF generated from this set of simulations in reaction coordinate space (∆RMSD,ZPi).

Refining the BEUS protocols. The complications encountered in our attempts to design a

BEUS protocol for reconstructing the IFb ↔OFb transition using a single set of reaction coor-

dinates led us develop a novel algorithm to “patch” together a number of BEUS simulations in

order to design an improved BEUS protocol. This approach involves PHSM and SMwST tech-

niques. We thus combined all reweighted samples (see Methods for reweighting scheme) from

different BEUS patches including Simulation Sets 4, 6, 8, 9, and 10 to build a sample set cover-

ing a “continuous” space which, among many conformations, includes both IFb and OFb states.

Supplementary Figure 13 shows the PMF in a select number of 2D spaces generated based

on this reweighted sample set. Upon the completion of the patching procedure, the principal

curve was constructed using the PHSM algorithm whose projections onto two select spaces is

shown in Supplementary Fig. 13 (see Methods). The metric used for this algorithm included the

following collective variables: (i) ZPi; (ii) first 8 Cα-based principal components; (iii) first 8
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principal-axis principal components (PAPC; see Supplementary Fig. 5); (iv) inter-residue Dmin

of following salt-bridge forming pairs K46-E299, K46-D274, R269-E299, R45-E299, and R45-

D274; (v) Dmin of Pi and the following residues: R269, K80, K46, R45, H165, Y38, Y42, Y76,

Y266, Y270, and Y393; (vi) side-chain dihedral angle χ1 of all 13 residues named in (iv) and

(v). A distance was defined in the 46-dimensional collective variable space of (i) to (vi) using

a diagonal metric matrix with values 1/Å2, 102/Å2, 104, 102/Å2, 1/Å2, and 0.04/(1◦)2 for ele-

ments in (i) to (vi), respectively (considering minimum image criterion for collective variables

with periodic boundary condition). The weights (metric matrix elements) were chosen roughly

based on the relative variance of collective variables (see Supplementary Note 3 for alternative

definitions). A 1D string was defined based on 50 image centers, initially generated using a

non-parametric version of the Lowest Free Energy Pathway (LFEP), originally introduced in its

parametric version in Ref. [15]. The same metric defined above was used for the non-parametric

LFEP (NPLFEP) algorithm. (NP)LFEP method does not require an initial pathway; however,

the dependence of the (NP)LFEP algorithm to its parameters is not smooth and drastically dif-

ferent pathways could be resulted by small changes in the parameters. Several initial pathways

were generated using the the NPLFEP algorithm to seed the PHSM algorithm. Interestingly, the

PHSM algorithm more or less converges to the same pathway regardless of its initial pathway

as long as the end points, the tube thickness, and the number of images are kept constant. The

tube thickness ε = 7 was used in the PHSM algorithm which gives the smoothest pathway when

compared to other results based on ε = 1, . . . , 10. The same parameters were used to extract

the PHSM pathways from Simulation Set 1 (for IFa ↔OFa transition), Simulation Set 4 (for

IFa ↔IFb transition), and Simulation Set 6 (for OFa ↔OFb transition); however, the number of

images used was 30 for the two latter cases. In the former case, the collective variables based

on Pi were excluded from the metric since the substrate was not present in the simulations. Two

of the PHSM pathways generated above for IFa↔OFa and IFb↔OFb transitions were further
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refined using the SMwST method (Simulation Sets 2 and 11). 100 iterations of runtime 10 ps

were performed with restraining and releasing stages of runtime 5 ps. The collective variables

used were {Q} and ({Q}, ZPi) for the apo and bound simulations. A Euclidean metric was

used; however, ZPi was scaled by a 0.1/Å factor if the metric involved ZPi. SMwST simula-

tions were initiated using 50 conformations which represented the closest samples to the PHSM

image centers. 20 copies of each image was used in the simulations which included 1000 repli-

cas, in total. The force constants 100 kcal/(mol×Å2) and 10000 kcal/(mol×rad2) were used

for the harmonic potentials based on ZPi and {Q}, respectively. In both simulations, no sig-

nificant changes were observed in the image centers after ∼20 iterations. The final centers

and a representative conformation from each image were used to initiate the follow-up BEUS

simulations. For the binding/unbinding simulations we used PHSM results to initiate the fol-

lowing BEUS simulations since the conformational changes were not as significant/slow as the

IF↔OF transition. The follow-up BEUS simulations including Simulation Sets 3, 5, 7, and 12

used ({Q}, ZPi) as the collective variables except in the former case which did not include the

ZPi collective variable due to the absence of the substrate in the simulations.

PHSM algorithm was used with the same parameters mentioned above to extract a cyclic

pathway (i.e., a closed curve in ({Q}, ZPi) space) of 140 images representing the entire ther-

modynamic cycle. Collective variable ZPi was ignored in PHSM algorithm when the distance

was calculated between conformations lacking Pi (i.e., apo simulations). The converged PHSM

pathway was used to initiate the final set of BEUS simulations, i.e., Simulation Set 13. A phos-

phate was added at a given ZPi (see below) to the conformations lacking the substrate using

the same protocol described above (replacing the closest water, removing two Cl− ions, and

minimization). For the images representing the IFa ↔OFa leg of the cycle, the phosphate was

added at ZPi ≈ −35 Å (images 102 to 147), which is far enough from the protein not to interact

with it. Taking advantage of the periodic boundary condition along z axis and in order to place
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the images along a truly closed curve in the ({Q}, ZPi) space, we generated 10 copies of the

conformation representing OFa state and placed the phosphate at ZPi covering the range from

−35 Å to the lower boundary and from the upper boundary to 40 Å (images 148 to 150 and 1 to

7). These additional images along with 140 images extracted from the PHSM algorithm (i.e.,

150 images in total), were used as initial conformations for the final simulation set. The force

constants 2 kcal/(mol×Å2) and 2,000 kcal/(mol×rad2) were used for the restraining harmonic

potentials imposed on ZPi and {Q}, respectively. A periodic exchange was attempted between

replicas i and j, for which min(||i−j−150|, |i−j|, |i−j+150|) is 1 or 2 (i.e., first and second

nearest neighbors with periodic boundary condition), with an interval of 20 ps for each unique

pair.
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Supplementary Note 2

Nonequilibrium alchemical free energy calculations.

In Methods we described how the relative free energy of OFa, IFa, OFb, and IFb states due to

R45K mutation were estimated. Denoting the free energy change of state X due to R45K mu-

tation as ∆∆GX
WT→R45K (or ∆∆GX

R45K , for brevity), in which X is OFa, IFa, OFb, or IFb, the

relative binding (a → b) free energy of the R45K mutant with respect to the wild-type (WT)

protein, ∆∆Ga→b
R45K would be ∆∆GIFa→IFb

R45K = ∆∆GIFb
R45K − ∆∆GIFa

R45K and ∆∆GOFa→OFb
R45K =

∆∆GOFb
R45K − ∆∆GOFa

R45K for IF and OF states, respectively. Similarly, the relative conforma-

tional (IF → OF ) free energy of the R45K mutant with respect to the WT protein, ∆∆GIF→OF
R45K

would be ∆∆GIFa→OFa
R45K = ∆∆GOFa

R45K−∆∆GIFa
R45K and ∆∆GIFb→OFb

R45K = ∆∆GOFb
R45K−∆∆GIFb

R45K

for apo and bound states, respectively. The free energies associated with WT OFa, IFa, OFb,

and IFb states estimated from Simulation Set 13 (Fig. 1e) can be used to find the free energies

associated with OFa, IFa, OFb, and IFb states of R45K mutant. However, as noted in the main

manuscript the free energy difference between the IFa and IFb (or OFa and OFb) states based on

the PMF alone does not give the standard binding free energies of IF (or OF) state. Having the

relative population of WT IF and OF states from the PMF (Fig. 1e) and the FGTI-based relative

free energies, one may estimate the relative binding free energy due to the R45K mutation in an

effective manner as follows:

∆∆Ga→b
R45K = −β−1 log

Pb(IF ) exp(−β∆∆GIFb
R45K) + Pb(OF ) exp(−β∆∆GOFb

R45K)

Pa(IF ) exp(−β∆∆GIFa
R45K) + Pa(OF ) exp(−β∆∆GOFa

R45K)
, (S1)

in which Pa(IF )
.
= PWT (IFa)

PWT (IFa)+PWT (OFa)
, . . ., and PWT (X) ∝ exp(−β∆∆GX) is estimated

from the free energy profile in Fig. 1e. One can show ∆∆Ga→b
R45K = ∆∆GIFa→IFb

R45K + ∆IF,OF , in

which ∆IF,OF (defined below) turned out to be negligible in our calculations,

∆IF,OF =

−β−1(log
1+exp(−β(∆∆G

IFb→OFb
R45K +∆∆GIFb→OFb

))

1+exp(−β(∆∆GIFa→OFa
R45K +∆∆GIFa→OFa ))

+ log
1+exp(−β∆∆GIFa→OFa )

1+exp(−β∆∆GIFb→OFb
)
).

(S2)

S25



Supplementary Note 3

Post-hoc string method algorithm

Here we present a more detailed description of PHSM algorithm, briefly described in Meth-

ods. The description is kept general here while the particular parameters used in our analysis

are already discussed above in Sampling Protocol Details. The PHSM algorithm requires a

relatively large set of samples {xt}, along with their weights {ωt} determined using a non-

parametric reweighting scheme (e.g., Eq. (8) or (11) in Methods). The two end conformations

must be specified as well; although the algorithm will attempt to find the minima close to these

conformations. In addition, there are several parameters involved which in principle should be

empirically examined to determine the dependence of the final solution on them. The param-

eters must be chosen such that the final solution is at least locally stable. If several alternate,

locally stable pathways are generated (with similar end points), one may estimate the free en-

ergy barrier associated with each path,−kBT min
i

log(< ωt >i) (
〈
.
〉

is defined below), and pick

the one with the lowest barrier. The PHSM parameters include: (i) a metric/distance/norm ||.||

to measure the closeness of conformations; (ii) an initial pathway of N conformations; (iii)

transition tube thickness parameter ε; and (iv) convergence criteria including a threshold δ and

a persistence number P : The particular algorithms used below for finding an initial path and

reparametrization have their own parameters (i.e., ∆min/max and δ′, respectively).

1. Metric definition:

(a) For each conformation xt, measure the relevant collective variables ζt. For instance,

ζ could consist of all Cα atoms of protein or a set of system-specific collective vari-

ables (α,β, . . .) in which α, β, . . . could be one- or multidimensional collective

variables such as distance, displacement vector, or orientation quaternion (see Sup-

plementary Note 1 for an example).
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(b) Define a metric to measure the distance of two given conformations ζ and ζ ′, ||ζ −

ζ ′||. For instance, if ζ consists of all Cα atoms of protein, one may define the dis-

tance between two conformations as their RMSD. Alternatively, if ζ is (α,β, . . .),

one may define ||ζ−ζ ′|| = wα||α−α′||+wβ||β−β′||+ . . . in which each collec-

tive variable such as α has a well-defined (e.g., Euclidean) metric/distance and wα

determines its weight or contribution to the total distance. The weights could be, for

instance, proportional to 1/
〈
||α−

〈
α
〉
||
〉
, . . . in which

〈
.
〉

is an average over {ζt}.

An alternative definition is ||ζ − ζ ′|| = (wα||α−α′||2 +wβ||β−β′||2 + . . .)1/2 in

which w’s are proportional to 1/
〈
||α −

〈
α
〉
||2
〉
, . . .. The latter definition was used

in our PHSM analysis in which weights are roughly proportional to the inverse of

the variance of collective variables (see Supplementary Note 1).

2. Choose ε, δ, and P . Note that the choice of ε and δ are dependent on the definition of

metric.

3. Iteration 0: choose an initial string {ζi} in which i = 0, . . . , N − 1. The following

algorithm loosely resembles the lowest free energy path (LFEP) method [15], which is

termed here as non-parametric lowest free energy path (NPLFEP):

(a) Choose a representative conformation for the start (end) point, ζ0 (ζend).

(b) Choose a minimum and a maximum step size: ∆min and ∆max.

(c) (Optional) Replace ζ0 with ζt whose weight ωt is the highest among all {ζt} satis-

fying ||ζt − ζ0|| < ∆max.

(d) Starting with i = 1 and incrementing by 1 at every step, pick ζi from {ζt} such that

∆min < ||ζi − ζi−1|| < ∆max and ||ζi − ζend|| < ||ζi−1 − ζend|| (ζi is not unique).

(e) (Optional) An alternative algorithm to (d) picks ζt for ζi in which ωt is the highest
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weight among all conformations satisfying criteria in (d).

(f) Stop (d)/(e) when i = M such that ||ζM − ζend|| < ∆max.

(g) If N < M , discard M −N conformations from {ζi} (e.g., one every | N
N−M | steps).

If N > M , reduce ∆min and/or ∆max and repeat (c)-(g).

4. Iterate over the following steps until convergence criteria are satisfied:

(a) Voronoi tessellation:

i. For each ζt and ζi, measure Dt
i = ||ζt − ζi|| and discard Dt

i , if Dt
i > ε.

ii. For each t, find the smallest undiscarded Dt
i , and discard the rest.

iii. For each i, make a set of all t ({t}i) with undiscarded Dt
i values. If the set is

empty, the algorithm is failed. Some parameters need to be modified.

(b) For each image i, find its expected value ζ̄i =
〈
ωtζt

〉
i
/
〈
ωt
〉
i

in which
〈
.
〉
i

averages

over all t in {t}i.

(c) Reparametrization (Bézier technique): Evaluate ζ ′(s) =
∑

i(
N−1
i )si(1−s)N−i−1ζ̄i

at N equidistant points between s = 0 and s = 1.

i. de Casteljau algorithm [25]: ζ ′(s) can be evaluated at a given s by recursively

solving ζ
(j)
i (s) = (1 − s)ζ

(j−1)
i (s) + sζ

(j−1)
i+1 (s) for j = 1, . . . , N − 1 and

i = 0, . . . , N − j − 1, in which ζ
(0)
i (s) = ζ̄i and ζ ′(s) = ζ

(N−1)
0 (s).

ii. To pick N equidistant points, one may start with si = i
N−1

to evaluate ζ ′(si)

for all i; then move each si (except for s0 = 0 and sN−1 = 1) by ri
si+1−si

2
(or

ri
si−si−1

2
) if ri = ||ζ′(si)−ζ′(si+1)||−||ζ′(si)−ζ′(si−1)||

||ζ′(si)−ζ(si+1)||−||ζ′(si)+ζ(si−1)|| is positive (or negative). Iterate

until ri < δ′ for all i, in which δ′ is a convergence threshold.

(d) Convergence check: Determine the change in the string with respect to previous

step: ∆ =
∑N−1

i=0 ||ζi − ζ ′i|| (now all centers {ζi} can be replaced by {ζ ′i}). If
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∆ < δ for P consecutive iterations, string is converged.

If the PHSM algorithm fails (step 4(a)iii), it often implies that the string has moved to an

undersampled region. It is advisable to allow for a few failures (e.g., F ) before stopping the al-

gorithm. This can be easily achieved since the reparametrization algorithm can generate N new

centers fromN−F points. If the algorithm still fails, one may either increase ε, change the met-

ric (e.g., by reducing the dimensionality of collective variable space), or change the parameters

involved in initial path generation. The number of degrees of freedom in the collective variable

space is quite important. The failure of the algorithm is often due to finite sample size whose

effect is larger in higher-dimensional spaces. Using system-specific collective variables and/or

using dimensionality reduction techniques can provide a tool in defining lower-dimensional

spaces. In the case of GlpT in which we had ∼ 106 samples, we had to keep the collective

variable space ∼50-dimensional in order to have a stable PHSM solution.
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Supplementary Note 4

Data analysis

In Methods, we described how we generated the data for statistical analysis of Simulation Set

13 which involved discarding the first 10 ns of each trajectory and blocking the rest of the data

into blocks of simulation time 10 ns. The block size as well as the size of the discarded data

were chosen based on the estimated autocorrelation times of the time series. Our autocorre-

lation analysis, as shown in Supplementary Table 2, indicates that the largest autocorrelation

time, τ (averaged over all replicas) is ∼1.5 ns. For some of the individual replicas, however,

τ goes up to ∼3 ns. We discarded the first 10 ns which is several times larger than the largest

autocorrelation time measured. We used an analytic approach to roughly estimate the size of the

discarded data. Given the total sample size, T = 50 ns and the autocorrelation time τ ≈ 3 ns,

the optimum discarded size, ∆ to balance the error due to statistical uncertainty (O(
√

τ
T−∆

))

and the relaxation bias (O(exp(−∆
τ

))) is determined by minimizing the total error which is the

solution to the transcendental equation (N−∆
τ

= 2−
2
3 exp(2

3
∆
τ

)) whose solution for ∆ is approxi-

mately 10 ns. In the context of block bootstrapping, the optimum block size B can be estimated

using similar approach, resulting in an analytic estimate [?], B ≈ τ(2T/τ)1/3, which is also

approximately 10 ns.
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