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Supplementary Figure 1 | Mean Square Displacement (MSD) of single bacteria as a function of 

time (log-log scale) shows super-diffusive dynamics. The figure shows an extended version of 

Fig. 2b (low magnification), including longer temporal and spatial scales. At longer times (>30 

sec indicated by a vertical dashed line), the curves diverge due to under-sampling of long 

excursions that leave the field of view.  

 

 

Supplementary Figure 2 | Analyzing cell variability. MSD obtained using the first and second 

halves of the 5 longest trajectories. Equations are the least-square fit of the tail to a line. The 

difference in parameters between halves demonstrates that the variability between the curves 

is due to sampling rather than a property of individual bacteria. Note that even with only 5 

trajectories, the average fit (black curve) is accurate. 



 

 

Supplementary Figure 3 | Scaled displacements on logarithmic scales. According to the theory 

of LWs, the scaled displacements p are Lévy-stable distributions. Accordingly, the tail of the 

distribution should decay as a power law. Here we plot the displacements on different 

logarithmic and semi-logarithmic scales. Due to insufficient sampling of extremely long 

trajectories, the fit is inconclusive. 

 

 

 

 

 

 

 

 

Supplementary Figure 4 | No drift or preferred flow direction in the swarm. An average drift or 

preferred direction should be evident in the average flow of the swarm. The figure shows the 

distribution of velocities of the collective swarm dynamics obtained by optical flow analysis 

using optical microscopy. The mean velocity in both the x (solid blue) and y (dashed red) 

directions is negligible (0.027 m·sec-1 and 0.008 m·sec-1) with standard deviation of 19.15 

m·sec-1 and 19.61 m·sec-1. Data was taken for 60 sec in a single experiment with B. subtilis.   

 



 

Supplementary Figure 5 | The velocity auto-correlation function, similar to Fig. 3d, plotted on a 

semi-log scale. A fit to a 2nd order (quadratic) polynomial shows that the curve is convex, 

indicating that the fit to an exponential decay is poor. 

 

 

 

 

 

 

 

 

 

Supplementary Figure 6 | The distribution of speeds within segments. The LW model assumes 

that the speed in each walking segment is constant. Variable speed is not expected to 

qualitatively change the predictions of the model as long as the distribution of speeds has a 

finite variance. To this end, we calculated the centralized, scaled (zero mean and unit variance) 

density of speeds in each trajectory. The figure shows the average density with the 20% longest 

trajectories, indicating a sharp cut-off at approximately twice the standard deviation. 



 

Supplementary Figure 7 | Distribution of waiting times between turns analyzed using B. subtilis 

low magnification data. The slope of -2.55 is in agreement with the theory of LWs. Straight lines 

are least squares fits. Due to the reduced temporal and spatial resolution of the low 

magnification data (see Methods), rapid turds cannot be detected. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 8 | Simulation results for the LW model. 
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Supplementary Figure 9 | Simulation results for the fractional Brownian motion model. 
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Supplementary Figure 10 | Simulation results for the generalized Langevin equation model.  

  

t 

y=1.66x+1.9 
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Supplementary Figure 11 | Simulation results for the correlated random walk model.  
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Supplementary Figure 12 | Simulation results for the persistent random walk model.  
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Supplementary Figure 13 | Simulation results for the persistent random walk with variable 

persistence times model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Supplementary Tables 

Supplementary Table 1 

 

Comparing WT B. subtilis cells and RFP labeled ones, with and without fluorescent illumination. 

Data is presented for both collective parameters (over 10 independent experiments), and 

individual ones (over 100 measurements). The table shows the mean±standard deviation. The 

microscopic mean speed is obtained using optical flow analysis of the swarm.  

 

 

 

 

 

  

 

WT B. subtilis  RFP B. subtilis 

WT B. subtilis 

Fluorescent light on for 

5 min 

RFP B. subtilis 

Fluorescent light on for 

5 min 

C
o

ll
ec

ti
v

e
 

Colony expansion speed 

(mm·h
-1

) 
12.4±1.2 11.5±1.7 12.3±1.3 11.7±1.6 

Microscopic 

mean speed (m·sec
-1

) 
24.9±2.2 25.8±2.5 25.9±1.9 24.4±2.2 

Correlation length in 

velocity field (m) 
3.2±0.5 3.4±0.8 3.2±0.6 3.3±0.5 

Correlation time in 

velocity field (sec) 
0.16±0.05 0.15±0.04 0.13±0.06 0.15±0.06 

In
d

iv
id

u
al

 Swimming run speed in 

broth (m·sec
-1

) 
32.1±4.2 30.5±3.5 32.3±3.1 33.8±4.0 

Time between tumbles 

in broth (sec) 
5.2±3.6 4.9±2.8 5.0±4.2 5.1±3.0 



Supplementary Table 2 

 

Comparing WT S. marcescens cells and GFP labeled ones, with and without fluorescent 

illumination. Data is presented for both collective parameters (over 10 independent experiments), 

and individual ones (over 100 measurements). The table shows the mean±standard deviation. 

The microscopic mean speed is obtained using optical flow analysis of the swarm.  

 

 

 

 

 

  

 
WT  S. 

marcescens 

RFP  S. 

marcescens 

WT S. marcescens 

Fluorescent light on for 

5 min 

GFP S. marcescens 

Fluorescent light on for 

5 min 

C
o

ll
ec

ti
v

e
 

Colony expansion speed 

(mm·h
-1

) 
9.1±1.6 8.3±1.4 8.2±1.8 8.5±1.9 

Microscopic 

mean speed (m·sec
-1

) 
19.3±2.8 18.1±2.0 18.8±2.4 20.3±2.3 

Correlation length in 

velocity field (m) 
3.7±0.8 3.9±0.4 3.6±0.7 3.5±0.5 

Correlation time in 

velocity field (sec) 
0.28±0.08 0.25±0.06 0.32±0.08 0.26±0.08 

In
d

iv
id

u
al

 Swimming run speed in 

broth (m·sec
-1

) 
19±4.4 20±3.7 18±3.2 22±4.1 

Time between tumbles 

in broth (sec) 
2.2±1.5 2.0±1.2 2.4±1.9 2.1±1.1 



Supplementary Notes 

Supplementary Note 1: The velocity auto-correlation function for LWs. 

Let v( )t  denote the velocity at time t of a particle following a LW. In the original LW model [1], 

particles move at constant speed between random reorientations. Without loss of generality, 

we assume unit speed. We assume that   has a finite average. 

We define the velocity auto-correlation function as 

(1)     ( ) v( )v( )C t t t t   , 

where ·  denotes averaging over all times t  in independent samples of infinite trajectories. 

Since following a reorientation event a particle completely losses its memory, we have that

( ) ( ( , ))C t P NJ t t t  , where ( , )NJ t t t  is the event that there is not jump in [ , ]t t t . 

Next, let )(l   denote the event that a randomly sampled time is inside a jump of length  . 

Formally, )) ( ) /( ( dP l t      . Using the total probability theorem, 

(2)                                  
0

( ) ( ( , )) )) ( ) | (( ( , )C t P NJ t t t P l J tN t l dt  


    . 

It is clear that  
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This implies that 

(4)                                                          )( ) ( )
1

(
t

tt dC    






  .      

For example, if ( )  is an exponential distribution with rate  , Eq. (4) yields the expected 

( ) tC t e  . Assuming waiting times between reorientation events have a density ( )   a 

power-law tail, 
1( ) ~     

, yields 
( 1)( ) ~ tC t   . See also [2]. 

In our experiments, 1.6  , 4 2.4    . Therefore, ( )C t  should have a tail with 

exponent -0.4. 

 



 

 

Supplementary Note 2: Comparing models of super diffusion - Lévy walk: 

We simulated six different models showing super-diffusion: LW, fractional Brownian motion [3-

4], generalized Langevin equations [3, 5-6], correlated and persistent random walks [3, 7-12], 

persistent random walks with variable persistence times [13] and Lévy flights [1, 4]. In each 

simulation, 150 trajectories were sampled at a rate of 100 fps (similar to the high magnification 

data) and for 500 seconds (similar to the low magnification data). Parameters were chosen to 

match the MSD plot (Fig. 2), in particular the asymptotic slope (1.6) and the point of 

intersection with the y-axis (about -0.5 with the high magnification). Trajectories were analyzed 

using the same methods applied in generating Figs. 3 and 4. Thus, the experimental results can 

be compared with the different model predictions. All simulations were performed in Matlab. 

The model: The LW model is a Continuous Time Random Walk (CTRW) in which a particle 

moves with a constant speed v . At randomly drawn turning events 1 2, ,  the particle draws a 

new random orientation which is independent and uniformly distributed in [ , ]  . In the 

classical LW model [1], waiting times between turns, 1i i   , are independent and identically 

distributed (IID) random variables (RV) with a density ( )t  that has a power-law tail, ( ) ~t t  
. 

Simulation method: IID waiting times were drawn from a distribution with density  

(5)                                                              min

min

( )
0 .

t t t
t

t t


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Thus, a sequence of a particle's velocity and position at the turning events can be calculated 

exactly. Using linear interpolation (which is, in this case, exact), a discretized trajectory at 

uniform time intervals with 0.01t   sec? was generated. See Supplementary Figure 7a for 

example of sample trajectories.  

Simulation parameters: 1.3  and 14v  .  

Results: See Supplementary Figure 7. The theoretical asymptotic slope of the MSD curve on a 

log-log plot is 1.7 . However, due to sampling errors, it is slightly smaller (which is why we took 

1.3   and not 1.4). The optimal scaling of displacements (see the text for the optimization 

method), depicted in Supplementary Figure 7c, was 1.3, in agreement with theory. The scaled 

curves fit well a Lévy stable distribution with same parameter   and scale factor 2.2. Note that 

the scale parameter is smaller than the experimentally observed value (5.2). This may be due to 

noise stemming from movie jitter which may affect time scales of the order of the sampling 



rate (0.01 secs). The velocity auto-correlation function (Supplementary Figure 7d), distribution 

of waiting times (Supplementary Figure 7e) and mean speed between turns (Supplementary 

Figure 7f) match well both the theoretical predictions (see text) and the experimental results. 

Supplementary Note 3: Comparing models of super diffusion - Fractional Brownian motion: 

The model: Fractional Brownian motion (fBM), introduced by Mandelbrot & van Ness [4] is a 

continuous time Gaussian process, H

tB , with covariance function 

(6)                                             2 2 2| | | |[ ] | |
2

H H H H H

t s

D
E B t sB s t    , 

where ][·E  denotes expectation with respect to sampled trajectories, (0,1)H   is called the 

Hurst index ( 1/ 2H   is the standard Wiener process) and 0D   is a diffusion constant. 

Simulation method: See ref. [14]. See v Supplementary Figure 8a for example of sample 

trajectories. 

Simulation parameters: 0.8H   and 40D  , chosen to fit Fig. 2. 

Results: See Supplementary Figure 8. The asymptotic slope of the MSD curve on a log-log plot 

is, as expected by the theoretical prediction of 2H . The optimal scaling of displacements was 

1.7, which is very close to the theoretical prediction of 2 1.6H  . Since fBM is a Gaussian 

process, displacements have a normal distribution, which can be readily observed in 

Supplementary Figure 8c. The velocity auto-correlation function (Supplementary Figure 8d) is 

also a power law with the correct slope of 1( )   [4]. Due to the non-differentiability of fBM 

trajectories, turning events are not well defined. First, the width of smoothing required to 

identify them was larger by a factor of 10 compared to both experiments and the LW model. In 

addition, the distribution of waiting times (Supplementary Figure 8e) and mean speed between 

turns (Supplementary Figure 8f) do not match the experimental results. 

 

 

  



Supplementary Note 4: Comparing models of super diffusion - Generalised Langevin 

equation: 

The model: Generalised Langevin equation (GLE) is a non-Markovian generalization of the well-

known Langevin dynamics [6, 15]. The generalization is obtained by introducing a singular 

power-law memory kernel. Formally, in 1D the GLE is given by a 2nd order SDE, 

(7)                                              ( ) ( ) ( , ) ( )

t

x t s x s ds V x t t 


    , 

where, ( )t  is a memory kernel, ( , )V x t  is an external potential (zero in our case) and ( )t  is a 

stochastic driving force with zero mean and covariance  

(8)                                                           ( ) ( ) (| |)E Dt s t s    . 

The relation between the memory kernel and the covariance of noise is called a fluctuation 

dissipation theorem, which is a property of thermodynamic equilibrium. We note that the 

system of swarming bacteria is not in thermodynamic equilibrium due to the constant injection 

of energy by the bacterial self-propulsion mechanism. 

If the spectrum of ( )t , has a power law growth at low frequencies, ( ) ~ r   , then 

trajectories have a MSD that grows asymptotically as 2 / (1 )rt rD    . Hence, with 1 2r  , the 

dynamics is super-diffusive. 

Simulation method: See ref. [15]. See Supplementary Figure 9a for example of sample 

trajectories. 

Simulation parameters: 1.6r  and 40D  , chosen to fit Fig. 2. 

Results: See Supplementary Figure 9. The asymptotic slope of the MSD curve on a log-log plot 

is, as expected by the theoretical prediction. The optimal scaling of displacements was 1.12, 

which is lower than the experimental results. Since the GLE noise is a Gaussian process, 

displacements have a normal distribution, as observed in Supplementary Figure 9c. The velocity 

auto-correlation function (Supplementary Figure 9d) decays exponentially. Similar to fBM, 

turning events are not well defined. First, the width of smoothing required to identify them was 

large compared to both experiments and the LW model (by a factor of 3-4). In addition, the 

distribution of waiting times (Supplementary Figure 9e) and mean speed between turns 

(Supplementary Figure 9f) do not agree with the experimental results. 

  



Supplementary Note 5: Comparing models of super diffusion - Correlated random walk: 

The model: Correlated random walk (CRW) is a Markovian discrete random walk process in 

which increments are correlated. In 2D, 

(9)                                                                   
1

XXn i

n

i

 , 

where, vXi i t   , t  is the simulation time step and the velocity at step i , v i  has a fixed 

norm v . The angles between consecutive increments, i , 2

1cos ( )·i i iv v v 

 are IID with a 

given (even) distribution in [ , ]   [16-17]. 

Simulation method: i  is drawn from the von-Misses distribution with zero mean and 

concentration parameter  . See Supplementary Figure 10a for example of sample trajectories. 

Simulation parameters: 14v   and 1/ t   , which implies a persistence time of about 1 sec, 

a typical run length for swimming bacteria. 

Results: See Supplementary Figure 10. In agreement with theoretical predictions [17], the slope 

of the MSD curve on a log-log plot changes from 2 for short time scales (ballistic motion) to 1 on 

long scales (normal diffusion). The transition to a diffusive behavior occurs at around 2t   

secs. This is in contrast to the experimental observations showing anomalous diffusion up to 40 

secs. The optimal scaling of displacements was 1.6, which is in agreement with the 

experimental results. However, the scaling of different time steps does not all fall nicely onto a 

single master curve. Since the CRW is a Gaussian process, displacements have a normal 

distribution, as observed in Supplementary Figure 10c. The velocity auto-correlation function 

(Supplementary Figure 10d) decays exponentially. In addition, the distribution of waiting times 

(Supplementary Figure 10e) is also exponential, unlike the power-law behavior in observed 

experiments. 

 

  



Supplementary Note 6: Comparing models of super diffusion - Persistent random walk: 

The model: Persistent random walk (PRW) is a CTRW in which a particle moves with a constant 

speed v . At randomly drawn turning events 1 2, ,  the particle draws a new random 

orientation which is independent and uniformly distributed in [ , ]  . However, unlike in the 

LW model, waiting times between turns, 1i i   , are IID exponential RVs [18]. 

Simulation method: At every simulation step, a particle has probability P t  to make a random 

turn, where P  is the persistence length and t  is the simulation time step. See Supplementary 

Figure 11a for example of sample trajectories. 

Simulation parameters: 14v   and 
11secP  , which implies a persistence time of 1 sec, a 

typical run length for swimming bacteria. 

Results: See Supplementary Figure 11. Results are similar to CRW. In agreement with 

theoretical predictions [17], the slope of the MSD curve on a log-log plot changes from 2 for 

short time scales (ballistic motion) to 1 on long scales (normal diffusion). The transition to a 

diffusive behavior occurs at around 2t   secs. This is in contrast to the experimental 

observations showing anomalous diffusion up to 40 secs. The optimal scaling of displacements 

was 1.3, which is slightly lower than the experimental results. Moreover, the scaling of different 

time steps does not all fall nicely onto a single master curve. Since the PRW is a Gaussian 

process, displacements have a normal distribution, as observed in Supplementary Figure 11c. 

The velocity auto-correlation function (Supplementary Figure 11d) decays exponentially. In 

addition, the distribution of waiting times (Supplementary Figure 11e) is also exponential, 

unlike the power-law behavior in observed experiments.  

 

  



Supplementary Note 7: Comparing models of super diffusion - Persistent random walk with 

variable run times: 

The model: Petrovskii et al [13] considered a system of many non-identical particles. In this 

work they assumed that all particles follow a normal diffusion. However, the diffusion constant 

of each particle may be different. In that work it was shown that assuming that diffusion 

constants are IID with a power-law tail can lead to the appearance of super-diffusive MSD 

curves. See Supplementary Figure 12 for example of sample trajectories. 

However, our experimental results show that the apparent distribution of effective diffusion 

constants, as observed in the different intersections with the y-axis of the MSD curves of 

different bacteria (Fig. 2a) has a compact support. In particular, it cannot have a power-law 

distribution. In addition, the variation between cells seems mainly due to sampling errors than 

a property of individual bacteria (Supplementary Figure 2). 

 

  



Supplementary Note 8: Comparing models of super diffusion - Lévy flight:  

A Lévy flight is a jump process in which particle speeds vary significantly, occasionally making 

fast and long displacements. Trajectories of both models (Lévy walk) are indistinguishable. See 

Supplementary Figure 7a for example of sample trajectories. The MSD of a Lévy flight diverges. 

In addition, Fig. 4b suggests an approximately constant speed, which in contradiction to the 

assumptions of a Lévy flight.  
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