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SUMMARY

Dietary lipids may influence the abundance of circu-
lating inflammatory microbial factors. Hence, inflam-
mation in white adipose tissue (WAT) induced by
dietary lipids may be partly dependent on their
interaction with the gut microbiota. Here, we show
that mice fed lard for 11 weeks have increased Toll-
like receptor (TLR) activation and WAT inflammation
and reduced insulin sensitivity compared with mice
fed fish oil and that phenotypic differences be-
tween the dietary groups can be partly attributed to
differences in microbiota composition. Trif�/� and
Myd88�/� mice are protected against lard-induced
WAT inflammation and impaired insulin sensitivity.
Experiments in germ-free mice show that an interac-
tion between gutmicrobiota and saturated lipids pro-
motes WAT inflammation independent of adiposity.
Finally, we demonstrate that the chemokine CCL2
contributes to microbiota-induced WAT inflamma-
tion in lard-fed mice. These results indicate that
gut microbiota exacerbates metabolic inflammation
through TLR signaling upon challenge with a diet
rich in saturated lipids.

INTRODUCTION

Diets rich in saturateddietary lipids are associatedwith increased

white adipose tissue (WAT) inflammation and metabolic disease

(Kennedy et al., 2009), whereas diets rich in polyunsaturated

fatty acids have been shown to counteract inflammation and

promote a lean and metabolically healthy phenotype (Buckley

and Howe, 2009; Calder, 2006; Oh et al., 2010). Host diet also

has a major impact on gut microbial composition (Scott et al.,

2013), and changes in gut ecology can affect the inflammatory

and metabolic properties of the gut microbiota and thereby

host physiology (Tremaroli andBäckhed, 2012). Studies showing

that germ-free (GF) mice are protected against diet-induced
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obesity and exhibit reducedWAT inflammation and insulin resis-

tance (Bäckhed et al., 2007; Caesar et al., 2012; Ding et al., 2010;

Rabot et al., 2010) have led to the suggestion that microbial

factorsmay directly contribute toWAT inflammation and adverse

metabolic consequences. Circulating microbial factors have,

indeed, been identified in healthy humans and mice (Caesar

et al., 2010). Furthermore, an increased influx ofmicrobial factors

has been linked to inflammation and impaired glucose meta-

bolism through activation of Toll-like receptor (TLR)-dependent

signaling (Cani et al., 2007; Henao-Mejia et al., 2012). Several ge-

netic mouse models have shown that deletion of components of

the TLR signaling pathway is associated with protection against

WAT inflammation and/or rescue ofmetabolically perturbed phe-

notypes (Jin and Flavell, 2013). However, although TLR ligands

may be of bacterial origin, they may also come from the diet or

the host (Yu et al., 2010), and, thus, gnotobiotic models are

required to determine how the gut microbiota contributes to

WAT inflammation upon diet change.

In the present paper, we aim to determinewhetherWAT inflam-

mation induced by dietary lipids is mediated through the gut mi-

crobiota and to identifymolecularmechanisms throughwhich the

gut microbiota induces macrophage accumulation in WAT.

RESULTS

Impact of Lard versus Fish-Oil Diet on Gut Microbiota
To assess how the dietary fat sources affects the microbiota, we

fed mice isocaloric diets that differed only in fat composition

(either lard or fish oil, which are rich in saturated and polyunsat-

urated lipids, respectively) (Table S1) for 11 weeks. First, we

showed that lard-fed mice gained more weight (Figure 1A),

consumed more food, and had increased feed efficiency (Fig-

ures S1A and S1B) compared with mice fed fish oil. Lard-fed

mice had reduced respiratory quotient (RQ) (Figure S1C), indic-

ative of increased fat utilization, both after 2 days and 5 weeks

of high-fat diet. The fat source did not change locomotory activ-

ity (Figure S1C), but mice fed fish oil utilized more energy for

locomotory activity (Figure S1D). As expected, the lard-fed

mice had higher fasting insulin and glucose levels, as well as

impaired insulin sensitivity, compared tomice fed fish oil (Figures

S1E–S1G).
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Figure 1. Mice Fed a Lard Diet Have Increased Adiposity and Distinct GutMicrobiota Composition Compared toMice Fed an Isocaloric Fish-

Oil Diet

Mice were fed high-fat diets for 11 weeks.

(A) Body weight gain of mice fed lard or fish oil (n = 15). Data indicate means ± SEM. ***p < 0.001.

(B) Principal coordinate analysis of gut microbiota composition based on unweighted UniFrac in mice fed lard or fish oil (n = 10–11 mice per group).

(C) Rarefaction curves for phylogenetic diversity in microbiota from mice fed lard or fish oil (10–9,410 sequences per sample). Data indicate means ± SD.

(D) Pie charts of gutmicrobial phyla composition inmice fed lard or fish oil for 11weeks (n = 9–10mice per group) (see Table S2 for the list of differentially abundant

taxa grouped at the phylum and genus level).

(E) Cladogram generated from LEfSe analysis, showing the most differentially abundant taxa enriched in microbiota from mice fed lard (red) or fish oil (blue).

(F) LDA scores of the differentially abundant taxa shown in (E). Taxa enriched in microbiota frommice fed lard (red) or fish oil (blue) are indicated with a positive or

negative LDA score, respectively (taxa with LDA score >2 and significance of a < 0.05 determined by Wilcoxon signed-rank test).

See also Table S2.
We analyzed gut microbiota composition by 454 pyrose-

quencing of the 16S rRNA gene in cecal contents of these

mice and observed dramatic changes in the microbial ecology

according to the type of dietary fat (Figures 1B–1F; Table S2).

Principal coordinate analysis of the unweighted UniFrac showed

significant clustering of samples according to diet (Figure 1B),

and multivariate non-parametric ANOVA (adonis, 999 permuta-

tions) showed that fat source explained about 24% of the vari-

ability in microbiota composition (R2 = 0.24, p = 0.001). Diversity
Cell
within samples was also affected by the type of fat, as shown

by a significant decrease in phylogenetic diversity in samples

frommice fed lard versus fish oil (Figure 1C; p = 0.001 non-para-

metric p value calculated using 999 Monte Carlo permutations

at the maximum sampled depth). Linear discriminant analysis

(LDA) effect size indicated that the genera Bacteroides, Turici-

bacter, and Bilophila were increased in lard-fed mice, while

Actinobacteria (Bifidobacterium and Adlercreutzia), lactic acid

bacteria (Lactobacillus and Streptococcus), Verrucomicrobia
Metabolism 22, 658–668, October 6, 2015 ª2015 The Authors 659
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Figure 2. Presence of TLR Ligands, LPS, and Bacterial DNA in Blood and Bacterial DNA in WAT of Mice Fed Lard and Fish Oil

(A–E) Activation of innate immunity receptors induced by stimulation with serum isolated from CONV-R mice fed lard or fish oil for 11 weeks (n = 3).

(F) Concentrations of LPS in serum isolated from CONV-R mice fed lard or fish oil for 11 weeks (n = 11–13 mice per group).

(G) Levels of 16S rDNA in blood from CONV-R mice fed lard or fish oil for 11 weeks (n = 15 mice per group).

(H) Levels of 16S rDNA in WAT from CONV-R mice fed lard or fish oil for 11 weeks (n = 15 mice per group).

Mean values ± SEM are plotted. *p < 0.05; **p < 0.01.
(Akkermansia muciniphila), Alphaproteobacteria, and Deltapro-

teobacteria were increased in fish-oil-fed mice (Figures 1E

and 1F).

Using qPCR, we confirmed the increase in Akkermansia and

Lactobacillus in the cecal contents of mice fed fish oil compared

to lard for 11 weeks; we also observed a significant increase in

Lactobacillus, but not in Akkermansia, in fish-oil-fed mice after

3 weeks (Figures S1H and S1I).

Impact of Lard versus Fish-Oil Diet on TLR Activation in
Systemic Circulation
Despite the marked differences in the gut microbiota, short-

chain fatty acid (SCFA) levels were similar in cecal samples

from mice fed lard or fish oil for 11 weeks, with a minor increase

only observed for acetate relative to the total SCFAs (C2 C4) in

mice fed lard (Figures S2A–S2I). Because it is known that obesity

and high-fat diets rich in saturated lipids are associated with

increased intestinal absorption of microbial products (Caesar

et al., 2010; Cani et al., 2007), we measured the potential of

serum from vena cava to activate innate immunity receptors.

We found that TLR2 and TLR4—but not TLR5, TLR9, or

NOD2—were activated by serum from mice fed lard (Figures

2A–2E), suggesting that a lard diet promotes an increased influx

of microbial factors into the systemic circulation. In agreement

with these results, we found a trend toward increased levels of

the TLR4 ligand LPS (lipopolysaccharide) in mice fed lard for

11 weeks (Figure 2F); however, there was no difference in LPS

concentration between mice fed lard and fish oil for 3 weeks

(Figure S2J).

Impaired metabolism has been associated with bacterial

translocation from the intestine (Amar et al., 2011). Therefore,
660 Cell Metabolism 22, 658–668, October 6, 2015 ª2015 The Autho
we determined the levels of bacterial DNA in blood and epidid-

ymal WAT using qPCR. We found that the bacterial DNA load

was similar in blood samples from mice fed lard or fish oil for

11 weeks (Figure 2G). We observed a small increase in bacterial

load inWAT frommice fed fish oil compared to lard, but the levels

in both groups were very low (Figure 2H). We profiled the 16S

rRNA genes by Illumina sequencing and observed no significant

differences in diversity and composition in either blood or WAT

between mice fed lard or fish oil for 11 weeks (Figures S3A–

S3F). Thus, our data suggest that the gut microbiota impairs

glucose metabolism by stimulating inflammation through their

pro-inflammatory molecules rather than by translocation from

the intestine.

Lard Diet Promotes WAT Inflammation through TLR
Signaling
The increased activation of TLR in the systemic circulation of

lard-fed mice prompted us to investigate the potential role of

TLR signaling in the development of diet-induced WAT inflam-

mation. To test this, we fed lard or fish oil for 11 weeks to

mice lacking the TLR adaptor molecules MyD88 or TRIF. As

expected, mice fed fish oil gained less body weight and had

smaller adipocytes than mice fed lard, regardless of the geno-

type (Figures 3A–3C). Lard-fed Myd88�/� mice were protected

against diet-induced obesity and had decreased adipocyte

size compared with lard-fed wild-type mice (Figures 3A–3C).

By contrast, TRIF deficiency did not affect body weight or adipo-

cyte size upon exposure to lard (Figures 3A–3C).

Fat type had a dramatic effect on WAT inflammation: the

number of crown-like structures (CLS; indicative of macrophage

abundance in adipose tissue andWAT inflammation) (Cinti et al.,
rs
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Figure 3. Mice Lacking MyD88 or TRIF Are Protected against Lard-Diet-Induced WAT Inflammation

(A) Body weight gain of wild-type, Myd88�/�, and Trif�/� mice fed lard or fish oil for 11 weeks. ns = 23 (wild-type lard), 7 (Myd88�/� lard), 8 (Trif�/� lard), 22

(wild-type fish oil), 6 (Myd88�/� fish oil), and 9 (Trif�/� fish oil).

(B) Distribution of adipocyte sizes in wild-type, Myd88�/� and Trif�/� mice fed lard (n = 4–6 mice per group).

(C) Distribution of adipocyte sizes in wild-type, Myd88�/�, and Trif�/� mice fed fish oil. n = 8 for wild-type, and n = 4 for Myd88�/� and Trif�/�.
(D) Representative Mac-2 immunostaining of WAT from wild-type, Myd88�/�, and Trif�/� mice fed lard or fish oil. Scale bars, 100 mm.

(E) Quantification of CLS. ns = 7 (wild-type lard), 7 (Myd88�/� lard), 5 (Trif�/� lard), 7 (wild-type fish oil), 5 (Myd88�/� fish oil), and 4 (Trif�/� fish oil).

(F) Percentage of area occupied by CD45+ cells in WAT of wild-type, Myd88�/�, and Trif�/� mice. ns = 7 (wild-type lard), 7 (Myd88�/� lard), 5 (Trif�/� lard), 3

(wild-type fish-oil), 4 (Myd88�/� fish oil), and 4 (Trif�/� fish oil).

Mean values ± SEM are plotted. **p < 0.01; ***p < 0.001.
2005) and accumulation of CD45+ cells (leukocytes) in WAT

increased dramatically between 3 and 11 weeks on a lard diet,

whereas fish oil did not induce inflammation (Figures S4A and

S4B). The numbers of CLS and CD45+ leukocytes were signifi-

cantly lower in Myd88�/� and Trif�/� mice than in wild-type

mice after 11 weeks on a lard diet (Figures 3D–3F). We also

showed that fasting insulin levels were lower and that insulin

sensitivity was improved in lard-fed Myd88�/� and Trif�/� mice

compared to lard-fed wild-type mice (Figures S4C–S4F).

These data suggest that dietary saturated fatty acids might

mediate WAT inflammation and impaired metabolic phenotypes

through TRIF andMyD88 and that the TRIF-mediated effects are

independent of the degree of adiposity.

Interaction between Dietary Lipids and the Gut
Microbiota Affects WAT Inflammation
Our observation that knockout models for TLR signaling are pro-

tected against lard-inducedWAT inflammation is consistent with

previous reports showing that mice lacking TLR4 have reduced

WAT inflammation (Kim and Sears, 2010) and implicates micro-

bial components as mediators of the inflammatory phenotype.

To investigate the role of the microbiota in diet-induced WAT

inflammation, we fed CONV-R and GF mice lard or fish oil for
Cell
11 weeks. Diet had the largest impact on weight gain and lard-

fed GF mice gained significantly more weight than fish-oil–fed

GF mice (Figure 4A). However, GF mice gained less body weight

than their CONV-R counterparts when fed either lard or fish oil

(Figure 4A). Increased adiposity, per se, may promote WAT

inflammation (Weisberg et al., 2003). Thus, to study the influence

of gut microbiota on WAT inflammation independent of differ-

ences in adiposity, in subsequent analyses, we used GF and

CONV-R mice with matching body weights and equal adipocyte

size distribution at the end of the feeding period for each diet

(Figures 4B and 4C).

To investigate how dietary lipids and gut microbiota affect

WAT inflammation, we performed immunohistochemistry to

analyze WAT from CONV-R and GF mice fed a lard or fish-oil

diet. As expected, we noted increased numbers of CLS and

levels of CD45+ cells in lard-fed versus fish-oil-fed mice, both

for CONV-R and GF mice (Figures 4D–4F). Importantly, we also

found that the number of CLS was higher in lard-fed CONV-R

versus GF mice and a trend (p = 0.08) toward increased levels

of CD45+ cells in CONV-R versus GF mice (Figures 4D–4F).

To further investigate how dietary lipids and gut microbiota

affect WAT inflammation metabolism, we performed a microar-

ray analysis of WAT from CONV-R and GF mice fed a lard or
Metabolism 22, 658–668, October 6, 2015 ª2015 The Authors 661
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Figure 4. Gut Microbiota and Dietary Lipid Interact to Regulate WAT Inflammation Independent of Body Weight and Adipocyte Size

(A) Body weight gain of CONV-R and GF mice fed lard or fish oil for 11 weeks. ns = 34 (CONV-R lard), 19 (GF lard), 34 (CONV-R fish oil), and 18 (GF fish oil).

(B) Initial and final body weight of mice used for analysis of WAT inflammation (n = 6).

(C) Distribution of adipocyte sizes inmice used for analysis of inflammation andmetabolic perturbations. ns = 4 (CONV-R lard), 5 (GF lard), 6 (CONV-R fish oil), and

6 (GF fish oil).

(D) Representative Mac-2 immunostaining of WAT from CONV-R and GF mice fed lard or fish oil. Scale bars, 100 mm.

(E) Quantification of CLS (n = 6 mice per group).

(F) Percentage of area occupied by CD45+ cells in WAT from CONV-R and GF mice fed lard or fish oil (n = 5–6 mice per group).

(G) Principal-component analysis of global gene expression in WAT from CONV-R and GF mice fed lard or fish oil (n = 6 mice per group).

(H) Genes that are regulated by the interaction between diet and gut microbiota. WAT genes induced by the gut microbiota in mice fed lard are plotted on the y

axis, and WAT genes induced by the gut microbiota in mice fed fish oil are plotted on the x axis (n = 6 mice per group). Interaction was determined by two-way

ANOVA.

Means ± SEM are plotted. *p < 0.05; **p < 0.01; ***p < 0.001.
fish-oil diet. Principal-component analysis of gene expression

data revealed that mice separated on diet in the first dimension

and on microbial status in the second dimension (Figure 4G).

We observed increased expression of genes involved in immune

processes and decreased expression of genes involved in en-

ergy generation and metabolism in lard-fed versus fish-oil-fed

CONV-Rmice (Table S3). To compare how the gutmicrobiota af-

fectsWAT gene expression inmice fed lard or fish oil, differences

in expression level between CONV-R and GF mice were plotted

for significantly regulated genes, with values for mice fed fish oil

on the x axis and values for mice fed lard on the y axis (Figure S5).

The majority of genes demonstrated a positive linear relation-

ship, indicating that many genes are regulated by the microbiota

independently of dietary lipids. Gene ontology analysis showed

that the microbiota induced expression of genes involved in,

e.g., RNA processing and mitochondrial organization in both di-

etary groups (Table S4). However, expression of genes involved

in immune processes was decreased by the gut microbiota in

fish-oil-fed mice and increased by the gut microbiota in lard-

fed mice (Table S4). We applied a two-way ANOVA to identify

genes with expression levels controlled by the interaction be-

tween dietary lipids and gut microbiota (Figure 4H). The subset
662 Cell Metabolism 22, 658–668, October 6, 2015 ª2015 The Autho
of these genes located in Q1 (i.e., upregulated by the gut micro-

biota in lard-fed mice and downregulated in fish-oil-fed mice)

was enriched in functional categories associated with immune

responses (Table S4). Together, these data suggest that the

gut microbiota interacts with dietary lipids to modulate WAT

inflammation.

Microbiota fromMice FedFishOil Counteracts Adiposity
and Inflammation in Mice Subsequently Fed Lard
To test whether the gut microbiota of mice fed fish oil could

attenuate inflammation and protect against diet-induced obesity

during lard feeding, we transplanted the cecal microbiota ofmice

fed fish oil or lard for 11 weeks into recipient mice pretreated with

antibiotics and then fed both groups of recipient mice a lard diet

for 3 weeks. Strikingly, mice that received fish-oil microbiota

gained less weight than mice that received lard microbiota

(Figure 5A).

Profiling of the 16S rRNA gene by Illumina sequencing of the

cecal contents from the recipient mice demonstrated that the

composition of the microbiota differed between mice that

received fish-oil or lard microbiota, even though all mice were

subsequently fed the same lard diet for 3 weeks. Principal
rs
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Figure 5. Gut Microbiota Transplanted from Donor Mice Fed a Fish-Oil Diet Counteract Lard-Diet-Induced Adiposity and WAT Inflammation

Mice colonized with gut microbiota from donor mice were fed either a lard or a fish-oil diet for 11 weeks and fed a lard diet for 3 weeks.

(A) Body weight gain (n = 10 mice per group).

(B and C) Indicated here are the (B) principal coordinate analysis of gut microbiota composition based on unweighted UniFrac and (C) rarefaction curves

(10–40,610 sequences per sample) for phylogenetic diversity in microbiota (n = 10).

(D) LDA scores of the differentially abundant taxa in blood. Taxa enriched in microbiota from mice fed lard (red) or fish oil (blue) are indicated with a positive or

negative LDA score, respectively (taxa with LDA score >2 and a significance of a < 0.05 determined by Wilcoxon signed-rank test are shown).

(E) Concentrations of LPS in serum (n = 8–10 mice per group).

(F) Representative Mac-2 immunostaining of WAT. Scale bars, 100 mm.

(G) Quantification of CLS (n = 10 mice per group).

(H) Percentage of area occupied by CD45+ cells (n = 10 mice per group).

Mean values ± SEM are plotted. *p < 0.05; **p < 0.01.
coordinate analysis showed significant clustering of samples ac-

cording to donor diet (Figure 5B), and multivariate non-para-

metric ANOVA showed that fat source of the donor explained

about 27% of the variability in microbiota composition (R2 =

0.27, p = 0.001) Within-sample diversity, as measured by phylo-

genetic diversity, did not differ between the two recipient groups

(Figure 5C). Finally, LDA effect size analysis indicated that taxa

belonging to Akkermansia increased in the cecum of mice that

received fish-oil microbiota, while Lactobacillus increased in

mice that received a lard microbiota (Figure 5D); these results

were confirmed by qPCR analysis (Figures S6A and S6B).

We found a trend toward decreased levels of LPS in serum

frommice transplanted with microbiota from fish-oil donors (Fig-

ure 5E). Analysis of WAT showed that the number of CLS was

slightly decreased in mice transplanted with microbiota from
Cell
fish-oil donors but that the CD45+ cell level was similar in both

groups (Figures 5F–5H).

CCL2 in WAT Is Induced by the Gut Microbiota and
Mediates WAT Inflammation
To investigate the mechanisms underlying the gut-microbiota-

induced WAT inflammation in lard-fed mice, we searched our

WAT microarray dataset for differentially regulated genes that

are known to be associated with macrophage recruitment.

Many previous reports have suggested that the chemokine

CCL2 is a mediator of macrophage accumulation in WAT during

obesity (Kamei et al., 2006; Kanda et al., 2006; Weisberg et al.,

2006). Indeed, we found thatCcl2 expression in WAT was higher

in lard-fed CONV-R mice than in lard-fed GF mice and that both

CONV-R and GF mice fed fish oil had low expression of Ccl2
Metabolism 22, 658–668, October 6, 2015 ª2015 The Authors 663
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Figure 6. CCL2 Production in WAT Is Induced by the Gut Microbiota through Activation of MyD88, TRIF, and TLR4
(A) Expression of Ccl2 in WAT from CONV-R and GF mice fed lard or fish oil for 11 weeks (n = 6).

(B) Expression of Ccl2 in primary adipocytes stimulated for 4 hr with 2% serum from the vena cava of CONV-R or GF mice fed lard (n = 5–6 mice per group).

(C) Secretion of CCL2 from primary wild-type primary adipocytes stimulated for 4 hr with 2% serum isolated from the vena cava of CONV-R and GFmice fed lard

(n = 5–6).

(D and E) Expression of Tnfa in primary (D) adipocytes and (E) macrophages stimulated for 4 hr with 2% serum isolated from the vena cava of CONV-R and GF

mice fed lard (n = 5–6).

(F) Expression ofCcl2 in WAT fromCONV-Rwild-type,Myd88�/�, and Trif�/�mice fed lard or fish oil for 11 weeks. ns = 6 (wild-type lard), 6 (Myd88�/� lard), and 4

(Trif�/� lard).

(G–J) Expression ofCcl2 in (G)Myd88�/�, (H) Trif�/�, (I) Tlr4�/�, and (J) Tlr2�/� primary adipocytes stimulated for 4 hr with 2%serum isolated from the vena cava of

CONV-R or GF mice fed lard (n = 5–6).

Mean values ± SEM are plotted. *p < 0.05; **p < 0.01; ***p < 0.001.
(Figure 6A). Because theWATmicroarray dataset is from GF and

CONV-R mice with matching body weights (as shown in Figures

4B and 4C), the difference in Ccl2 expression between lard-fed

CONV-R and GF mice was independent of body weight and

adipocyte size.

To test the hypothesis that factors in the serum of lard-fed

CONV-R mice promote inflammation in WAT, primary adipo-

cytes and macrophages were exposed to serum from CONV-R

or GF mice fed lard. Gene expression and secretion of CCL2

were increased in adipocytes, but not macrophages, treated

with serum from lard-fed CONV-R mice compared to cells

treated with serum from lard-fed GF mice (Figures 6B and 6C;

Figures S7A and S7B). We showed that treatment with serum

from lard-fed CONV-R mice increased expression of Tnfa in

both adipocytes and macrophages (Figures 6D and 6E), indi-

cating that circulating microbial factors may trigger a general in-

flammatory response in both these cell types.

To study the role of innate immunity signaling in the regulation

of Ccl2, we analyzed Ccl2 expression in WAT from Myd88�/�

and Trif�/� mice fed lard or fish oil. Ccl2 expression was lower

in WAT from lard-fed Myd88�/� and Trif�/� mice than that from

lard-fed wild-type mice, while Ccl2 expression in mice fed fish

oil was low regardless of genotype (Figure 6F). We also showed
664 Cell Metabolism 22, 658–668, October 6, 2015 ª2015 The Autho
thatCcl2 expression was not increasedwhen primaryMyd88�/�,
Trif�/�, or Tlr4�/� adipocytes were exposed to serum from lard-

fed CONV-R mice compared to adipocytes treated with serum

from GF mice (compare Figures 6G–6I with 6B). In contrast,

Ccl2 expression in primary Tlr2�/� adipocytes was increased

by exposure to serum from lard-fed CONV-R mice compared

to exposure to serum from GF mice (Figure 6J). These data indi-

cate that there are factors present in the blood of CONV-R mice

that induce Ccl2 expression through pathways involving TLR4,

MyD88, and TRIF but not TLR2.

To investigate whether CCL2 is involved in the development of

WAT inflammation induced by the gut microbiota and lard diet,

GF mice were conventionalized and fed a lard diet for 4 weeks

in the presence of either the CCL2 inhibitor mNOX-E36 or the

nonfunctional control substance revmNOX-E36. Mice treated

with mNOX-E36 and revmNOX-E36 did not differ in body weight

or adipocyte size (Figures 7A and 7B). Strikingly, however, con-

ventionalized mice treated with mNOX-E36 had decreased

abundance of CLS and CD45+ cells in WAT compared to mice

treated with revmNOX-E36 (Figures 7C–7E), indicating a role of

CCL2 in macrophage recruitment to WAT.

Taken together, these data suggest that CCL2 is induced by

factors in the blood of CONV-R mice fed a lard diet through
rs
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Figure 7. CCL2 Mediates WAT Inflammation

(A and B) Indicated here are the (A) body weight and (B) distribution of adipocyte size in WAT from CONV-D mice fed lard for 28 days and treated with either

revmNOX or mNOX and from GF mice fed lard for 28 days and treated with revmNOX. n = 8 (CONV-D revmNOX and CONV-D mNOX), and n = 2 (GF revmNOX).

(C) Representative Mac-2 immunostaining of WAT from CONV-D mice fed lard and treated with either revmNOX or mNOX and from GFmice fed lard and treated

with revmNOX. Scale bars, 100 mm.

(D and E) Indicated here are the (D) quantification of CLS and (E) percentage of area occupied by CD45+ cells in WAT from CONV-Dmice fed lard and treated with

either revmNOX or mNOX and from GF mice fed lard and treated with revmNOX. n = 8 (CONV-D revmNOX and CONV-D mNOX), and n = 2 (GF revmNOX).

Mean values ± SEM are plotted; *p < 0.05; **p < 0.01.
mechanisms involving MyD88, TRIF, and TLR4 and that CCL2

facilitates accumulation of macrophages in WAT.

DISCUSSION

In the present study, we demonstrate that the type of dietary

lipids affects the gut microbiota and that the gut microbiota con-

tributes to the phenotypic differences betweenmice fed lard and

mice fed fish oil. Mice fed a lard diet have increased TLR activa-

tion in the systemic circulation, increased WAT inflammation,

and impaired insulin sensitivity compared to mice fed fish oil.

We found that mice lackingMyD88 or TRIF are protected against

lard-induced WAT inflammation and metabolic perturbations

and that saturated dietary lipids and the gut microbiota interact

to induce WAT inflammation. In addition, we show that CCL2

is required for microbiota-induced macrophage recruitment to

WAT in mice on a lard diet and that expression of CCL2 in adipo-

cytes is induced by factors in the blood of lard-fed CONV-Rmice

through a mechanism involving MyD88, TRIF, and TLR4.

We showed that the type of dietary fat is a major driver of com-

munity structure, affecting both the composition and diversity of

the gut microbiota. Results from 454 pyrosequencing and qPCR

showed that mice fed fish oil had increased levels of taxa from

the genera Lactobacillus, a known probiotic that has been linked

to reduced inflammation and mucosal lesion scores in several

models of inflammatory bowel diseases (Guarner et al., 2005),

and Akkermansia muciniphila, which has been shown to reduce

fat mass gain and WAT macrophage infiltration and improve

gut barrier function and glucose metabolism when administered

to mice with diet-induced obesity (Everard et al., 2013). By

contrast, mice fed lard had increased levels of taxa related to

Bilophila. Previous studies have shown that Bilophila increases

in mice and humans after consumption of diets rich in saturated

fats of animal origin (David et al., 2014; Devkota et al., 2012), and

Bilophila wadsworthia has been shown to exacerbate colitis in

genetically susceptible models (Devkota et al., 2012).

To determine whether the microbiota of fish-oil-fed mice

could confer protection against lard-diet-induced adiposity
Cell
and inflammation, we transplanted microbiota from lard- or

fish-oil-fed mice into antibiotic-treated mice that were then fed

a lard diet for 3 weeks. Here, we used antibiotic-treated mice

rather than GF mice because it is known that GF mice have an

underdeveloped immune system (Hooper et al., 2012), which

could potentially confound this analysis. Mice that received mi-

crobiota from a lard-fed donor showed increased adiposity

and inflammation, together with a significant increase in Lacto-

bacillus, compared to mice that received microbiota from a

fish-oil-fed donor. Therefore, these data do not provide evidence

for a role of Lactobacillus in reducing inflammation. However,

we found that the enrichment of Akkermansia co-occurred with

partial protection against adiposity and inflammation in mice

transplanted with fish-oil microbiota and fed a lard diet, high-

lighting Akkermansia as a potential mediator of the improved

inflammatory and metabolic phenotype of mice fed fish oil.

This finding is in agreement with previous findings linking

Akkermansia muciniphiliawith protection to diet-induced obesity

(Everard et al., 2013; Shin et al., 2014).

Serum from mice fed lard had increased capacity to activate

TLR4, which has been linked to WAT inflammation and meta-

bolic perturbations (Caesar et al., 2012; Cani et al., 2007; Creely

et al., 2007). Furthermore, we found that mice deficient in

either of the two TLR adaptor molecules MyD88 and TRIF were

protected from lard-induced WAT inflammation and insulin

sensitivity. These findings are consistent with earlier studies

showing reduced inflammation in mouse models lacking func-

tional MyD88 (Björkbacka et al., 2004; Everard et al., 2014;

Michelsen et al., 2004) or TRIF (Richards et al., 2013). One report

has shown that MyD88 protects against glucose homeostasis

perturbations and liver disease during a high-fat diet (Hosoi

et al., 2010). Inconsistencies in reports on the role of MyD88

may be due to environmental factors at different animal facilities.

For example, the presence of segmented filamentous bacteria,

which are enriched in Myd88�/� mice (Larsson et al., 2012)

and have a major impact on host immunity (Ivanov et al.,

2009), differs between animal facilities (Kriegel et al., 2011).

Importantly, the TRIF-deficient mice in our study had the same
Metabolism 22, 658–668, October 6, 2015 ª2015 The Authors 665



body weight and adipocyte size as the wild-type mice, showing

that protection against WAT inflammation was not dependent on

reduced adiposity.

TLR signaling can be activated by both microbial and endo-

genous ligands, and some investigators have suggested that

saturated fatty acids promote inflammation and insulin re-

sistance in obesity through TLR4 (Shi et al., 2006). The gutmicro-

biota modulates host lipid metabolism (Velagapudi et al., 2010);

therefore, protection againstWAT inflammation inMyd88�/� and

Trif�/� mice fed lard might be due to decreased TLR signaling

induced by ligands originating from the host or from the diet.

Here, we showed that serum levels of LPS were higher in mice

fed lard compared to mice fed fish oil, indicating that microbial

factors are present in the periphery that may directly affect

WAT inflammation. However, we cannot exclude the possibility

that other factors, such as saturated lipids, also directly con-

tribute to the inflammatory response by activating TLR signaling

(Huang et al., 2012). Furthermore, to determine the specific

impact of the gut microbiota on lard-induced WAT inflammation,

we compared the effects of lard and fish oil in CONV-R versusGF

mice. As expected, GF mice were partly protected against lard-

induced WAT inflammation, although the protection against

obesity in GF mice was less than that observed in previous

studies (Bäckhed et al., 2007; Caesar et al., 2012; Ding et al.,

2010; Rabot et al., 2010). This is likely due to the reduced

sucrose levels in the high-fat diets used in the present study. Su-

crose levels have previously been shown to have a major impact

on microbiota-induced obesity (Fleissner et al., 2010). We used

this fact to our benefit, as we could use weight-matched mice

to try and untangle whether the microbiota modulated WAT

inflammation by weight-dependent or -independent mecha-

nisms. Importantly, we observed an adiposity-independent link

between the gut microbiota and WAT inflammation, which may

implicate microbially derived products as mediators of inflam-

mation through TLRs. However, we also showed that GF mice

fed lard had increased WAT inflammation compared to GF

mice fed fish oil, indicating that microbiota-independent mecha-

nisms also contribute to accumulation of immune cells in WAT.

Previous studies have demonstrated that gut-microbiota-

derived factors can induce inflammation and Tnfa expression

in WAT (Caesar et al., 2012; Cani et al., 2007), and we showed

that serum from lard-fed CONV-R mice compared to GF mice

had an increased capacity to induce expression of Tnfa in both

adipocytes and macrophages. CCL2 is the only chemokine

that has been shown to mediate inflammation in a WAT-specific

knockout model (Lee and Lee, 2014), and TLR ligands have been

shown to induce secretion of CCL2 from 3T3-L1 adipocytes

(Kopp et al., 2009). Here, we found that Ccl2 expression in pri-

mary adipocytes and WAT was induced by microbial factors in

serum and required the presence of MyD88, TRIF, and TLR4.

Overexpression of Ccl2 in adipocytes has been shown to result

in WAT inflammation and insulin resistance without obesity (Ka-

mei et al., 2006; Kanda et al., 2006), and mice deficient in CCL2,

or its receptor chemokine (C-C motif) receptor 2 (CCR2), have

reduced WAT inflammation and insulin resistance during a

high-fat diet (Kanda et al., 2006; Weisberg et al., 2006). A recent

study also reported that CCL2 promotes local proliferation of

macrophages in WAT (Amano et al., 2014). By using the specific

pharmacological CCL2 inhibitor mNOX-E36 (Kulkarni et al.,
666 Cell Metabolism 22, 658–668, October 6, 2015 ª2015 The Autho
2007, 2009; Wlotzka et al., 2002), we demonstrated that CCL2

is essential for WAT macrophage accumulation in our model

and, therefore, constitutes a putative mediator of gut-micro-

biota-induced WAT inflammation. In addition, we found that

GF mice fed lard or fish oil had similar expression levels of

Ccl2 in WAT, suggesting that microbiota-independent WAT

inflammation is not mediated through CCL2.

Taken together, our data show that interaction between the

gut microbiota and dietary lipids induces WAT inflammation.

We also identify putative mechanisms, including the role of cell

signaling components and regulation of chemokine expression.

The study establishes the gut microbiota as an independent

factor aggravating inflammation during diet-induced obesity

and, therefore, a suitable target for therapies against associated

metabolic perturbations.
EXPERIMENTAL PROCEDURES

Wild-type C57Bl/6, Myd88�/�, and Trif�/�, Tlr4�/�, and Tlr2�/� mice were

maintained under standard specific-pathogen-free (SPF) or GF conditions as

described previously (Caesar et al., 2012). All mice were males and 11–

14 weeks of age at the start of the experiments. Mice were weight matched

at the start of the experiments, except when the aim was to compare

weight-matched mice at the end of the experiment as indicated in the text.

Mice were fed irradiated isocaloric diets (45% kcal fat) of identical composition

except for the source of fat, which was either menhaden fish oil (Research Di-

ets, D05122102) or lard (Research Diets, D10011202) (Table S1), for 11 weeks

unless otherwise indicated. The mice were fasted for 4 hr before they were

killed. Blood samples and epididymal WAT samples were harvested at the

end of the experiment. Weekly food consumption was measured cage-wise.

To study the role of CCL2 in WAT inflammation during conventionalization,

three groups of GF mice were injected subcutaneously with 20 mg/kg of the

CCL2 inhibitor mNOX-E36 (Baeck et al., 2012) or the nonfunctional control

substance revmNOX-E36 (both NOXXON Pharma) three times per week for

30 days. From day 3, the mice were fed a lard diet, and two groups of mice

(one group receiving mNOX-E36 and the other receiving revmNOX-E36)

were transferred to a conventional environment and gavaged with cecal con-

tent (isolated from a SPF 12-week-old male C57Bl/6 mouse) suspended in

200 ml PBS. The third group of mice (receiving revmNOX-E36) remained in a

GF environment.

Gut microbiota transplantation with cecal content from donor mice fed lard

or fish oil for 11 weeks was performed on male 12-week-old mice. Before the

microbial transplantation, recipient mice were treated with a 200 ml antibiotic

cocktail (ampicillin, 1 g/l; metronidazole, 1 g/l; vancomycin, 0.5 g/l; neomycin,

0.5 g/l) administrated by oral gavage once a day for 3 days. During the last 8 hr

of antibiotic treatment, mice were fed either lard or fish oil to facilitate sub-

sequent colonization. Half a frozen cecum was suspended in 5 ml of PBS con-

taining 0.2 g/l Na2S and 0.5 g/l cysteine as reducing agents in Hungate tubes.

Micewere colonized by oral gavagewith 200 ml of cecal suspension after a 4-hr

fast once a week. After the first microbiota gavage, all mice were fed a lard diet

for 3 weeks. All experiments were performed with protocols approved by the

University of Gothenburg Animal Studies Committee.

Statistical Analysis

Data are shown as means ± SEM. Statistical comparison of two groups was

performed using a Student’s t test; comparisons of three or more groups

were analyzed by one-way ANOVA with ad hoc Tukey post tests; analysis of

datasets containing multiple measurements from each mouse (weight gain,

ITT, diet consumption, and feeding efficiency) was performed with a two-

way ANOVA for repeated measurements; analysis of interaction was per-

formed with a two-way ANOVA; and analysis of covariance was performed

on linear regression. Statistical analysis was performed in GraphPad Prism 6

unless otherwise stated.

Additional experimental procedures are described in the Supplemental

Experimental Procedures.
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Novo Nordisk Foundation, the Knut and Alice Wallenberg Foundation,

TORNADO (FP7-KBBE-222720; http://www.fp7tornado.eu/), the EU-funded

ETHERPATHS project (FP7-KBBE-222639; http://www.etherpaths.org), and
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Supplementary Figure 1. Energy balance and glucose homeostasis in mice fed lard or fish oil. Related 
to Figure 1. (A) Food consumption during high-fat diet (n=3-4 cages/time-point). (B) Efficiency of feeding 
measured as gram body weight gained per kcal consumed (n=3-4 cages/time-point). (C) VO2 consumption, 
respiratory quotient (RQ) and locomotory activity measured over 18 h, including two light and one dark 
periods, in mice fed lard or fish oil for 2 days of for 5 weeks. Measurements performed on single-caged 
mice using SOMEDIC metabolic systems and G2 E-Mitter telemetry devices [n=8 (2 days); 5 (5 weeks)]. 
(D) Correlation analysis between energy expenditure and locomotory activity in mice fed lard or fish oil for 
2 days. Correlation between locomotory activity and energy expenditure was based on average values 
collected over 18 h. Each dot represents data collected in 2 h intervals. 8 mice were used for each dietary 
group resulting in a total of 72 data points for each dietary group. Energy expenditure was calculated by the 
equation (3.815 + 1.232*RQ)×VO2. ANCOVA analysis was performed to determine difference in slope 
between linear regression lines. Fasting (E) insulin and (F) glucose levels in mice fed lard or fish oil for 11 
weeks (n=9-10 mice per group). (G) Insulin tolerance in mice fed lard or fish oil (n=9-10 mice per group) 
for 10 weeks. Abundance of (H)  Akkermansia and (I) Lactobacillus in cecum of mice fed lard or fish oil for 
3 weeks (N=9 mice per group) and 11 weeks (N=15 mice per group). Quantification of bacteria was 
performed by qPCR. 
Mean values ± SEM are plotted; *p<0.05, **p<0.01, ***p<0.001 versus fish oil. 
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Supplementary Figure 2. Abundance of SCFA in mice fed lard or fish oil. Related to Figure 1.  
Abundance of (A) total SCFA, (B) acetate, (C) propionate and (D) butyrate in cecum of mice fed lard diet or 
fish oil for 11 weeks (n=6 mice per group. Ratios between (E) acetate, (F) propionate and (G) butyrate and 
total abundance of SCFA (based on data presented in panels A-D). Abundance of (H) lactate and (I) 
succinate in cecum of mice fed lard or fish oil for 11 weeks. (J) Abundance of LPS in serum from mice fed 
lard or fish oil for 3 weeks (n=7-8 mice per group). 
Mean values ± SEM are plotted; *p<0.05. 
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Supplementary Figure 3. Microbiota in blood and epididymal WAT of mice fed lard or fish oil for 11 
weeks. Related to Figure 2. 
(A) Principal coordinate analysis of blood microbiota composition based on unweighted UniFrac in mice fed 
lard or fish oil [n=14 (lard), n=15 (fish oil)]; no amplification product with 515F and 806R primers could be 
obtained for one lard blood sample). (B) Rarefaction curves for phylogenetic diversity in blood microbiota 
from mice fed lard or fish oil (10-2710 sequences/sample). (C) Pie charts of blood microbial phyla 
composition in mice fed lard or fish oil for 11 weeks. (D) Principal coordinate analysis of WAT microbiota 
composition based on unweighted UniFrac in mice fed lard or fish oil [n=12 (lard), n=15 (fish oil)]; the 
depth of sequencing for three lard WAT samples was lower than 2000 sequences/samples so these samples 
were excluded from microbiota analyses). (E) Rarefaction curves for phylogenetic diversity in WAT 
microbiota from mice fed lard or fish oil (10-2010 sequences/sample). (F) Pie charts of WAT microbial 
phyla composition in mice fed lard or fish oil for 11 weeks. 
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Supplementary Figure 4. WAT inflammation in wild-type mice after 1, 3 and 11 weeks of lard or fish 
oil diet and glucose homeostasis in wild-type, Myd88-/- and Trif-/- mice after 10 weeks of lard or fish 
oil diet. Related to Figure 3. (A) Quantification of crown-like structures in wild-type mice fed lard or fish-
oil for 1, 3 or 11 weeks [n=10 (wild-type lard 1 week); 10 (wild-type lard 3 week); 7 (wild-type lard 11 
week); 10 (wild-type fish oil 1 week); 10 (wild-type fish oil 3 weeks); 7 (wild-type fish oil 11 week)]. (B) 
Percentage of area occupied by CD45+ cells in WAT from wild-type mice fed lard or fish-oil for 1, 3 or 11 
weeks [n=10 (wild-type lard 1 week); 10 (wild-type lard 3 week); 7 (wild-type lard 11 week); 10 (wild-type 
fish oil 1 week); 10 (wild-type fish oil 3 weeks); 7 (wild-type fish oil 11 week)]. Fasting (C) insulin and (D) 
glucose levels in mice fed lard or fish oil for 11 weeks [n=6 (wild-type lard); 4 (Myd88-/- lard); 6 (Trif-/- 
lard); 3 (wild-type fish oil); 9 (Myd88-/- fish oil); 9 (Trif-/- fish oil)]. Insulin tolerance in mice fed (E) lard 
[n=3 (wild-type); 7 (Myd88-/-); 8 (Trif-/- )] or (F) fish oil [(n=3 (wild-type); 4 (Myd88-/-); 6 (Trif-/- )] for 10 
weeks. 
Mean values ±SEM are plotted; *p<0.05, **p<0.01, ***p<0.001. 
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Supplementary Figure 5. Gene regulation by the gut microbiota in mice fed lard or fish oil. Related to 
Figure 4. Regulation of WAT genes induced by the gut microbiota in mice fed lard (y-axis) or fish oil (x-
axis). Genes significantly regulated (p<0.05, corrected for FDR) are displayed. The embedded table displays 
the number of regulated genes unique to either of the dietary groups or common to both and the R-value and 
p-value associated with a linear regression analysis of the dataset (n=6 mice). 
Mean values ± SEM are plotted; *p<0.05, ***p<0.001. 
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Supplementary Figure 6. . Abundance of bacterial taxa in mice transplanted with cecal microbiota 
from donor mice fed lard or fish oil for 11 weeks. Related to Figure 5. (A-C) Abundance of Akkermansia 
and Lactobacillus in cecum of mice fed lard for 3 weeks and transplanted with cecal microbiota from donor 
mice fed lard or fish oil for 11 weeks (n=10 mice per group). Quantification of bacteria was performed by 
qPCR. 
Mean values ±SEM are plotted; *p<0.05, ***p<0.001. 
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Supplementary Figure 7. Expression and secretion of CCL2 in primary macrophages. Related to 
Figure 6. (A) Expression of Ccl2 and (B) CCL2 secretion in primary wild-type macrophages stimulated for 
4 h with 2% plasma isolated from vena cava of CONV-R and GF mice fed lard (n=5-6 mice per group).  
Mean values ± SEM are plotted. 



Supplementary Table 1. Diet composition. Related to Figure 1. 
 D10011202 (lard diet) D05122102 (Fish-oil diet) 
 g (%) kcal (%) g (%) kcal (%) 

Protein 24 20 24 20 
Carbohydrate 41 35 41 35 

Fat 23 45 23 45 
Total  100  100 

 kcal/g  kcal/g  
 4.72  4.73  
 g/unit kcal/unit g/unit kcal/unit 

Casein, 80 Mesh 200 800 200 800 
L-Cysteine 3 12 3 12 

Corn Starch 72.8 291 72.8 291 
Maltodextrin 10 100 400 100 400 

Sucrose 172.8 691 172.8 691 
Cellulose 50  50  

Soybean oil 25 225 25 225 
Lard 177.7 1598   

Menhaden Oil    177.7 1598 
tert-Butylhydroquinone 0.0355    

Mineral Mix S10026 10  10  
DiCalcium Phosphate 13  13  

Calcium Carbonate 5.5  5.5  
Potassium Citrate 16.5  16.5  

Vitamin mix V10001 10 40 10 40 
Choline Bitartrate 2  2  

Cholesterol 0.54    
     

Total 858.73 4057 858.15 4057 
     

Cholesterol (g) 0.709  0.71  
Cholesterol (%) 0.083  0.083  

tBHQ (g) 0.035  0.035  

 



Supplementary Table 2. Relative abundance of phyla and of genera differentially abundant in gut microbiota from mice fed lard or fish 
oil for 11 weeks (p<0.05, FDR correction for multiple testing). Related to Figure 1. 

  
Relative abundance Fold change 

Phylum FDR Lard Fish oil (Lard/Fish oil) 
Bacteroidetes 0.038 2.30E-01 1.46E-01 1.57 
Unassigned;Other 0.31 4.18E-03 2.74E-03 1.53 
Deferribacteres 0.32 2.72E-02 1.82E-02 1.49 
Verrucomicrobia 0.026 4.59E-04 1.42E-03 0.32 
TM7 0.026 1.15E-04 4.93E-04 0.23 
Proteobacteria 0.038 5.11E-02 9.97E-02 0.51 
Tenericutes 0.13 3.44E-04 6.07E-04 0.57 
Actinobacteria 0.32 7.74E-03 8.82E-03 0.88 
Cyanobacteria 0.32 1.67E-04 3.22E-04 0.52 
Bacteria;Other 0.55 2.15E-03 2.42E-03 0.89 
Firmicutes 0.78 6.77E-01 7.19E-01 0.94 
Taxon 

    p_Proteobacteria|c_Deltaproteobacteria|o_Desulfovibrionales|f_Desulfovibrionaceae|g_Bilophila 0.042 4.44E-03 1.14E-04 39.05 
p_Bacteroidetes|c_Bacteroidia|o_Bacteroidales|f_|g_ 0.012 9.12E-03 1.57E-03 5.79 
p_Bacteroidetes|c_Bacteroidia|o_Bacteroidales|f_Bacteroidaceae|g_Bacteroides 0.038 1.31E-01 4.41E-02 2.98 
p_Firmicutes|c_Clostridia|o_Clostridiales|f_Lachnospiraceae|Other 0.040 3.71E-02 2.10E-02 1.77 
p_Firmicutes|c_Clostridia|o_Clostridiales|f_Ruminococcaceae|g_Ruminococcus 0.040 1.74E-02 1.02E-02 1.70 
p_Bacteroidetes|c_Bacteroidia|o_Bacteroidales|f_S24-7|g_ 0.041 5.26E-02 8.37E-02 0.63 
p_Proteobacteria|c_Deltaproteobacteria|o_Desulfovibrionales|f_Desulfovibrionaceae|g_ 0.041 4.57E-02 9.82E-02 0.47 
p_Firmicutes|c_Bacilli|o_Lactobacillales|f_Streptococcaceae|g_Streptococcus 0.042 1.36E-04 3.98E-04 0.34 
p_Verrucomicrobia|c_Verrucomicrobiae|o_Verrucomicrobiales|f_Verrucomicrobiaceae|g_Akkermansia 0.037 4.59E-04 1.42E-03 0.32 
p_Firmicutes|c_Clostridia|o_Clostridiales|f_Lachnospiraceae|g_Coprococcus 0.012 6.63E-03 2.83E-02 0.23 
p_TM7|c_TM7-3|o_CW040|f_F16|g_ 0.038 1.15E-04 4.93E-04 0.23 
p_Firmicutes|c_Bacilli|o_Lactobacillales|f_Lactobacillaceae|g_Lactobacillus 0.012 4.79E-03 2.39E-02 0.20 
p_Firmicutes|c_Clostridia|o_Clostridiales|f_Clostridiaceae|g_Candidatus Arthromitus 0.040 0.00E+00 2.28E-04 0.00 
p_Firmicutes|c_Clostridia|o_Clostridiales|f_Peptococcaceae|g_rc4-4 0.040 0.00E+00 1.19E-03 0.00 



Supplementary Table 3. Functional analysis of gene regulation induced by diet (lard or 
fish oil for 11 weeks) in WAT. Related to Figure 4 and Supplementary Figure 5. 
GO term Description Bonferroni 
Categories enriched in WAT of mice fed lard 
278 mitotic cell cycle 4.2x10-15 
51301 cell division 2.1x10-13 
45321 leukocyte activation 4.2x10-13 
1775 cell activation 1.7x10-12 
48285 organelle fission 5.8x10-12 
35556 intracellular signal transduction 2.6x10-08 
1817 regulation of cytokine production 1.4x10-07 
30029 actin filament-based process 1.8x10-06 
6954 inflammatory response 5.5x10-06 
9611 response to wounding 7.6x10-06 
6260 DNA replication 1.6x10-05 
7059 chromosome segregation 4.3x10-05 
6793 phosphorus metabolic process 4.6x10-05 
6796 phosphate-containing compound metabolic process 4.6x10-05 
6897 endocytosis 1.9x10-04 
10324 membrane invagination 1.9x10-04 
6935 chemotaxis 3.7x10-04 
6259 DNA metabolic process 3.9x10-04 
6468 protein phosphorylation 4.1x10-04 
44093 positive regulation of molecular function 1.3x10-03 
32943 mononuclear cell proliferation 2.7x10-03 
8219 cell death 1.2x10-02 
16265 death 2.1x10-02 
7017 microtubule-based process 2.2x10-02 
42325 regulation of phosphorylation 2.5x10-02 
6665 sphingolipid metabolic process 3.0x10-02 
51174 regulation of phosphorus metabolic process 4.6x10-02 
Categories enriched in WAT of mice fed fish oil 
6091 generation of precursor metabolites and energy 4.7x10-32 
22900 electron transport chain 3.4x10-24 
6412 translation 1.2x10-20 
55114 oxidation-reduction process 6.0x10-19 
6732 coenzyme metabolic process 4.6x10-10 
51186 cofactor metabolic process 3.1x10-08 
19318 hexose metabolic process 1.6x10-04 
6631 fatty acid metabolic process 9.2x10-04 
7005 mitochondrion organization 1.8x10-03 
9081 branched-chain amino acid metabolic process 4.1x10-02 

 



Supplementary Table 4. Functional analysis of gene regulation induced by gut 
microbiota or interaction between gut microbiota and diet in WAT from mice fed lard 
or fish oil for 11 weeks. Related to Figure 4 and Supplementary Figure 5. 
GO term Description Bonferroni 
Categories enriched in genes increased by gut microbiota in WAT of mice fed lard 
6396 RNA processing 1.8x10-12 
6397 mRNA processing 1.1x10-11 
16071 mRNA metabolic process 1.1x10-09 
6091 generation of precursor metabolites and energy 1.4x10-04 
6457 protein folding 1.6x10-04 
22900 electron transport chain 2.4x10-04 
7005 mitochondrion organization 1.5x10-03 
44265 cellular macromolecule catabolic process 8.3x10-03 
22613 ribonucleoprotein complex biogenesis 9.6x10-03 
9057 macromolecule catabolic process 1.2x10-02 
2504 antigen processing and presentation of antigen MHC class II 1.2x10-02 
Categories enriched in genes  reduced by gut microbiota in WAT of mice fed lard 
6091 generation of precursor metabolites and energy 4.7x10-32 
22900 electron transport chain 3.4x10-24 
6412 translation 1.2x10-20 
55114 oxidation-reduction process 6.0x10-19 
6732 coenzyme metabolic process 4.6x10-10 
51186 cofactor metabolic process 3.1x10-08 
19318 hexose metabolic process 1.6x10-04 
6631 fatty acid metabolic process 9.2x10-04 
7005 mitochondrion organization 1.8x10-03 
9081 branched-chain amino acid metabolic process 4.1x10-02 
Categories enriched in genes induced by gut microbiota in WAT of mice fed fish oil 
6412 translation 1.9x10-42 
6091 generation of precursor metabolites and energy 4.4x10-38 
22900 electron transport chain 5.9x10-33 
55114 oxidation-reduction process 3.1x10-19 
34660 ncRNA metabolic process 3.3x10-12 
7005 mitochondrion organization 5.7x10-10 
6399 tRNA metabolic process 9.5x10-09 
6396 RNA processing 3.5x10-08 
51186 cofactor metabolic process 1.3x10-07 
22613 ribonucleoprotein complex biogenesis 5.2x10-07 
34613 cellular protein localization 1.5x10-05 
6732 coenzyme metabolic process 1.1x10-04 
6413 translational initiation 2.3x10-03 
8610 lipid biosynthetic process 3.2x10-03 
Categories enriched in genes  reduced by gut microbiota in WAT of mice fed fish oil 
9611 response to wounding 1.1x10-11 
51056 regulation of GTPase mediated signal transduction 8.1x10-08 
6954 inflammatory response 8.7x10-06 
50817 coagulation 3.9x10-04 
2252 immune effector process 1.6x10-03 
1775 cell activation 7.5x10-03 
6897 endocytosis 1.1x10-02 
Categories enriched in genes regulated by gut microbiota-diet interaction in Q1(Figure 3H)  
0009611 response to wounding 1.4x10-11 

0002526 acute inflammatory response 6.9x10-08 
0006955 immune response 8.5x10-05 
0050817 coagulation 1.6x10-04 

0009074 aromatic amino acid family catabolic process 1.8x10-03 
0055114 oxidation-reduction process 1.9x10-03 
0048584 positive regulation of response to stimulus 6.2x10-03 

0019439 aromatic compound catabolic process 1.1x10-02 

Categories enriched in genes regulated by gut microbiota-diet interaction in Q3 (Figure 3H)  
0015031 protein transport 1.5x10-04 

0051186 cofactor metabolic process 1.5x10-04 
0051188 cofactor biosynthetic process 2.4x10-03 
0006511 ubiquitin-dependent protein catabolic process 1.0x10-02 

 
 



Supplementary Experimental procedures 

 

Telemetry, energy expenditure and food consumption measurements 

Telemetry devices (G2 E-Mitter, Mini Mitter, Bend, OR) were implanted in mice two weeks 

before the experiment according to the surgery protocol provided by the manufacturer. 

Measurements were performed after 2 days or after 5 weeks of high-fat diet. Only one 

measurement was performed on each mouse. Oxygen consumption (VO2) and carbon dioxide 

production (VCO2) were recorded every 2 min for 23 h by indirect calorimetry with a 

SOMEDIC metabolic system (INCA®, Somedic Sales, Hörby, Sweden), which is built 

around a sealed chamber and ventilated with a constant flow of air. Animals had ad libitum 

access to food and water during the measurements and the temperature was set to 21°C. The 

indirect calorimeter was combined with the Mini Mitter telemetry system to measure 

locomotory activity, defined as the number of changes in direction per minute, and body 

temperature. The data for the first 3 h were discarded to allow for animal acclimatization to 

the testing conditions. The respiratory quotient (RQ) was calculated per hour as the 

VCO2/VO2 ratio. In all calculations, W0.75 was used to correct for body size, according to 

Kleiber's law (Kleiber, 1932). Energy expenditure was calculated by the equation (3.815 + 

1.232*RQ)×VO2. 

Insulin tolerance tests and measurements of plasma insulin levels 

Insulin tolerance tests were performed after 10 weeks of high-fat diet by intraperitoneal 

injection of insulin (0.75 U/kg body weight in lard vs. fish-oil diet; 0.375 U/kg in wild-type 

vs. mutant mice), after a 4 h fast. Tail blood was collected at 0, 30, 60, 90 and 120 min after 

injection. Blood glucose levels were determined using a HemoCue glucose 201+ analyzer 

(HemoCue, Ängelholm, Sweden). Insulin was measured with a kit from Crystal Chem 

(Downers Grove, IL) according to the manufacturer’s protocol. 



Extraction of Genomic DNA and Profiling of the 16S rRNA gene by Next Generation 

sequencing 

Total genomic DNA was isolated from 60-100 mg of cecal content, 100 mg of WAT and 50 

µl of frozen whole blood collected from the cava vein by using a repeated bead beating 

method as previously described (Salonen et al., 2010).  

The cecal microbiota of mice fed lard or fish oil diets for 11 weeks was sequenced by 454 

pyrosequencing of the 16 rRNA gene in the V1-V2 region, amplified with the 27F and 

barcoded 338R primers fused with sequencing adapters (Hamady et al., 2008). Samples were 

sequenced in a 454 GS FLX system with Titanium chemistry by GATC Biotech (Konstanz, 

Germany). Each sample was amplified in triplicate in reaction volumes of 25 μl containing 

1.5 U of FastStart Taq DNA Polymerase (Roche), 200 nM of each primer and 20 ng of 

genomic DNA. PCR was carried out under the following conditions: initial denaturation for 3 

min at 95°C, followed by 25 cycles of denaturation for 20 sec at 95°C, annealing for 20 sec at 

52°C and elongation for 60 sec at 72°C, and a final elongation step for 8 min at 72°C.  

The bacterial DNA present in WAT and blood samples of mice fed lard ad fish oil diets for 11 

weeks, and the cecal microbiota of the transplanted mice were profiled by sequencing of the 

V4 region of the 16S rRNA gene on an Illumina MiSeq (llumina RTA v1.17.28; MCS v2.5) 

using 515F and 806R primers designed for dual indexing (Kozich et al., 2013) and the V2 kit 

(2x250 bp paired-end reads). Each sample was amplified in duplicate in reaction volumes of 

25 μl containing 1x Five Prime Hot Master Mix (5 PRIME GmbH), 200 nM of each primer, 

0.4 mg/ml BSA, 5% DMSO and 20 ng (cecal samples) or 100 ng (WAT and blood samples) 

of genomic DNA. PCR was carried out under the following conditions: initial denaturation for 

3 min at 94°C, followed by 25 cycles (cecal samples) or 35 cycles (blood and WAT samples) 

of denaturation for 45 sec at 94°C, annealing for 60 sec at 52°C and elongation for 90 sec at 

72°C, and a final elongation step for 10 min at 72°C. 



Replicates were combined, purified with the NucleoSpin Gel and PCR Clean-up kit 

(Macherey-Nagel, Germany) and quantified using the Quant-iT PicoGreen dsDNA kit 

(Invitrogen, Carlsbad, CA). Purified PCR products were diluted to 20 ng/μl and pooled in 

equal amounts. The pooled amplicons were purified again using Ampure magnetic 

purification beads (Agencourt, Danvers, MA) to remove short amplification products. 

Raw pyrosequencing data was trimmed of the 454 adapter and barcodes, and filtered to 

remove sequences that were shorter than 200 nucleotides, longer than 1000 nucleotides, 

contained primer mismatches, ambiguous bases, uncorrectable barcodes, and homopolymer 

runs in excess of six bases.  

Illumina paired-end reads were merged using PEAR (Zhang et al., 2014) and quality filtered 

with FASTX (Phred score ≥ 20 for 100% of the bases in a sequence). For WAT and blood 

samples sequences that were shorter than 200 nucleotides or longer than 400 were removed 

from the analysis. 

Quality filtered 454 pyrosequencing and Illumina reads were analyzed with the software 

package QIIME (Caporaso et al., 2010) (version 1.8.0). Sequences were clustered into 

operational taxonomic units (OTUs) at a 97% identity threshold using an open-reference OTU 

picking approach with UCLUST (Edgar, 2010) against the Greengenes reference database 

(DeSantis et al., 2006) (13_8 release). All sequences that failed to cluster when tested against 

the Greengenes database were used as input for picking OTUs de novo. Representative 

sequences for the OTUs were Greengenes reference sequences or cluster seeds, and were 

taxonomically assigned using the Greengenes taxonomy and the Ribosomal Database Project 

Classifier (Wang et al., 2007). Representative OTUs were aligned using PyNAST (Caporaso 

et al., 2010) and used to build a phylogenetic tree with FastTree (Price et al., 2010), which 

was used to estimate α- and β-diversity of samples using phylogenetic diversity (Faith, 1992) 

and unweighted unifrac (Lozupone and Knight, 2005). Three-dimensional principal 



coordinates analysis plots were visualized using Emperor (Vázquez-Baeza et al., 2013). 

Chimeric sequences were identified with ChimeraSlayer (Haas et al., 2011) and excluded 

from all downstream analyses. Similarly, sequences that could not be aligned with PyNAST, 

singletons and very low abundant sequences (relative abundance <0.005%) were also 

excluded.  

To correct for differences in sequencing depth, the same amount of sequences was randomly 

sub-sampled for each sample and used for diversity analyses. The Wilcoxon rank-sum test 

was used to compare the abundance of OTUs at different taxonomical levels; significant 

differences were identified after correction for false discovery rate. Statistical significance of 

sample groupings was tested with a multivariate non-parametric analysis of variance (adonis, 

999 permutations) (Anderson, 2001). LDA Effect Size (LEfSe) (Segata et al., 2011) was used 

to identify taxa that discriminated microbiota profiles according to the diet.  

qPCR Analysis of 16S rRNA genes 

Quantitative PCR (qPCR) was used to enumerate bacterial 16S rRNA gene copies in the 

genomic DNA extracted from cecal, WAT and blood samples. Samples were quantified in 25 

µl reactions containing 1x SYBR Green Master Mix (Thermo Scientific, Waltham, MA), 200 

nM of each primer and 5 ng of genomic DNA. Standard curves for quantification consisted in 

ten-fold serial dilutions in the range of 108 to 100 copies of target 16S rRNA genes from 

reference strains, amplified with primers 27F (5’- GTTTGATCCTGGCTCAG-3’) and 1492R 

(5’-CGGCTA CCTTGTTACGAC-3’).  

The total amount of bacterial DNA in WAT and blood samples was quantified with the 

universal primers UniF (5’-GTGSTGCAYGGYYGTCGTCA-3’) and UniR (5’-

ACGTCRTCCMCNCCTTCCTC-3’) (Fuller et al., 2007) using the 16S rRNA gene of 

Escherichia coli W3310 as standard. In cecal samples, Lactobacillus with LactoF (5’-

TGGAAACAGRTGCTAATACCG-3’) and LactoR (5’-GTCCATTGTGGAAGATTCCC-3’) 



(Byun et al., 2004) and Akkermansia with AM1 (5’-CAGCACGTGAAGGTGGGGAC3’) and 

AM2 (5’-CCTTGCGGTTGGCTTCAGAT-3’); the 16S rRNA genes of Lactobacillus reuteri 

SD2112 and  Akkermansia muciniphila were used as standard, respectively. All measurements 

were performed in duplicates. 

Measurement of TLR and NOD activation, SCFAs and LPS 

Blood was collected from the vena cava of mice after an 4 h fast using a pyrogen-free 

syringe/needle, and plasma was immediately isolated and frozen in liquid nitrogen. TLR2, 

TLR4, TLR5, TLR9 and NOD2 agonists were assayed using HEK-Blue reporter cell lines 

expressing mTLR2, mTLR4, mTLR5, mTLR9 or mNOD2 (InvivoGen, San Diego, CA) using 

a modified version of the manufacturer’s protocol. HEK-Blue cells were grown for two 

passages with medium supplemented with selective antibiotics provided by the manufacturer, 

and then passaged once in medium without any antibiotics. The assay was performed when 

cells were in passage 11-14 by plating 105 cells in 96-well plates containing 10% heat-

inactivated (2 h at 56 °C) serum. Cells were then incubated with 2% (v/v) serum isolated from 

vena cava of fasted mice for 21 h at 37 °C under an atmosphere of 5% CO2/95% air. Twenty 

microlitres of the cell culture supernatants were added to 180 µl of the QUANTI-Blue 

substrate in a 96-well plate. The mixtures were then incubated at 37°C for 1-3 h and secreted 

embryonic alkaline phosphatase levels were determined using a spectrophotometer at 655 nm.  

GC-MS was used for measurement of organic acids in caecal content samples from mice fed 

fish oil (N=6) and lard (N=6) based diets. 90 –140 mg of frozen caecal contents were 

transferred to glass tubes (16 × 125 mm) fitted with a screw cap, and a volume of 100 μl of 

internal standards stock solution (1M [1-13C]acetate and [2H6]propionate, 0.5M [13C4]butyrate, 

0.1M [1-13C1]isobutyrate and [1-13C]isovalerate, [1,2-13C2]hexanoate, [13C]lactate and 

[13C4]succinic acid each in 40 mM) was added to the tubes. Prior to extraction samples were 

freeze-dried at −50 °C for 3 h, yield 30–40 mg dry weight. Extraction, analysis and 



quantification of the measured metabolites are described in detail by Ryan et al. (Ryan et al., 

2014). LPS concentration in serum collected from vena cava was measured using Endosafe-

MCS (Charles River, Lyon, France) based on the limulus amoebocyte lysate (LAL) kinetic 

chromogenic methodology as previously described (Caesar et al., 2012). 

Immunohistochemistry of WAT 

Immunohistochemistry on paraffin-embedded epididymal WAT sections (5 mm) was 

performed as previously described (Caesar et al., 2012). Cells were stained with MAC-

2/galectin-3 antibody (CL8942AP, Cedarlane Laboratories, Burlington, ON) or CD45 

antibody (ab25386, Abcam, Cambridge, UK) diluted 1:500. Adipocyte size, number of CLS 

and CD45+ stained area were determined in histological sections of 15-50 mm2 for each 

mouse. Adipocyte size and CD45+ stained area were quantified using the software Biopix iQ 

2.1.4 (Gothenburg, Sweden). 

Microarray expression analysis 

RNA was isolated from epididymal WAT using RNeasy Lipid Tissue Mini Kit (Qiagen, 

Hilden, Germany). 250 nanograms of total RNA from each sample were used to generate 

amplified and biotinylated sense-strand cDNA from the entire expressed genome according to 

the Ambion WT Expression Kit (P/N 4425209 Rev C 09/2009) and Affymetrix GeneChip® 

WT Terminal Labeling and Hybridization User Manual (P/N 702808 Rev 3, Affymetrix, 

Santa Clara, CA). The arrays (GeneChip® Mouse Gene 1.0 ST Array) were hybridized for 16 

h in a 45°C incubator, rotated at 60 rpm, washed, stained and finally scanned using the 

GeneChip® Scanner 3000 7G according to the manufacturer’s manual (PN 702731 Rev 3, 

Affymetrix).  

The raw data were normalized using the robust multi-array average method (Li and Wong, 

2001). Differential expression of microarray data was evaluated by Student’s t-test followed 

by correction for false discovery rate. Analysis of interaction, using colonization status and 



diet as independent variables, was evaluated by two-way analysis of interaction followed by 

correction for false discovery rate. Analysis of enrichment of regulated genes within 

functional categories [gene ontology categories (GO)] (Ashburner et al., 2000) was performed 

using the software David (Huang et al., 2008). The results of the enrichment calculation were 

filtered for GO categories that were significantly enriched (p<0.05) after Bonferroni 

correction. Redundancy within lists of GO terms was reduced by the Revigo software (Supek 

et al., 2011) with a similarity score set to 0.5. Principle component analysis was performed in 

MultiExperiment Viewer (MeV). 

Quantitative RT-PCR 

RNA was isolated from epididymal WAT using RNeasy kit with on-column DNase treatment 

(Qiagen). cDNA templates were synthesized from total RNA using the high-capacity cDNA 

reverse transcription kit (Applied Biosystems, Foster City, CA) according to the 

manufacturer’s protocol. Primers used for Tnfα were CCAGACCCTCACACTCA (forward) and 

CACTTGGTGGTTTGCTACGAC (reverse) and primers used for Ccl2 were 

AGGTCCCTGTCATGCTTCTGG (forward) and CTGCTGCTGGTGATCCTCTTG (reverse). PCR 

assays were performed in 25 µl reactions containing 1xSYBR Green Master Mix buffer 

(Thermo Scientific, Waltham, MA), and 900 nM gene-specific primers. Gene expression data 

were normalized to the ribosomal protein L32.  

Primary cell harvest, cultivation and assays 

Primary adipocytes were prepared by isolating preadipocytes from epididymal WAT of SPF 

mice fed standard chow diet. WAT was treated with collagenase type II (C6885, Sigma 

Aldrich, St Louis, MO) (10 mg/ml) in Hank’s buffer supplemented with 2% BSA for 1 h at 

37°C. The cells were run through a 70 μm cell strainer and the stromal vascular fraction was 

isolated by centrifugation.  Erythrocytes were removed by ACK solution treatment. 



Adipocytes were grown in ready-made mediums from ZenBio (OM-PM, OM-DM and OM-

AM, ZenBio, Durham, NC) according to the manufacturer’s protocol. 

Primary macrophages were prepared by harvesting bone marrow from femur of SPF mice fed 

standard chow diet. Erythrocytes were removed by ACK solution treatment. Bone marrow 

cells were cultured in high-glucose Dulbecco modified Eagle medium supplemented with 

10% FCS, 1% HEPES, 1% gentamycin, 0.01% β-mercaptoethanol, and 50 ng/mL M-CSF 

(416-ML-050, R&D Systems, McKinley Place, MN). Experiments were performed on 

differentiated macrophages after 10-12 days. 

Primary cells were stimulated with 2% (v/v) of serum isolated from vena cava of fasted SPF 

or GF mice fed lard diet for 4 hours. The concentration of secreted CCL2 was determined by 

ELISA (MJE00, R&D Systems).  
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