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Supplementary Figure 1 | Controlled divergence of signals by genes expressed in 32 

the GMN. a, Averaging effect of the random network. Black closed circles represent 33 

neurons. The random convergence and divergence of signals is equivalent to averaging. 34 

b, Complete sub-networks in a three-layer GMN in which each neuron expresses two 35 

genes selected from a GR of 10 genes. The subnetworks composed of neurons 36 

expressing genes 2, 3, 5 and 6 are highlighted in red, green, blue, and yellow, 37 

respectively. Each subnetwork is complete, suggesting that the information within a 38 

subnetwork will be retained across the layers. Thus, the information content of the 39 

entire network may be divided and stored in subnetworks. 40 

  41 
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Supplementary Figure 2 | 1000 samples of 12×12 pixel images randomly selected 42 

from the original photograph in Fig. 4a. 43 

44 
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Supplementary Figure3 | Images listed according to their similarity to the 45 

active-neuron or active-gene arrays. Randomly chosen images (candidates, 46 

Supplementary Fig. 2) from the photograph in Fig. 4a were used as inputs in a 10-layer 47 

GMN. The active-neuron arrays or active-gene arrays of these images were compared to 48 

those of the two template images (a). b, Top 40 images showing similarity between the 49 

active-neuron arrays of layer 2 and both the layer 2 candidate and template images. c, 50 

Top 40 images showing similarity between the active-gene arrays of layer 2 and both 51 

the layer 2 candidate and template images. d, Top 40 images showing similarity 52 

between the active-neuron arrays of layer 10 and both the layer 10 candidate and 53 

template images. e, Top 40 images showing similarity between the active-gene arrays of 54 

layer 10 and both the layer 10 candidate and template images. f, Top 40 images showing 55 

similarity between the active-gene arrays of layer 10 and both the layer 2 candidate and 56 

template images. g, Top 40 images listed according to the least square error. h, Top 40 57 

images showing similarity between the active-neuron array of layer 10 and the layer 10 58 

candidate images in a random network.   59 
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Supplementary Figure 4 | 60 

Another example of the 61 

transformation of the 62 

active-gene arrays by 63 

various GMNs. The 64 

GMNs of GR = 50 and GE 65 

=5 were used. The 66 

transmission polarities are 67 

specified with arrows 68 

(positive) and bars 69 

(negative). a, template 70 

image and the common 71 

part (layer 1 and 2). 72 

AP(layer2) = 50%. b, 73 

AP(layers 3~10) = 50%. c, 74 

AP(layer 3) = 50%. d, The 75 

GMN designed after the 76 

cerebellar network with 77 

layer 2 to 5 corresponding 78 

to the pontine nuclei, 79 

granule cell layer, Purkinje 80 

cell layer and cerebellar nuclei, respectively. AP(layer 3~5) = 25%. The combination 81 

ratio between main and side branches was 1:2. e, The GMN designed after the basal 82 

ganglia with layer 3 to 6 corresponding to the striatum, external glubus pallidus, 83 

substantia nigra pars reticulata and thalamic nuclei, respectively. AP(layers 3, 4, 5, 6) = 84 

25, 10, 25, 25%. The combination ratio between main and side branches was 1:2. f, the 85 

active-gene array of layer 2 aligned in descending order by the template image in a. The 86 

gene order in this re-aligned array is called the input order. g, the active-gene array in 87 

layer 2 averaged over 5000 candidate images (sd, gray area).  h, j, l, n, the active-gene 88 

arrays at the last layer of the GMNs b, c, d and e, respectively, activated by the template 89 

image a. i, k, m, o, the active-gene arrays averaged over the 5000 images at the last 90 

layer of the GMNs b, c, d and e, respectively (average, solid line; sd, gray area). p, q, r, 91 

s, the example images listed according to the similarity of  their active-gene arrays at 92 

layer 2 to the active-gene array of the template image at the last layers of GMNs b,c,d 93 

and e, respectively. The active-gene arrays shown in h-s are realigned in the input order.  94 
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Supplementary Figure 5 | Cross-layer consistency: Analysis of similarity and 122 

distance between a pair of inputs and outputs. 123 

a, b, If a network demonstrates reliable information transfer, similar inputs should 124 

return similar outputs (a), and dissimilar inputs should return dissimilar outputs (b), 125 

even after passing through multiple layers. In addition, the distance between a pair of 126 

independent inputs should correlate with the distance of their outputs. c, When these 127 

relationships between the input and output pairs are plotted, the slope of the data points 128 

should be close to “1” for a reliable network. In contrast, if a network is not reliable, the 129 

slope will be flat.  130 
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Supplementary Figure 6 | Analysis of cross-layer consistency. One thousand pairs of 131 

images were used as inputs in 10-layer networks. The distance between a pair of outputs 132 

at layers 3 to 10 (from left to right) was plotted against the distance between the 133 

corresponding pair of outputs at layer 2 (outputs at layer 2 were used as inputs in layer 134 

3). The distances were calculated using the active-neuron (top) and active-gene arrays 135 

(middle) of GMNs (GR=50, GE=5), and the active-neuron arrays of random networks 136 

(bottom). Red lines represent the linear approximation of distance distribution obtained 137 

by linear regression analysis.   138 
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 140 

Supplementary Figure 7 | Averaged input images for individual neurons. The averaged 141 

images of the top 500 neurons most frequently activated in a layer (1000 neurons) are shown (top 142 

left to right bottom). a, The third layer of a GMN of 1000 neurons (GR=50, GE=5, AP=50%). b, 143 

The tenth layer of the same GMN. c, The second layer of a random network. d, The tenth layer of 144 

the same random network. 145 
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Supplementary Figure 8 | Images corresponding to the active-gene arrays obtained from 162 

complex GMNs. a, Template images. The active-gene arrays of these images, obtained from the last 163 

layers of each complex network, were used as templates. The images, which showed similar 164 

active-gene arrays at layer 2 to the templates, are shown in b–d. b, Top 40 images identified when 165 

bottom-ranked neurons were activated by the GMN shown in Fig 5c. c, Top 40 images identified 166 

when the complex GMN shown in Fig. 5d was used. d, Top 40 images identified when the complex 167 

GMN shown in Fig. 5e was used. 168 
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Supplementary methods 169 

 170 

Circular GMNs 171 

Circular GMNs were established using the gene expression matrix, E and the 172 

connection matrix, C. The gene expression matrix E, which is an N × Gr matrix, 173 

describes the gene expression, where N is the number of neurons and Gr is the GR size. 174 

The component of E, eij, describes the number of j
th

 genes expressed in the i
th

 neuron. 175 

𝑒𝑖𝑗 = {
n, when neuron 𝑖 expresses 𝑛 molecules of gene 𝑗,
0, when neuron 𝑖 does not express gene 𝑗.

 

The connection among the neurons in the circular GMN is described by an N × N matrix 176 

C,  177 

𝐂 = 𝐄𝐄𝐓 −  𝐃 

where D is an N × N diagonal matrix, whose diagonal components are equal to those of 178 

EE
T
. The matrix D was subtracted so that the diagonal components of C would be zero, 179 

because the GMN does not possess self-edges. The superscript T denotes the matrix 180 

transpose operation. 181 

When the short path length and the clustering coefficient were calculated, 182 

multiple connections between any neuron pairs were considered as a single connection. 183 

The clustering coefficient CC was calculated as 184 

CC =  
1

𝑁
∑

number of triangles

number of adjacent node pairs𝑁 . 185 

In the experiments in which the effect of the GR size was examined using 186 

GMNs with various GR sizes, expressed genes were selected randomly from a gene 187 

repertoire and assigned to neurons one by one in a rotational manner until the number of 188 

connections in the network reached 500. 189 

 190 

Multi-layer GMN construction 191 

A layer of GMNs was formed with 1,000 neurons unless otherwise mentioned. All 192 

connections were made between neighboring layers. No connection was made within a 193 

layer. Neuron pairs in adjacent layers were connected when both neurons expressed one 194 

or more common genes. The number of connections between a pair of neurons was 195 

equivalent to the number of shared genes. The multi-layer GMNs were directed 196 

networks, and signals were always transmitted from the top to the bottom layer. In all 197 

multi-layer GMNs, unless otherwise mentioned, neurons expressed 5 genes randomly 198 

selected from a repertoire of 50 genes. 199 

To generate a connection matrix between two layers in the layered GMN, the 200 
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gene expression matrix of the n
th

 layer, E(n), and n+1
th

 layer, E(n+1), were 201 

concatenated to establish a gene expression matrix for the two layers, E(n,n+1). 202 

𝐄(𝑛,𝑛+1)  =  [𝐄(n), 𝐄(n+1)]  =  

(

 
 
 
 

𝑒1 1
𝑛 … 𝑒1 𝐺𝑟

𝑛

… … …
𝑒𝑁 1
𝑛 … 𝑒𝑁 𝐺𝑟

𝑛

𝑒1 1
𝑛+1 … 𝑒1 𝐺𝑟

𝑛+1

… … …
𝑒𝑁 1
𝑛+1 … 𝑒𝑁 𝐺𝑟

𝑛+1
)

 
 
 
 

 

Thus, E(n,n+1) is a 2N ×Gr matrix where N is the number of neurons and Gr is the gene 203 

repertoire. The multiplication of this matrix yields a 2N × 2N matrix C, which can be 204 

partitioned into four N × N matrices as follows. 205 

𝐂 =  𝐄(n,n+1) 𝐄(n,n+1)
𝑇 = [

𝐂(n,n) 𝐂(n+1,n)
𝐂(n,n+1) 𝐂(n+1,n+1)

] 

C(n,n+1) was used for the connection matrix from the n
th

 layer to n+1
th

 layer. 206 

 207 

Information transfer experiments using multi-layer GMNs 208 

Five thousand images (12×12 pixels) were randomly collected from a 209 

photograph (Fig. 4a and Supplementary Fig. 2) and used as inputs to the multi-layer 210 

network. The 12×12 images were reshaped into a 144 dimensional vector x. x=(x1, …, 211 

x144)
T captures the pixel intensity in the image (256 gradations of black to white). The 212 

connection matrix between layers 1 and 2, C(1,2), is a 1000 ×144 matrix. The input to the 213 

second layer, IL2 was calculated as  214 

𝐢L2 = 𝐂(1,2) 𝐱 

In other words, the sum of inputs for i
th

 neuron in the second layer was calculated as 215 

𝐢𝐋𝟐(𝑖)  =  ∑ 𝐱(𝑗)  𝑐𝑖𝑗
144

𝑗=1
 

where cij is the component in the i
th

 row and j
th

 column of C(1,2), which represents the 216 

number of connections between the j
th

 neuron in the first layer and the i
th

 neuron in the 217 

second layer (cij is '0' where no connection was formed). Thus, iL2 corresponds to the 218 

sum of inputs to each neuron in layer 2 (see Fig. 3a). The activated neurons in the 219 

second layer were determined according to the amount of input. The percentage of 220 

activated neurons, the activation percentage (AP), was set for each layer. In the 221 

information transfer experiment, neurons ranking in the upper 50% in the level of input 222 

received (represented as AP50), were activated in layers 2 to 10. The output array, 223 

which represents the activity of neurons in a layer, consists of as many components as 224 

the number of neurons in the layer, in which '1' stands for activated neurons and '0' for 225 

non-activated neurons. Thus, the output array for layer 2 is  226 
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𝐨L2(k) =  {
1
0
 
, 𝑖𝑓𝐢𝐋𝟐(𝑘) in AP
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 227 

Then, the oL2 is transferred to layer 3 as 228 

𝐢L3 = 𝐂(2,3) 𝐨L2 

and then oL3 is determined according to the AP for layer 3. In this manner, signals were 229 

transferred to subsequent layers. The output array o is also called the active-neuron 230 

array. 231 

 In the GMN, output was also analyzed using the active-gene array. The 232 

active-gene array represents the profile of genes expressed in activated neurons in a 233 

particular layer. The active-gene array g is thus comprised of as many components as 234 

the GR size, g = (g1, …, gGr)
T
, where Gr is the GR size. gn captures the number of the n

th
 235 

gene expressed in activated neurons. The active-gene array g was calculated with the 236 

gene expression matrix and the output array o (the active-neuron array). For example, 237 

the active-gene array for the output in layer 3, gL3, was calculated as 238 

𝐠L3  = 𝐄L3
T

 𝐨L3 239 

 240 

Estimation of reliability in information transfer 241 

The faithfulness of information transfer was estimated by the cross-layer consistency of 242 

distances between a pair of information inputs. The cross-layer consistency was 243 

assessed using 1) the active-neuron array o and 2) the active-gene array g. When the 244 

information is transferred faithfully across layers, similar outputs from a preceding layer 245 

should result in similar outputs of the following layer (Supplementary Fig. 5). More 246 

specifically, the distance between outputs in a preceding layer should positively 247 

correlate with the distance between resulting outputs in the following layer.  248 

1) Estimation of faithfulness in information transfer using the active-neuron array 249 

The estimation of faithfulness with the active-neuron array was carried out using the 250 

distance between two different outputs. The distance between two active-neuron array 251 

pairs (Dneuron), o
1
 and o

2
, was calculated as 252 

𝐷𝑛𝑒𝑢𝑟𝑜𝑛  =  ∑|𝐨1(n)  − 𝐨𝟐(n)|

𝑁

𝑛=1

 

where N is the number of neurons in the layer. One thousand pairs of outputs were used 253 

for each network. The correlation between the distances of the same output pairs 254 

obtained from a preceding layer and the following layer is plotted in Supplementary Fig. 255 

6, in which the horizontal axis indicates the distance in the preceding layer and the 256 

vertical axis indicates the distance in the following layer. The slope obtained by linear 257 
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regression analysis of the distances was used as the score of reliability of a network. The 258 

slopes obtained from GMNs and degree-matched random networks were compared. 259 

2) Estimation of information transfer using expressed genes 260 

The estimation of faithfulness using genes expressed in active neurons was carried out 261 

using the distances (Dgene) between a pair of active-gene arrays, g
1
 and g

2
. 262 

𝐷𝑔𝑒𝑛𝑒  =  ∑|𝐠1(n)  − 𝐠2(n)|

𝐺𝑟

𝑛=1

 

where Gr is the GR size. The slope obtained by linear regression analysis of the 263 

distances was used for the score of network reliability as in (1). 264 

  265 

Image search 266 

Five thousand images (12×12 pixels) randomly chosen from a photograph (Fig. 4a) 267 

were used as candidate images. The information of the template images (Fig. 5a and 268 

Supplementary Fig. 4a) was transferred and transformed through the multi-layer 269 

networks shown in Fig. 5b-e. The active-gene arrays of the template images obtained in 270 

the last layer of each GMN were compared to the active-gene arrays of the candidate 271 

images obtained in layer 2. The difference between the active-gene arrays of template 272 

and candidate images was calculated in the same manner as the calculation of Dgene. 273 


