Supporting Online Material for

Putative G-quadruplex forming sequence signatures in genes differentially transcribed upon loss of BLM or WRN helicases

John Smestad¹ and L. James Maher III² ¹Mayo Clinic Medical Scientist Training Program ²Department of Biochemistry and Molecular Biology Mayo Clinic College of Medicine 200 First St. SW, Rochester, MN 55905, USA *To whom correspondence should be addressed. E-mail:.maher@mayo.edu

This PDF file includes:

Figures S1 to S3 Tables S1 to S7

Figure S1. Overlap Analysis of Genes Differentially-Expressed in BS and WS	3
Table S1. PQS Prevalence in Promoters of BS and WS Differentially-Expressed Genes	4
Figure S2. PQS Abundance Histograms of BS and WS Differentially-Expressed Genes	5
Table S2. Positions of PQS Excess/Scarcity in BS and WS Differentially-Expressed Genes	6
Table S3. Statistics for Analysis of PQS Abundance in BS and WS Differentially-Expressed Genes	7
Figure S3. Epigenomic Track Correlations with Gene Expression	8
Table S4. Statistics for Analysis of PQS Genome-Wide Transcriptional Effects	9
Table S5. Statistics for Correlation of Epigenomic Tracks with Gene Expression.	10
Table S6. Bayesian Linear Regression Modeling Parameters	11
Table S7. Analysis of PQS Motifs in BS and WS Differentially-Expressed Genes	12

 Table S1. PQS prevalence in promoters of BS and WS differentially-expressed genes.

		Bloom	Syndrome	Werner Syndrome			
	Whole Genome	Up-Regulated	Down-Regulated	Up-Regulated	Down-Regulated		
Total Genes	50541	1012	141	1046	540		
Genes Overlapping GENOCDE v7 Annotations	50541	967	134	919	498		
% Genes Overlapping GENCODE v7 Annotations	100	96	95	88	92		
GENCODE Genes with ≥ 1 PQS	27627	817	121	678	417		
GENCODE Genes with No PQS	22914	150	13	241	81		
% GENCODE Genes with PQS	55	84	90	74	84		

Figure S2. PQS abundance histograms of BS and WS differentially-expressed genes. Plots show positions of PQS near gene promoters genome-wide and in the subset of genes differentially expressed in BS and WS, assigned to sense (S) and antisense (AS) strand components. Histogram counts represent a 100-bp bin width spanning 2 kbp upstream and downstream of the TSS.

Table S2. Positions of statistically-significant PQS abundance excess and scarcity near the promoters of genes differentially expressed in BS and WS. Analysis is by antisense (AS) and sense (S) strands. Numbered regions correspond to the midpoint location of 200-bp bins used to compare numbers of PQS per TSS between differentially-expressed genes and the remainder of the human genome. All regions satisfy the criterion that the p-value is lower than the threshold p-value determined by statistical bootstrapping simulation using random gene sets.

BS Up-Regulated: Antisense	<u></u>
Enrichment:	
Depletion:	-1900:-1870, -1800:-1780, -1750:-1690, -1640:-1630, -1450, -1430:-1260, 890:910, 1010:1900
BS Up-Regulated: Sense	
Enrichment:	-60:-50, -30, 160:680
Depletion:	-1900:-1100, -1080, 990:1900
BS Down-Regulated: Anisense	
Enrichment:	370, 450, 1090:1280, 1490:1610, 1710:1840
Depletion:	
BS Down-Regulated: Sense	
Enrichment:	-1360, -950:-940, -880:-870, -230:-210, -190:-80, 130, 280:320, 340, 360:430, 530:550, 570:830, 1010, 1030:1090, 1130:1260, 1670, 1690:1800
Depletion:	
WS Up-Regulated: Antisense	
Enrichment:	
Depletion:	10:70, 140:170, 320, 920:1360
WS Up-Regulated: Sense	
Enrichment:	
Depletion:	1490:1790
WS Down-Regulated: Antisense	
Enrichment:	-710:-520, -370:270, 300:380, 400:1040, 1130:1190, 1250:1840, 1870:1890
Depletion:	
WS Down-Regulated: Sense	
Enrichment:	-840:-560, -270, -250:-230, -190:-40, 830:930, 990:1080, 1100:1110, 1130:1160, 1310:1450
Depletion:	

Table S3. Statistics for analysis of PQS abundance in BS and WS differentially-expressed genes.

		Bloom	Syndrome	Werner Sydnrome			
	Genome-Wide	enome-Wide Up-Regulated [Up-Regulated	Down-Regulated		
Genes	50541	1012	141	1046	540		
TSS in Gene Dataset	139700	6814	794	4850	2764		
PQS within 2 kb of a TSS	251386	10963	2227	7685	6680		
Average Number PQS per TSS	1.80	1.61	2.80	1.58	2.42		
Analysis of Antisense Strand:							
False Discovery Bin Fraction	-	0.01	0.01	0.01	0.01		
Threshold P-Value	-	1.1E-05	1.5E-07	5.7E-06	6.1E-06		
Predicted Number of False Discoveries	-	3.81	3.81	3.81	3.81		
Number of Discoveries in Dataset	-	128	49	57	229		
False Discovery Rate	-	0.03	0.08	0.07	0.02		
Analysis of Sense Strand:							
False Discovery Bin Fraction	-	0.01	0.01	0.01	0.01		
Threshold P-Value	-	3.9E-06	2.3E-07	1.1E-06	3.5E-06		
Predicted Number of False Discoveries	-	3.81	3.81	3.81	3.81		
Number of Discoveries in Dataset	-	230	100	31	91		
False Discovery Rate	-	0.02	0.04	0.12	0.04		

Figure S3. Epigenomic track correlations with gene expression. Log_2 -transformed epigenomic track feature correlations with log_2 -transformed gene expression. The "bestbin" location for a particular feature was determined as the location with the highest absolute value correlation with expression. Bins were 100 bp in width and covered end-to-end the 1 kbp upstream and downstream of the TSS, giving a total of 20 bins. For the generation of this figure, a pseudocount equal to 0.25% of the maximal bin value was added to epigenetic track signals in order to avoid the $log_2(0)$ issue.

Table S4. Statistics for analysis of PQS genome-wide transcriptional effects.

	H1-hESC	HeLa-S3	K562	HUVEC	HepG2	NHEK	GM12878
Total TSS in Dataset	9614	6909	7484	5578	7659	4011	4447
TSS with ≥ 1 PQS	6919	4172	5076	3655	5416	2728	2974
TSS with no PQS	2695	2737	2408	1923	2243	1283	1473
TSS where Nearest PQS is on TS	3121	1849	2272	1616	2388	1181	1302
TSS where Nearest PQS is on Non-TS	3798	2323	2804	2039	3028	1547	1672
Bayesian Modeling Correlation	0.72	0.75	0.70	0.68	0.64	0.63	0.64
Bayesian Modeilng RMSE	2.9	3.0	3.0	3.1	2.9	3.2	3.2
Analysis of Antisense Strand:							
False Discovery Bin Fraction	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Threshold P-Value	0.017	0.014	0.015	5 0.012 0.017		0.010	0.014
Predicted Number of False Discoveries	3.81	3.81	3.81	3.81	3.81	3.81	3.81
Number of Discoveries in Dataset	77	70	97	50	23	39	8
False Discovery Rate	0.049	0.054	0.039	0.076	0.166	0.098	0.476
Analysis of Sense Strand:							
False Discovery Bin Fraction	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Threshold P-Value	0.012	0.012	0.011	0.011	0.014	0.015	0.015
Predicted Number of False Discoveries	3.81	3.81	3.81	3.81	3.81	3.81	3.81
Number of Discoveries in Dataset	57	55	53	13	33	46	7
False Discovery Rate	0.067	0.069	0.072	0.293	0.115	0.083	0.544

Table S5. Correlations of GC fraction and "bestbin" \log_2 -transformed epigenetic tracks with \log_2 -transformed gene expression. GC fraction is calculated for 5 kbp upstream of each TSS. Epigenetic track correlation values in this table represent the highest absolute value correlations determined by selecting both optimal bin and pseudocount for each track. Bins were 100 bp in width and covered end-to-end the 1 kbp upstream and downstream of the TSS, giving a total of 20 bins. Pseudocounts ranging from 0.25-4% of the maximal bin value were added to each bin prior to \log_2 transformation in order to avoid the $\log_2(0)$ issue.

	H1-	hESC	He	La-S3	ľ	(562	Н	UVEC	Н	epG2	N	IHEK	GN	GM12878	
	Cor.	P-Value													
GC Fraction	0.01	0.62	0.03	0.01	0.00	0.78	0.04	0.00	0.02	0.15	-0.01	0.65	-0.01	0.51	
DNAse 1	0.46	0.00	0.65	0.00	0.57	0.00	0.50	0.00	0.50	0.00	0.50	0.00	0.53	0.00	
H3K79me2	0.58	0.00	0.59	0.00	0.62	0.00	0.54	0.00	0.56	0.00	0.51	0.00	0.52	0.00	
H2A.Z	0.43	0.00	0.58	0.00	0.51	0.00	0.47	0.00	0.36	0.00	0.40	0.00	0.48	0.00	
H3K4me3	0.64	0.00	0.70	0.00	0.62	0.00	0.62	0.00	0.57	0.00	0.53	0.00	0.56	0.00	
H3K4me2	0.52	0.00	0.64	0.00	0.59	0.00	0.53	0.00	0.48	0.00	0.45	0.00	0.42	0.00	
H4K20me1	-0.26	0.00	-0.31	0.00	0.23	0.00	-0.31	0.00	0.24	0.00	-0.28	0.00	-0.30	0.00	
H3K27ac	0.59	0.00	0.68	0.00	0.58	0.00	0.53	0.00	0.51	0.00	0.46	0.00	0.52	0.00	
H3K36me3	-0.28	0.00	-0.50	0.00	-0.32	0.00	-0.33	0.00	-0.28	0.00	-0.30	0.00	-0.33	0.00	
H3K27me3	-0.28	0.00	-0.36	0.00	-0.19	0.00	-0.22	0.00	0.43	0.00	-0.20	0.00	-0.21	0.00	
H3K9ac	0.64	0.00	0.71	0.00	0.62	0.00	0.61	0.00	0.58	0.00	0.53	0.00	0.57	0.00	
H3K4me1	0.23	0.00	0.39	0.00	0.18	0.00	0.33	0.00	0.14	0.00	-0.32	0.00	0.10	0.00	

Table S6. Bayesian linear regression modeling parameters for the seven human cell lines used in epigenetic modeling of gene expression.

	H1-hESC	HeLa-S3	K562	HUVEC	HepG2	NHEK	GM12878
GC Fraction	-0.039	-0.102	-0.141	-0.108	-0.111	0.024	-0.172
DNAse 1	0.272	0.273	0.492	0.222	0.187	0.354	0.207
H3K79me2	0.244	-0.010	0.422	0.290	-0.032	0.318	-0.148
H2AZ	0.044	0.143	0.063	0.081	0.287	0.096	0.227
H3K4me3	0.257	0.077	0.053	-0.353	-0.049	0.000	-0.065
H3K4me2	-0.051	0.045	-0.142	0.263	-0.064	-0.071	0.019
H4K20me1	-0.124	-0.104	0.002	-0.133	0.017	0.140	0.209
H3K27ac	0.120	-0.177	0.134	-0.170	0.301	-0.092	0.014
H3K36me3	0.026	0.015	-0.078	-0.040	0.127	-0.034	0.075
H3K27me3	-0.133	-0.031	-0.076	0.015	-0.012	-0.125	0.010
H3K9ac	0.030	0.210	0.013	0.167	-0.042	0.076	0.028
H3K4me1	-0.029	0.010	-0.099	-0.014	0.054	0.065	0.047

Table S7. Analysis of PQS motifs in genes differentially expressed in BS and WS. (A) FDR for the binned analysis in Figure 4, with FDR calculated as the ratio of statistically-significant bins in BS and WS compared to the average statistically-significant bin number in randomly-generated datasets containing the same number of genes as the test datasets. (B) Average PQS feature values for whole genome sense (S) and antisense (AS) strands, and for the subset of genes up-regulated or down-regulated in BS and WS. Signals are averaged over the entire 2 kbp upstream and downstream of the TSS. Percent difference from the average genomic value is shown.

A)

False Discovery Rates														
	Fraction Adenine	Fraction Cytosine	Fraction Thymidine	Number of G Stacks	Loop 1 Length	Loop 2 Length	Loop 3 Legth	Total Length						
BS Up-Regulated: Antisense	0.002	0.003	0.001	0.002	Inf	Inf	0.001	0.002						
BS Down-Regulated: Antisense	0.003	0.006	0.002	0.002	0.030	Inf	Inf	0.003						
WS Up-Regulated: Antisense	0.733	Inf	0.111	Inf	0.553	0.385	0.086	0.235						
WS Down-Regulated: Antisense	Inf	0.144	0.125	Inf	Inf	0.102	Inf	Inf						
DC Un De mulate de Canaca	0.002	0.002	0.000	1.4	luf	0.002	16	0.002						
BS Up-Regulated: Sense	0.002	0.003	0.002	Int	Int	0.002	Int	0.002						
BS Down-Regulated: Sense	0.016	0.003	0.002	Inf	Inf	0.026	Inf	Inf						
WS Up-Regulated: Sense	0.176	0.202	Inf	0.180	Inf	Inf	Inf	0.196						
WS Down-Regulated: Sense	Inf	Inf	Inf	0.455	0.166	Inf	0.805	Inf						

B)

	Fraction		Fraction Fraction		Fra	Fraction N		Number of G		Leen d Len mik		longth	1 0 l		Total	onath
	Aue		Cylosine		Value	Thymiaine		JIACKS		Loop I Length			Loop 3 Legin			
	value	% Dif	value	% Dif	value	% Dif	value	% DIT	value	% Dif	value	% Dif	value	% DIT	value	% Dif
Whole Genome: Antisense	0.113	-	0.127	-	0.082	-	4.729	-	3.465	-	3.423	-	3.448	-	29.44	-
Whole Genome: Sense	0.105	-	0.132	-	0.088	-	4.738	-	3.506	-	3.415	-	3.445	-	29.45	-
BS Up-Regulated: Antisense	0.117	3.6	0.122	-3.8	0.063	-22.7	4.604	-2.6	3.404	-1.8	3.604	5.3	3.236	-6.2	28.70	-2.5
BS Down-Regulated: Antisense	0.105	-7.4	0.121	-4.7	0.093	14.1	4.535	-4.1	3.201	-7.6	3.613	5.6	3.397	-1.5	27.94	-5.1
WS Up-Regulated: Antisense	0.116	2.4	0.129	1.5	0.075	-7.8	4.678	-1.1	3.621	4.5	3.606	5.3	3.843	11.5	28.93	-1.7
WS Down-Regulated: Antisense	0.115	1.3	0.124	-2.7	0.076	-6.7	4.701	-0.6	3.435	-0.8	3.158	-7.8	3.493	1.3	29.65	0.7
BS Up-Regulated: Sense	0.092	-12.1	0.142	8.0	0.076	-12.9	4.718	-0.4	3.493	-0.4	3.249	-4.9	3.438	-0.2	28.93	-1.8
BS Down-Regulated: Sense	0.107	1.5	0.127	-3.2	0.097	10.7	4.667	-1.5	3.818	8.9	3.089	-9.5	3.395	-1.4	29.44	0.0
WS Up-Regulated: Sense	0.100	-5.2	0.137	4.1	0.085	-2.6	4.658	-1.7	3.407	-2.8	3.509	2.8	3.538	2.7	28.67	-2.6
WS Down-Regulated: Sense	0.104	-1.0	0.132	0.4	0.086	-1.6	4.677	-1.3	3.277	-6.5	3.32333	-2.7	3.605	4.6	29.27	-0.6