

Supporting Information

Boryl (Hetero)aryne Precursors as Versatile Arylation Reagents: Synthesis through C–H Activation and Orthogonal Reactivity

Emilien Demory, Karthik Devaraj, Andreas Orthaber, Paul J. Gates, and Lukasz T. Pilarski*

anie_201503152_sm_miscellaneous_information.pdf

Supporting Information

1 (GENERAL CONSIDERATIONS	
2	ORIGIN AND SYNTHESIS OF STARTING MATERIALS	
3	BORYLATION OF ARYNE PRECURSORS	
3.1	GENERAL PROCEDURE FOR BORYLATION	
3.2	DATA FOR BORYLATED COMPOUNDS.	
PRO	CEDURES FOR THE CAPTURE OF BORYL ARYNES	
3.3	GENERAL PROCEDURE	
3.4	DATA FOR ARYNE CAPTURE COMPOUNDS	
4 9	SUZUKI-MIYAURA REACTIONS	
5	DEPROTECTION OF B(PIN) BORONATES	
5.1	General Procedure	
5.2	DATA FOR DEPROTECTED BORONATES	
6	DERIVATIZATION OF BORONIC ACIDS	
6.1	TSUJI-TROST COUPLING	
6.2	2 TRIFLUOROBORONATE POTASSIUM SALT	
6.3	Rh-CATALYZED 1,4-CONJUGATE ADDITION	
6.4	IODONIUM SUZUKI COUPLING	
6.5	5 IODINATION	
6.6	6 CHAN-LAM COUPLING	
7	CRYSTALLOGRAPHIC DATA	
8	REFERENCES	
9	COPIES OF NMR SPECTRA	

1 General Considerations

Unless otherwise stated, all reactions were carried out under an Ar atmosphere using magnetic stirring. Substrate and complex syntheses are described below.

¹H, ¹¹B, ¹³C and ¹⁹F NMR spectra were recorded on a Varian Unity 400 MHz spectrometer (¹H 399.5 MHz, ¹¹B 128 MHz, ¹³C 100.6 MHz, ¹⁹F 376 MHz). ¹H and ¹³C chemical shifts are referenced indirectly to tetramethylsilane *via* the residual solvent signals (¹H: CHCl₃ at 7.26, ¹³C: CDCl₃ at 77.0 ppm). ¹¹B (BF₃·Et₂O) and ¹⁹F (CFCl₃) chemical shifts were calibrated to an external standard at 0.00 ppm.

High resolution accurate Electron Ionisation (EI) mass spectrometry was performed on a VG Autospec mass spectrometer at 70eV. Electrospray Ionisation (ESI) mass spectrometry was performed on a Bruker Daltonics micrOTOF II mass spectrometer.

THF was freshly distilled from Na⁰/benzophenone and stored over 4Å molecular sieves under Argon. MeCN was freshly distilled after being dried over K₂CO₃ and 4Å molecular sieves, and stored over 4Å molecular sieves under Argon. All other solvents used were pre-dried over 4Å molecular sieves and stored under Argon prior to use. All H₂O used was deionized and degassed (Ar). Purification by chromatography was performed using Kiesel gel 60 H silica gel (particle size 0.063-0.100 mm). Thin layer chromatography (TLC) was carried out using aluminium-backed plates coated with Kieselgel 60 (0.20 mm, UV 254) and visualized under ultraviolet light ($\lambda = 254$ nm).

X-ray diffraction data: All the measurements were performed using graphite-monochromatized Mo K_{\Box} radiation at 100K using a Bruker D8 APEX-II equipped with a CCD camera. The structure was solved by direct methods (SHELXS-2014) and refined by full-matrix least-squares techniques against F^2 (SHELXL-2014/7).^[1] The non-hydrogen atoms were refined with anisotropic displacement parameters. The H atoms of the methyl groups were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometry and C-H distances of 0.98 Å. Aromatic H atoms are place at idealized positions at a distance of 0.95 Å.

2 Origin and Synthesis of Starting Materials

(Hetero)aryne precursors **1a-c** and **h**, 4,4'-Di-*tert*-butyl-2,2'-dipyridyl, [{ $Ir(\mu-OMe)COD$ }₂], Pd(dba)₂, Pd(OAc)₂, [{RhCl(COD)}₂], Cu(OAc)₂, CuI, X-Phos, 1,10-phenanthroline, inorganic salts compounds and, unless stated, all other organic reagents were obtained commercially and used without further purification. Bis(pinacolato)diboron was dried under vacuum at 50 °C overnight before use. Aryne precursors **1d**, **1g**^[2] and **1e**^[3] and *N-tert*-butyl- α -phenylnitrone^[4] were prepared according to literature procedures. Aryne precursor **1f** was prepared using a modified literature procedure (*see below*).

Synthesis of 3-(trimethylsilyl)pyridin-2-yl-trifluoromethansulfonate (1f)

This compound was synthesised using a modified literature procedure.^[5]

SiMe₃ **SiMe**₃ To a solution of 2-hydroxypyridine (5 g, 53 mmol) in THF (130 mL, 0.4 M) under argon, was added dropwise a 1M THF solution of LDA (117 mL, 117 mmol) at 0 °C over 20 min. The solution was allowed to warm up to 20 °C, stirred for 1 h, then cooled again to 0 °C. Chlorotrimethylsilane (7.4 mL, 58 mmol) was added dropwise over 10 min. The solution was allowed to warm up to 20 °C and stirred for 2 h. The reaction was quenched with a saturated NH₄Cl_(aq) (80 mL) and extracted with Et₂O (3 × 80 mL). The organic phase was washed sequentially with sat. NH₄Cl_(aq) (50 mL) and brine (50 mL), dried (Na₂SO₄), filtered and concentrated

under reduced pressure to give an orange solid. The solid was then dissolved in pyridine (53 mL, 1

M), cooled to 0 °C and Tf₂O (9.8 mL, 58.3 mmol) was added dropwise over 10 min. The reaction mixture was stirred overnight at 20 °C, concentrated under reduced pressure, diluted with Et₂O (100 mL) and washed with H₂O (2×30 mL). Aqueous phases were extracted again with Et₂O (3×30 mL). The combined organic phases were washed with brine (30 mL), dried (Na₂SO₄), filtered and concentrated under reduced pressure. The crude material was purified by silica gel flash chromatography (50:1 pentane/Et₂O) to give the title compound as a colourless oil (12.25 g, 41 mmol, 77%). The identity of the compound was confirmed by comparison of ¹H, ¹³C and ¹⁹F NMR shifts to literature values.

3 Borylation of Aryne Precursors

3.1 General Procedure for Borylation

To a 6 mL glass flask equipped with a Teflon tap and magnetic stirrer bar under argon were added $[{\text{Ir}(\mu-\text{OMe})\text{COD}}_2]$ (2.5 mol%), 4,4'-di-*tert*-butyl-2,2'-dipyridyl (5 mol%) and B₂(pin)₂ (mmol, 0.2 equiv.) Anhydrous THF (concentration = 0.5 mmol/mL) was added and the solution stirred at room temperature for 0.5 h (until the solution acquired a deep red colour). Under a flow of argon, additional B₂(pin)₂ (mmol, 1 equiv.) was added then precursor **1** (1 equiv.) was added with a pipette and the pipette was washed with THF (final concentration 0.5 M). The reaction mixture was sealed under argon and heated at 50 °C for 18 h, cooled to 20 °C, diluted with Et₂O (30 mL) and concentrated under reduced pressure. Pentane (50 mL) was added to the deep red oil and concentrated again under reduced pressure. The crude material was purified by twice filtering through a thin pad of silica gel (9:1 pentane/Et₂O).

3.2 Data for Borylated Compounds.

<u>5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(trimethylsilyl)phenyl</u> trifluoromethanesulfonate (2a')

Yield = 99% (based on 3 mmol scale of **1a**), colorless solid. The regioisomers were identified by C-H correlation NMR. See page S23.

Major isomer (2a'): ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, J = 7.2 Hz, 1H), 7.69 (s, 1H), 7.53 (d, J = 7.2 Hz, 1H), 1.34 (s, 12H), 0.37 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 154.9, 135.9, 135.7, 133.5, 125.0, 123.2, 120.0, 118.5, 116.9, 113.7, 84.3, 24.8, -0.9; ¹⁹F NMR (376 MHz, CDCl₃): δ -73.9. ¹¹B NMR (128 MHz, CDCl₃): δ 30.5.

Minor isomer (2a''): <u>4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(trimethylsilyl)phenyl</u> <u>trifluoromethanesulfonate</u>: ¹H NMR (400 MHz, CDCl₃): δ 7.95 (s, 1H), 7.87 (dd, J = 8.5, 1.3 Hz, 1H), 7.33 (d, J = 8.5 Hz, 1H), 1.34 (s, 12H), 0.38 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 157.4, 142.9, 137.9, 118.5 (q, $J_{CF} = 321.2$ Hz), 116.9, 84.1, 24.8, -0.8; ¹⁹F NMR (376 MHz, CDCl₃): δ -73.9; ¹¹B NMR (128 MHz, CDCl₃): δ 30.5.

Both isomers: HRMS (ESI+): m/z calcd for $C_{16}H_{24}BF_3NaO_5SSi$ 447.1050; found 447.1047. The above general procedure can be scaled up to 6 mmol of precursor **1a** (Yield = 85%).

<u>2-Methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-6-(trimethylsilyl)phenyl</u> <u>trifluoromethanesulfonate</u> (**2b**)

Yield = 98% (based on 3.2 mmol scale of **1b**), colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 7.83 (s, 1H), 7.75 (s, 1H), 2.39 (s, 3H), 1.35 (s, 12H), 0.40 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 153.5, 141.1, 140.3, 133.8, 130.4, 118.6 (q, J_{CF} = 319.8 Hz), 84.1, 24.8, 17.0 (q, J_{CF} = 1.5 Hz), 0.1; ¹⁹F NMR (376 MHz, CDCl₃): δ -73.4; ¹¹B NMR (128 MHz, CDCl₃): δ 30.6. HRMS (ESI+): m/z calcd for C₁₇H₂₆BF₃NaO₅SSi 461.1211; found 461.1212.

2-methoxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-6-(trimethylsilyl)phenyl trifluoromethanesulfonate (2c)

Yield = 93% (based on 3.05 mmol scale of **1c**), colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 7.33 (s, 1H), 7.22 (s, 1H), 3.87 (s, 3H), 1.34 (s, 12H), 0.36 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 165.0, 154.3, 124.2, 118.6 (d, J_{CF} = 1.4 Hz), 118.6 (q, J_{CF} = 320.7 Hz), 114.9, 84.3, 55.7, 24.8, 0.7; ¹⁹F NMR (376 MHz, CDCl₃): δ -72.8; ¹¹B NMR (128 MHz, CDCl₃): δ 30.2. HRMS (ESI+): m/z calcd for C₁₇H₂₆BF₃NaO₆SSi 477.1162;

found 477.1160.

<u>2-bromo-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-6-(trimethylsilyl)phenyl</u> <u>trifluoromethanesulfonate</u> (**2d**)

Yield = 97% (based on 2 mmol scale of **1d**), pale yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.08 (s, 1H), 7.88 (s, 1H), 1.34 (s, 12H), 0.41 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 150.8, 142.1, 142.0, 136.9, 118.6 (q, J_{CF} = 320.9 Hz), 116.1, 84.5, 24.8, 0.1; ¹⁹F NMR (376 MHz, CDCl₃): δ -71.6; ¹¹B NMR (128 MHz, CDCl₃): δ 30.6. HRMS (ESI+): m/z calcd for C₁₆H₂₃BBrF₃NaO₅SSi 525.0160; found 525.0174.

<u>4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,6-bis(trimethylsilyl)phenyl</u> <u>trifluoromethanesulfonate</u> (**2e**)

Yield = 92% (based on 1.7 mmol scale of **1e**), colorless solid.¹H NMR (400 MHz, CDCl₃): δ 7.99 (s, 2H), 1.35 (s, 12H), 0.37 (s, 18H); ¹³C NMR (101 MHz, CDCl₃): δ 157.5, 144.9, 142.0 (d, J_{CF} = 10.1 Hz), 133.7, 118.4 (q, J_{CF} = 319.9 Hz), 84.1, 24.8, 0.4; ¹⁹F NMR (376 MHz, CDCl₃): δ -72.4; ¹¹B NMR (128 MHz, CDCl₃): δ 30.4. HRMS (ESI+): m/z calcd for C₁₉H₃₂BF₃NaO₅SSi₂ 519.1451; found 519.1447.

<u>5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-(trimethylsilyl)pyridin-2-yl</u> <u>trifluoromethanesulfonate</u> (**2f**)

Yield = 69% (based on 6.1 mmol scale of **1f**), colorless solid.¹H NMR (400 MHz, CDCl₃): δ 8.65 (d, J = 2.0 Hz, 1H), 8.23 (d, J = 2.0 Hz, 1H), 1.34 (s, 12H), 0.37 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 162.8, 155.2, 153.2, 123.8, 118.5 (q, J_{CF} = 320.8 Hz), 84.5, 24.8, -1.5; ¹⁹F NMR (376 MHz, CDCl₃): δ -72.8; ¹¹B NMR (128 MHz, CDCl₃): δ 30.4. HRMS (ESI+): m/z

calcd for $C_{15}H_{23}BF_3NNaO_5SSi$ 448.1007; found 448.1004.

2,4-difluoro-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-6-(trimethylsilyl)phenyl trifluoromethanesulfonate (**2g**)

Yield = 96% (based on 1 mmol scale of **1g**), colorless solid.¹H NMR (400 MHz, CDCl₃): δ 6.96 (dd, J = 8.0, 1.6 Hz, 1H), 1.37 (s, 12H), 0.39 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 164.2 (dd, J_{CF} = 256.3, 10.2 Hz), 156.5 (dd, J_{CF} = 259.8, 12.5 Hz), 141.70 (dd, J_{CF} = 6.3, 2.4 Hz), 136.6 (dd, J_{CF} = 13.9, 3.8 Hz), 118.6 (q, J_{CF} = 320.9 Hz), 117.0 (dd, J_{CF} = 24.4, 3.9 Hz), 84.6, 24.7,

-0.8; ¹⁹F NMR (376 MHz, CDCl₃): δ -72.0 (d, $J_{FF} = 21.7$ Hz), -99.8 – -100.0 (m), -112.1 (qd, $J_{FF} = 21.7$, 4.6 Hz); ¹¹B NMR (128 MHz, CDCl₃): δ 29.1.

2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-(trimethylsilyl)-1H-indol-5-yl trifluoromethanesulfonate (**2h**)

Using 2 equiv of B₂Pin₂. In a mixture with B₂Pin₂ (about 2 : 1). Yield = 54% (based on 3.05 mmol scale of **1h**), colorless solid. ¹H NMR (400 MHz, C₆D₆): δ 9.92 (br s, 1H), 8.09 (s, 1H), 7.74 (d, *J* = 2.1 Hz, 1H), 1.09 (s, 12H), 0.95 (s, 12H), 0.52 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 148.4, 140.6, 132.1, 129.0, 122.5, 118.7 (q, *J*_{CF} = 320.6 Hz), 115.3, 84.4, 84.3, 24.9, 24.8, 1.1; ¹⁹F NMR (376 MHz, C₆D₆): δ -73.5; ¹¹B NMR (128 MHz, CDCl₃): δ 30.5. HRMS (EI+): m/z calcd for C₂₄H₃₆B₂NO₇F₃SSi

589.2120; found 589.2136.

Procedures for the Capture of Boryl Arynes

3.3 General Procedure

A 6 mL glass flask equipped with a Teflon tap and magnetic stirrer was charged with the appropriate aryne precursor (2) (0.2 mmol, unless otherwise noted), trapping reagent (indicated in each case below), CsF (as indicated below) and 18-crown-6 (53 mg, 0.2 mmol, 1 equiv.). The flask was evacuated and backfilled with argon. MeCN (2 mL) was then added and the resulting suspension stirred at the indicated temperature. The reaction was monitored by ¹⁹F NMR. Upon complete consumption of 2, the reaction mixture was diluted with Et₂O (20 mL) and washed with brine (2 × 15 mL), dried (Na₂SO₄), concentrated under reduced pressure and purified by silica gel flash chromatography using the indicated eluent system.

3.4 Data for Aryne Capture Compounds

N-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (4a)

Aryne precursor: **2a**, capture reagent: aniline (93 mg, 1 mmol, 5 equiv.), CsF (122 mg, 0.8 mmol, 4 equiv.), reaction temperature: 60 °C, reaction time: 7 h. Column chromatography eluent: pentane/Et₂O (8 : 1), $R_f = 0.2$. Yield = 83% (based on **2a**), yellow oil.

Major isomer: ¹H NMR (400 MHz, C_6D_6): 7.81 (ddd, J = 7.2, 1.1, 1.1 Hz, 1H), 7.78 (br d, J = 2.4 Hz, 1H), 7.09 – 6.99 (m, 3H), 6.89 – 6.83 (m, 3H, partially obscured by minor isomer), 6.78 (tt, J = 7.4,

1.1 Hz, 1H), 5.11 (s, 1H), 1.13 (s, 12H); ¹³C NMR (101 MHz, C_6D_6): δ 143.4, 142.6, 129.1, 128.7, 127.7, 124.9, 120.5, 119.0, 117.5, 83.4, 24.6; ¹¹B NMR (128 MHz, C_6D_6): δ 31.4.

Minor isomer: <u>N-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline</u>. ¹H NMR (400 MHz, C_6D_6): δ 8.15 (m, 2H), 7.21 – 7.13 (m, 4H, partially obscured by C_6D_6), 7.02 (ddd, J = 8.1, 2.5, 1.1 Hz, 2H), 6.85 – 6.81 (m, 1H, partially obscured by major isomer), 5.18 (s, 1H), 1.16 (s, 12H); ¹³C NMR (101 MHz, C_6D_6): δ 146.3, 142.0, 136.6, 129.1, 121.5, 120.9, 115.7, 83.1, 24.6; ¹¹B NMR (128 MHz, C_6D_6): δ 31.4.

Both isomers: HRMS (EI+): m/z calcd for C₁₈H₂₂NO₂B 295.1744; found 295.1750.

4-(3-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)morpholine (4b)

Aryne precursor: **2c**, capture reagent: morpholine (52 mg, 0.6 mmol, 3 equiv.), CsF (122 mg, 0.8 mmol, 4 equiv.), reaction temperature: 60 °C, reaction time: 6 h. Column chromatography eluent: pentane/Et₂O (2.5 : 1), $R_f = 0.2$. Yield = 67% (based on **2c**), colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 7.01 (d, J = 2.1 Hz, 1H), 6.87 (d, J = 1.7 Hz, 1H), 6.56 (br s, 1H), 3.88 – 3.83 (m, 4H), 3.82 (s, 3H), 3.22 – 3.15 (m, 4H), 1.34 (s, 12H); ¹³C

NMR (101 MHz, CDCl₃): δ 160.1, 125.5, 115.0, 109.7, 106.0, 83.8, 66.8, 55.3, 49.4, 24.8; ¹¹B NMR (128 MHz, CDCl₃): δ 30.7. HRMS (EI+): m/z calcd for C₁₇H₂₆NO₄B 319.1955; found 319.1951.

4-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-(trimethylsilyl)phenyl)morpholine (4c)

Aryne precursor: **2e**, capture reagent: morpholine (52 mg, 0.6 mmol, 3 equiv.), CsF (122 mg, 0.8 mmol, 4 equiv.), reaction temperature: 60 °C, reaction time: 5 h. Column chromatography eluent: pentane/Et₂O (6 : 1). $R_f = 0.2$. Yield = 62% (based on **2e**), colorless solid.

Major regioisomer: $R_f = 0.2$. ¹H NMR (400 MHz, CDCl₃): δ 7.51 (s, 1H), 7.37 (d, J = 2.0 Hz, 1H), 7.19 (br s, 1H), 3.93 – 3.84 (m, 4H), 3.28 – 3.18 (m, 4H), 1.35 (s, 12H), 0.28 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 150.0, 140.5, 131.6, 123.9, 122.5, 83.7, 67.0, 49.7, 24.8, -1.0; ¹¹B NMR (128 MHz, CDCl₃): δ 31.0. HRMS (ESI+): m/z calcd for C₁₉H₃₃BNO₃Si 362.2321; found 362.2314.

Minor regioisomer: 4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-

<u>(trimethylsilyl)phenyl)morpholine</u>. $R_f = 0.4$. ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, J = 1.3 Hz, 1H), 7.86 (dd, J = 8.0, 1.3 Hz, 1H), 7.31 (d, J = 8.0 Hz, 1H), 3.89 – 3.80 (m, 4H), 2.93 – 2.83 (m, 4H), 1.33 (s, 12H), 0.32 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 162.2, 142.2, 137.6, 137.1, 121.8, 83.7, 67.2, 54.1, 24.8, 0.1; ¹¹B NMR (128 MHz, CDCl₃): δ 30.9. HRMS (EI+): m/z calcd for C₁₉H₃₂BNO₃Si 361.2245; found 361.2250.

4-(3,5-difluorophenyl)morpholine (4d)

Aryne precursor: **2g** (scale: 0.3 mmol), capture reagent: morpholine (78 mg, 0.9 mmol, 3 equiv.), CsF (228 mg, 1 mmol, 5 equiv.), reaction temperature: 60 °C, reaction time: 5 h. Column chromatography eluent: pentane/Et₂O (8 : 1). $R_f = 0.2$. Yield = 64% (based on **2g**), colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 6.40 – 6.32 (m, 2H), 6.29 (tt, J = 8.8, 2.2 Hz, 1H), 3.86 – 3.80 (m, 4H), 3.18 – 3.09 (m,

4H); ¹³C NMR (101 MHz, CDCl₃): δ 165.2 (d, J_{CF} = 15.8 Hz), 162.8 (d, J_{CF} = 15.9 Hz), 153.2 (t, J_{CF} = 12.2 Hz), 98.0 – 97.5 (m), 94.5 (t, J_{CF} = 26.1 Hz), 66.5 (s), 48.3 (s); ¹⁹F NMR (376 MHz, CDCl₃): δ - 109.7 – -109.8 (m). HRMS (EI+): m/z calcd for C₁₀H₁₁NOF₂ 199.0809; found 199.0804.

3-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl 2-iodobenzoate (4e)

Aryne precursor: **2b**, capture reagent: 2-iodobenzoic acid (88 mg, 0.24 mmol, 1.2 equiv.), CsF (152 mg, 1 mmol, 5 equiv.), 18-crown-6 (158 mg, 0.6 mmol, 3 equiv.), reaction temperature: 60 °C, reaction time: 24 h. Column chromatography eluent: pentane/Et₂O (12 : 1), $R_f = 0.6$. Yield = 61% (based on **2b**), colorless oil.

Major regioisomer: ¹H NMR (400 MHz, C₆C₆): δ 7.98 – 7.94 (m, 1H), 7.84 – 7.81 (m, 1H), 7.70 (dd, J = 7.7, 1.7 Hz, 1H), 7.69 (dd, J = 7.9, 1.1 Hz, 1H), 7.13 – 7.11 (m, 1H), 6.82 (td, J = 7.7, 1.1 Hz, 1H), 6.51 (td, J = 7.9, 1.7 Hz, 1H), 2.05 (d, J = 0.5 Hz, 3H), 1.12 (s, 12H); ¹³C NMR (101 MHz, C₆C₆): δ 164.5, 150.8, 141.2, 138.9, 133.4, 132.3, 131.2, 129.7, 127.4, 125.4, 124.9, 94.4, 83.5, 24.5, 20.6; ¹¹B NMR (128 MHz, C₆C₆): δ 30.7.

Minor regioisomer: 2-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl 2-iodobenzoate ¹H NMR (400 MHz, C₆C₆): δ 8.03 – 8.01 (m, 1H), 7.77 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.72 – 7.70 (m, 1H, partially obscured by major isomer), 7.14 (s, 1H), 6.83 (td, *J* = 7.6, 1.2 Hz, 1H), 6.54 – 6.49 (m, 1H, partially obscured by major isomer), 2.12 (s, 3H), 1.16 (s, 12H); ¹³C NMR (101 MHz, C₆C₆): δ 163.7, 152.3, 141.5, 138.3, 134.5, 134.0, 132.5, 131.1, 129.7, 127.5, 121.6, 94.6, 83.4, 24.6, 15.9; ¹¹B NMR (128 MHz, C₆C₆): δ 30.7.

Both isomers: HRMS (ESI+): m/z calcd for C₂₀H₂₂BINaO₄ 487.0552; found 487.0561.

3-(3-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenoxy)benzonitrile (4f)

Aryne precursor: **2c**, capture reagent: 3-cyanophenol (36 mg, 0.3 mmol, 1.5 equiv.), CsF (152 mg, 1 mmol, 5 equiv.), reaction temperature: 60 °C, reaction time: 7 h. Column chromatography eluent: pentane/Et₂O (8 : 1), $R_f = 0.2$. Yield = 63% (based on **2c**), colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.40 (t, J = 7.8 Hz, 1H), 7.33 (d, J = 7.8 Hz, 1H), 7.24 – 7.15 (m, 3H), 7.05 (s, 1H), 6.71 – 6.66

(m, 1H), 3.83 (s, 3H), 1.34 (s, 12H); ¹³C NMR (101 MHz, CDCl₃): δ 160.7, 158.3, 156.0, 130.9, 126.2, 122.7, 120.9, 118.0, 115.4, 113.4, 109.8, 84.1, 55.6, 24.8; ¹¹B NMR (128 MHz, CDCl₃): δ 30.9. HRMS (ESI+): m/z calcd for C₂₀H₂₂BNNaO₄ 374.1538; found 374.1531.

<u>3-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-(trimethylsilyl)phenoxy)benzonitrile</u> and <u>4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(trimethylsilyl)phenoxy)benzonitrile</u> (**4g**)

Aryne precursor: **2e**, capture reagent: 3-cyanophenol (71 mg, 0.6 mmol, 3 equiv.), CsF (152 mg, 1 mmol, 5 equiv.), reaction temperature: 40 °C, reaction time: 20 h. Column chromatography eluent: pentane/Et₂O (30 : 1), $R_f = 0.2$. Yield = 62% (based on **2e**), colorless oil.

¹H NMR (400 MHz, C₆D₆): δ 8.44 (d, J = 1.4 Hz, 1H), 8.25 (s, 1H), 8.05 (dd, J = 8.2, 1.6 Hz, 1H), 7.83 – 7.76 (m, 1H), 7.44 – 7.39 (m, 1H), 6.97 (s, 1H), 6.89 (s, 1H), 6.78 – 6.70 (m, 2H), 6.66 (d, J = 7.8 Hz, 2H), 6.57 (t, J = 8.0 Hz, 1H), 6.54 – 6.45 (m, 2H), 1.16 (s, 12H), 1.09 (s, 12H), 0.23 (s, 9H), 0.13 (s, 9H); ¹³C NMR (101 MHz, C₆D₆): δ 163.5, 158.0, 157.4, 155.2, 143.8, 143.1, 142.9, 138.3, 136.1, 130.2, 130.1, 130.1, 126.2, 126.0, 125.9, 122.4, 121.6, 121.3, 121.0, 117.8, 117.8, 117.0, 114.0, 113.9, 83.7, 83.5, 24.6, 24.5, -1.2, -1.7; ¹¹B NMR (128 MHz, C₆D₆): δ 30.9. HRMS (ESI+): m/z calcd for C₂₂H₂₈BNNaO₃Si 416.1828; found 416.1832.

3-bromo-2-(pyridin-3-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol (4h)

Aryne precursor: **2d**, capture reagent: pyridine *N*-oxide (29 mg, 0.3 mmol, 1.5 equiv.), CsF (152 mg, 1 mmol, 5 equiv.), reaction temperature: 60 °C, reaction time: 24 h. Column chromatography eluent: DCM/MeOH (100 : 2), $R_f = 0.2$. Yield = 41% (based on **2d**), yellow solid. ¹H NMR (400 MHz, C_6D_6): δ 8.47 (s, 1H), 8.12 (s, 1H), 8.04 (d, J = 3.2 Hz, 1H), 7.77 (s, 1H), 7.34 (d, J = 7.8 Hz, 1H), 6.60 (dd, J = 6.9, 5.5 Hz, 1H), 1.09 (s, 12H); ¹³C NMR (101 MHz, C_6D_6): δ 155.9, 149.9, 146.9, 138.8, 133.8, 130.3, 128.9,

124.2, 123.0, 121.7, 83.8, 24.5; ¹¹B NMR (128 MHz, C_6D_6): δ 29.9. HRMS (ESI+): m/z calcd for $C_{17}H_{20}BBrNO_3$ 376.0717; found 376.0726. For crystallographic data, see page S17.

2-(3-methoxy-5-(naphthalen-2-ylthio)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4i)

Aryne precursor: **2c**, capture reagent: 2-Naphtalenethiol (48 mg, 0.3 mmol, 1.5 equiv.), CsF (152 mg, 1 mmol, 5 equiv.), reaction temperature: 60 °C, reaction time: 7 h. Column chromatography eluent: pentane/Et₂O (19 : 1), $R_f = 0.35$. Yield = 74% (based on **2c**), colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 7.86 – 7.71 (m, 4H), 7.56 (s, 1H), 7.50 – 7.43 (m, 2H), 7.41 (d, J = 8.6 Hz, 1H), 7.26 (d, J

= 1.7 Hz, 1H), 7.00 (s, 1H), 3.77 (s, 3H), 1.35 (s, 12H); ¹³C NMR (101 MHz, CDCl₃): δ 159.7, 136.3, 133.8, 133.3, 132.2, 130.1, 129.4, 128.8, 128.5, 127.7, 127.4, 126.5, 126.1, 120.3, 118.1, 84.1, 55.4, 24.9; ¹¹B NMR (128 MHz, CDCl₃): δ 31.0. HRMS (ESI+): m/z calcd for C₂₃H₂₅BNaO₃S 415.1514; found 415.1508.

2-(8-methoxy-1,4-dihydro-1,4-epoxynaphthalen-6-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4j)

Aryne precursor: **2c**, capture reagent: Furan (68 mg, 1 mmol, 5 equiv.), CsF (91 mg, 0.6 mmol, 3 equiv.), reaction temperature: 40 °C, reaction time: 17h h. Column chromatography eluent: pentane/Et₂O (6 : 1), $R_f = 0.2$. Yield = 83% (based on **2c**), colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.36 (s, 1H), 7.07 (s, 1H), 7.07 – 6.99 (m, 2H), 5.94 (s, 1H), 5.69 (s, 1H), 3.87 (s, 3H), 1.33 (s,

12H); ¹³C NMR (101 MHz, CDCl₃) δ 152.5, 150.9, 143.1, 142.5, 138.7, 119.2, 116.8, 83.7, 82.4, 79.9, 55.62, 24.8, 24.7; ¹¹B NMR (128 MHz, CDCl₃): δ 30.5. HRMS (ESI+): m/z calcd for C₁₇H₂₁BNaO₄ 323.1428; found 323.1431.

 $\frac{1-(3-bromophenyl)-4-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-benzo[d][1,2,3]triazole (4k)$

Br

Aryne precursor: **2b**, capture reagent: 1-azido-3-bromobenzene (0.5 M in *tert*-butyl methyl ether) (0.6 mL, 59 mg, 0.3 mmol, 1.5 equiv.), CsF (152 mg, 1 mmol, 5 equiv.), reaction temperature: 60 °C, reaction time: 6 h. Column chromatography eluent: pentane/Et₂O (8 : 1), $R_f = 0.3$. Yield = 44% (based on **2b**), colorless solid. ¹H NMR (400 MHz, c_6d_6): δ 8.15 (s, 1H), 7.90 (s, 1H), 7.81 (dd, J = 1.7, 1.7 Hz, 1H), 7.18 (d, J = 8.1 Hz,

1H), 7.06 (d, J = 8.1 Hz, 1H), 6.52 (t, J = 8.1 Hz, 1H), 2.79 (s, 3H), 1.16 (s, 12H); ¹³C NMR (101 MHz, CDCl₃): δ 148.0, 138.2, 131.9, 131.6, 131.0, 130.4, 129.9, 126.3, 123.3, 121.6, 114.2, 84.3, 24.9, 16.6; ¹¹B NMR (128 MHz, CDCl₃): δ 30.9. HRMS (EI+): m/z calcd for C₁₉H₂₁BN₃O₂Br 413.0910; found 413.0915.

NOESY NMR analysis (see page S85) indicates only one correlation of the methyl group to an ArH signal, plus a correlation between the two rings, as indicated below:

<u>2-(tert-butyl)-3-phenyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydrobenzo[d]isoxazole</u> (4)

Aryne precursor: **2a**, capture reagent: benzylidene-tert-butylamine *N*-oxide (53 mg, 0.3 mmol, 1.5 equiv.), CsF (122 mg, 0.8 mmol, 4 equiv.), reaction temperature: 60 °C, reaction time: 22 h. Column chromatography eluent: pentane/Et₂O (40 : 1), $R_f = 0.3$. Yield = 70% (based on **2a**), colorless solid. The regioisomers were identified by C-H correlation NMR. See page S89.

Major regioisomer: ¹H NMR (400 MHz, C₆D₆): 7.64 (s, 1H), 7.59 (dd, J = 7.4, 0.8 Hz, 1H), 7.35 – 7.28 (m, 2H, partially obscured by minor regioisomer), 7.08 – 7.02 (m, 2H), 7.02 – 6.95 (m, 1H, partially obscured by minor regioisomer), 6.76 (dd, J = 7.4, 0.6 Hz, 1H), 5.36 (s, 1H), 1.02 (s, 9H, partially obscured by minor regioisomer), 1.01 (s, 12H, partially obscured by minor regioisomer); ¹³C NMR (101 MHz, C₆D₆): δ 156.3, 144.2, 133.5, 128.4, 127.7, 127.1, 127.2, 123.2, 112.6, 83.4, 67.0, 60.5, 25.1, 25.1, 24.4; ¹¹B NMR (128 MHz, CDCl₃): δ 30.8.

Minor regioisomer: <u>2-(tert-butyl)-3-phenyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-</u> <u>dihydrobenzo[d]isoxazole</u>

¹H NMR (400 MHz, C_6D_6): δ 7.89 (dd, J = 8.7, 1.0 Hz, 1H), 7.74 (s, 1H), 7.35 – 7.28 (m, 2H, partially obscured by major regioisomer), 7.02 – 6.95 (m, 2H, partially obscured by major regioisomer), 6.95 – 6.89 (m, 1H), 6.70 (d, J = 8.0 Hz, 1H), 5.40 (s, 1H), 1.02 (s, 9H, partially obscured by major

regioisomer), 1.01 (s, 12H, partially obscured by major regioisomer); ¹³C NMR (101 MHz, C_6D_6): δ 159.0, 144.2, 136.4, 130.7, 130.2, 128.4, 127.3, 127.1, 106.3, 83.1, 66.7, 60.6, 24.6, 24.5, 24.5; ¹¹B NMR (128 MHz, CDCl₃): δ 30.8.

Both isomers: HRMS (EI+): m/z calcd for C₂₃H₃₀BNO₃ 379.2319; found 379.2314.

<u>4-bromo-2-(tert-butyl)-3-phenyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-</u> <u>dihydrobenzo[d]isoxazole</u> (**4m**)

Aryne precursor: **2d**, capture reagent: Benzylidene-tert-butylamine-*N*-oxide (53 mg, 0.3 mmol, 1.5 equiv.), CsF (122 mg, 0.8 mmol, 4 equiv.), reaction temperature: 60 °C, reaction time: 30h. Column chromatography eluent: pentane/Et₂O (40 : 1), $R_f = 0.2$. Yield = 45% (based on **2d**), yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 7.46 (s, 1H), 7.33 – 7.20 (m, 6H), 5.53 (s, 1H), 1.34 (s, 12H), 1.17 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ

158.2, 141.3, 132.4, 130.6, 128.5, 128.1, 127.6, 117.7, 111.4, 84.2, 67.8, 61.7, 25.3, 24.9, 24.8; ¹¹B NMR (128 MHz, CDCl₃): δ 30.1. HRMS (ESI+): m/z calcd for C₂₃H₃₀BBrNO₃ 458.1501; found 458.1493. For crystallographic data, see page S17.

<u>1,4-dimethyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,4-tetrahydro-5H-pyrido[2,3-e][1,4]diazepin-5-one</u> (**4n**)

Aryne precursor: **2f**, capture reagent: pyridine *N*-oxide (114 mg, 1 mmol, 5 equiv.), CsF (122 mg, 0.8 mmol, 4 equiv.), reaction temperature: 20 °C, reaction time: 5 days. Column chromatography eluent: DCM/MeOH (19 : 1), $R_f = 0.3$. Yield = 39% (based on **2f**), colorless solid. The regioisomer was identified by C-H correlation NMR. See page S96. ¹H NMR (400 MHz,

CDCl₃): δ 8.58 (d, J = 1.6 Hz, 1H), 8.38 (d, J = 1.6 Hz, 1H), 3.64 – 3.57 (m, 2H), 3.55 – 3.48 (m, 2H), 3.15 (s, 3H), 3.10 (s, 3H), 1.29 (s, 12H); ¹³C NMR (101 MHz, CDCl₃): δ 169.1, 157.0, 156.6, 147.3, 117.5, 83.6, 55.8, 47.7, 38.8, 35.5, 24.8; ¹¹B NMR (128 MHz, CDCl₃): δ 30.7. HRMS (EI+): m/z calcd for C₁₆H₂₄N₃O₃B 317.1911; found 317.1919.

4 Suzuki-Miyaura Reactions

A 6 mL glass flask equipped with a Teflon cap and magnetic stirrer was charged with the appropriate boronate (0.2 mmol, 1 equiv.), aryl bromide (0.24 mmol, 1.2 equiv.), $Pd(OAc)_2$ (2 mg, 0.004 mmol, 2 mol%), X-Phos (3.8 mg, 0.008 mmol, 4 mol%) and K_3PO_4 (85 mg, 0.4 mmol, 2 equiv.). The flask was evacuated and backfilled with argon. Toluene (1 mL) and H₂O (0.1 ml) were added and the resulting suspension was stirred for 18 h at 80 °C. The reaction mixture was diluted with Et₂O (20 mL) and washed with brine (15 ml), dried (Na₂SO₄), concentrated under reduced pressure and purified by silica gel flash chromatography using the indicated eluent system.

<u>4'-acetyl-3-methyl-5-(trimethylsilyl)-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate</u> (5a)

Boronate: **2b**, coupling partner: 4-bromoacetophenone (48 mg, 0.24 mmol). Column chromatography eluent: pentane/Et₂O (18 : 1), R_f = 0.2. Yield = 86% (based on **2b**), yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.05 (d, *J* = 8.3 Hz, 2H), 7.64 (d, *J* = 8.3 Hz, 2H), 7.58 (d, *J* = 2.3 Hz, 1H), 7.51 (d, *J* = 2.3 Hz, 1H), 2.65 (s, 3H), 2.46 (s, 3H), 0.43 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 197.5, 151.0, 144.3, 139.6, 136.3, 135.6,

133.3, 132.5, 131.9, 128.9, 127.4, 118.6 (q, J_{CF} = 319.9 Hz), 26.7, 17.5 (m), 0.1; ¹⁹F NMR (376 MHz, CDCl₃): δ -73.3. HRMS (EI+): m/z calcd for C₁₉H₂₁O₄F₃SSi 430.0882; found 430.0879.

5-(anthracen-9-yl)-3-methoxy-2-(trimethylsilyl)phenyl trifluoromethanesulfonate (5b)

Boronate: **2c**, coupling partner: 9-bromoanthracene (62 mg, 0.24 mmol). Column chromatography eluent: pentane/Et₂O (18 : 1), R_f = 0.2. Yield = 97% (based on **2c**), yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.52 (s, 1H), 8.05 (d, *J* = 8.4 Hz, 2H), 7.64 (d, *J* = 8.6 Hz, 2H), 7.53 – 7.44 (m, 2H), 7.44 – 7.36 (m, 2H), 7.03 (s, 1H), 6.89 (d, *J* = 0.7 Hz, 1H), 3.78 (s, 3H), 0.48 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 165.4, 154.6, 143.0, 134.6, 131.2, 129.8, 128.4, 127.3, 126.1, 125.9, 125.3, 120.1, 118.6 (q, *J_{CF}* = 320.9 Hz),

115.9 (m), 112.6, 55.7, 0.9; $^{19}{\rm F}$ NMR (376 MHz, CDCl₃): δ -72.6. HRMS (EI+): m/z calcd for C₂₅H₂₃O₄F₃SSi 504.1038; found 504.1024.

4-(thiophen-2-yl)-2,6-bis(trimethylsilyl)phenyl trifluoromethanesulfonate (5c)

Boronate: **2e**, coupling partner: 2-bromothiophene (39 mg, 0.24 mmol). Column chromatography eluent: pentane, $R_f = 0.3$. Yield = 80% (based on **2e**), colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 7.75 (s, 2H), 7.34 (d, J = 5.1 Hz, 1H), 7.31 (d, J = 3.6 Hz, 1H), 7.11 (dd, J = 5.1, 3.6 Hz, 1H), 0.41 (s, 18H); ¹³C NMR (101 MHz, CDCl₃): δ 154.1, 142.7, 135.6, 135.6, 133.4, 128.2, 125.7,

124.1, 118.4 (q, J_{CF} = 320.1 Hz), 0.3; ¹⁹F NMR (376 MHz, CDCl₃): δ -72.3. HRMS (EI+): m/z calcd for C₁₇H₂₃O₃F₃Si₂S₂ 452.0579; found 452.0571.

Methyl 4'-(((trifluoromethyl)sulfonyl)oxy)-3',5'-bis(trimethylsilyl)-[1,1'-biphenyl]-4-carboxylate (5d)

Boronate **2e**, coupling partner: Methyl-4-bromobenzoate (52 mg, 0.24 mmol). Column chromatography eluent: pentane/Et₂O (75 : 1), $R_f = 0.2$. Yield = 84% (based on **2e**), colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 8.14 (d, J = 8.2 Hz, 2H), 7.75 (s, 2H), 7.61 (d, J = 8.3 Hz, 2H), 3.96 (s, 3H), 0.42 (s, 18H); ¹³C NMR (101 MHz, CDCl₃): δ 166.8, 154.9, 144.4, 139.0, 137.0, 135.7, 130.2, 129.4, 127.3, 118.4 (q,

 $J_{CF} = 320.1$ Hz), 52.2, 0.3; ¹⁹F NMR (376 MHz, CDCl₃): δ -72.3. HRMS (EI+): m/z calcd for C₂₁H₂₇O₅F₃Si₂S 504.1070; found 504.1059.

5-(thiophen-2-yl)-3-(trimethylsilyl)pyridin-2-yl trifluoromethanesulfonate (5e)

Boronate **2f**, coupling partner: 2-bromothiophene (39 mg, 0.24 mmol). Column chromatography eluent: pentane/Et₂O (100 : 1), $R_f = 0.3$. Yield = 60% (based on **2f**), colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 8.53 (d, J = 2.6 Hz, 1H), 8.02 (d, J = 2.6 Hz, 1H), 7.40 (dd, J = 5.1, 1.0 Hz, 1H), 7.33 (dd, J = 3.6, 1.0 Hz,

1H), 7.14 (dd, J = 5.1, 3.7 Hz, 1H), 0.41 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 159.7, 145.5, 143.9, 138.7, 130.3, 128.4, 126.7, 125.4, 124.9, 118.4 (q, $J_{CF} = 320.5$ Hz), -1.6; ¹⁹F NMR (376 MHz, CDCl₃): δ -72.7. HRMS (EI+): m/z calcd for C₁₃H₁₄NO₃F₃SiS₂ 381.0137; found 381.0140.

5 **Deprotection of B(pin) Boronates**

5.1 General Procedure

Based on a modified literature procedure.^[6] Diethanolamine (115 µL, 1.2 mmol, 1.2 equiv.) was added at room temperature to a stirring solution of boronate 2 (1 mmol) in Et₂O (10 mL) in a round-bottomed flask under air. The mixture was stirred vigorously for 18 h and the resulting colorless precipitate collected by filtration, washed with Et₂O (2 x 5 mL) and dried with filter paper. The residue was resuspended in Et₂O (20 mL) under air, treated with 0.5 M HCl_(aq) (8 mL, 4 mmol, 4 equiv.) and stirred vigorously for 1 to 3 h (or until the reaction mixture became homogeneous). The solution was then diluted with Et₂O (20 mL) and washed with brine (2 \times 20 mL). The aqueous layer was extracted once more with Et₂O (30 mL). The combined organic layers were dried (Na₂SO₄), filtered and concentrated under reduced pressure to afford the products as a colourless solid.

5.2 **Data for Deprotected Boronates**

(4-(((trifluoromethyl)sulfonyl)oxy)-3-(trimethylsilyl)phenyl)boronic acid (6a)

10 to 1 mixture of boronic acid and boroxine. Yield = 59% (based on 2a), colorless solid. The regioisomer was identified by Si-H correlation NMR. See page S116. Boronic acid: ¹H NMR (400 MHz, CDCl₃): δ 8.11 (d, J = 7.2 Hz, 1H), 8.09 (s, 1H), 7.72 (d, J = 7.2 Hz, 1H), 0.44 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 155.3, 138.6, 136.3, 134.1, 125.6, 118.5 (q, J_{CF} = 319.9 Hz), -0.9; ¹⁹F NMR (376 MHz, CDCl₃): δ -74.1; ¹¹B NMR (128 MHz, CDCl₃): δ 28.5. HRMS (CI+): m/z calcd for C₁₀H₁₅BO₅F₃SSi 343.0455; found 343.0461. **Boroxine**: ¹H NMR (400 MHz, CDCl₃): δ 8.40 (s, 1H), 8.26 (d, J = 8.4 Hz, 1H), 7.52 (d, J = 8.4 Hz, 1H), 0.46 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃): δ -74.1; ¹¹B NMR (128 MHz, CDCl₃): δ 28.5.

(3-methyl-4-(((trifluoromethyl)sulfonyl)oxy)-5-(trimethylsilyl)phenyl)boronic acid (6b)

7 to 2 mixture of boronic acid and boroxine. Yield = 88% (based on **2b**), colorless solid. **Boronic acid**: ¹H NMR (400 MHz, CDCl₃): δ 8.26 (s, 1H), 8.08 (s, 1H), 2.51 (s, 3H), 0.47 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 154.7, 142.3, 141.0, 134.5, 131.0, 118.6 (q, J_{CF} = 319.7 Hz), 17.4, 0.1; ¹⁹F NMR (376 MHz, CDCl₃): δ -73.2; ¹¹B NMR (128 MHz, CDCl₃): δ 29.0. HRMS (CI+): m/z calcd for C₁₁H₁₇BO₅F₃SSi 357.0611; found 357.0612. **Boroxine**: ¹H NMR (400 MHz,

CDCl₃): δ 7.75 (s, 1H), 7.66 (s, 1H), 2.4 (s, 3H), 0.40 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 153.4, 140.0, 139.2, 134.2, 130.7, 118.6 (q, J_{CF} = 319.7 Hz), 30.9, 0.1; ¹⁹F NMR (376 MHz, CDCl₃): δ -73.3; ¹¹B NMR (128 MHz, CDCl₃): δ 29.0.

(3-methoxy-5-(((trifluoromethyl)sulfonyl)oxy)-4-(trimethylsilyl)phenyl)boronic acid (6c)

5 to 1 mixture of boronic acid and boroxine. Yield = 84% (based on 2c), colorless solid. Boronic acid: ¹H NMR (400 MHz, CDCl₃): δ 7.73 (s, 1H), 7.56 (s, 1H), 3.95 (s, 3H), 0.42 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 165.4, 154.8, 126.8, 119.1, 118.7 (q, J_{CF} = 320.7 Hz), 115.0, 55.4, 0.6; ¹⁹F NMR (376 MHz, CDCl₃): δ -73.0; ¹¹B NMR (128 MHz, CDCl₃): δ 28.6. HRMS (CI+): m/z calcd for C₁₁H₁₇BO₆F₃SSi 373.0560; found 373.0563. **Boroxine**: ¹H NMR (400 MHz,

CDCl₃): δ 7.24 (s, 1H), 7.19 (s, 1H), 3.87 (s, 3H), 0.37 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃): δ -72.8; ¹¹B NMR (128 MHz, CDCl₃): δ 28.6.

(3-bromo-4-(((trifluoromethyl)sulfonyl)oxy)-5-(trimethylsilyl)phenyl)boronic acid (6d)

13 to 1 mixture of boronic acid and boroxine. Yield = 80% (based on 2d), colorless solid. **Boronic acid**: ¹H NMR (400 MHz, CDCl₃): δ 8.42 (d, J = 1.6 Hz, 1H), 8.32 (d, J = 1.6 Hz, 1H), 0.50 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 152.3, 143.2, 142.7, 137.8, 118.6 (q, J_{CF} = 321.0 Hz), 116.9, 0.0; ¹⁹F NMR (376 MHz, CDCl₃): δ -71.4; ¹¹B NMR (128 MHz, CDCl₃): δ 28.3. HRMS (CI+): m/z calcd for C₁₀H₁₄BO₅F₃SSiBr 420.9560; found 420.9555. **Boroxine**: ¹H NMR

(400 MHz, CDCl₃): δ 8.04 (s, 1H), 7.86 (s, 1H), 0.42 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃): δ -71.6; ¹¹B NMR (128 MHz, CDCl₃): δ 28.3.

(4-(((trifluoromethyl)sulfonyl)oxy)-3,5-bis(trimethylsilyl)phenyl)boronic acid (6e)

6 to 1 mixture of boronic acid and boroxine. Yield = 53% (based on **2e**), colorless solid. **Boronic acid**: ¹H NMR (400 MHz, CDCl₃): δ 8.44 (s, 2H), 0.46 (s, 18H); ¹³C NMR (101 MHz, CDCl₃): δ 158.6, 145.8, 134.6, 118.4 (q, J_{CF} = 320.2 Hz), 0.3; ¹⁹F NMR (376 MHz, CDCl₃): δ -72.3; ¹¹B NMR (128 MHz, CDCl₃): δ 28.2. HRMS (CI+): m/z calcd for C₁₃H₂₃BO₅F₃SSi₂ 415.0850; found 415.0844. **Boroxine**: ¹H NMR (400 MHz, CDCl₃): δ 8.42 (s, 2H), 0.46 (s, 18H,

partially obscured by boronic acid); ¹⁹F NMR (376 MHz, CDCl₃): δ -72.3; ¹¹B NMR (128 MHz, CDCl₃): δ 28.2.

(6-(((trifluoromethyl)sulfonyl)oxy)-5-(trimethylsilyl)pyridin-3-yl)boronic acid (6f)

10 to 1 mixture of boronic acid and boroxine. Yield = 85% (based on **2f**), colorless solid. **Boronic acid**: ¹H NMR (400 MHz, CDCl₃): δ 9.02 (s, 1H), 8.61 ²3 (s, 1H), 0.44 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 163.9, 156.2, 154.1, 124.7, 118.4 (q, J_{CF} = 320.5 Hz), -1.7; ¹⁹F NMR (376 MHz, CDCl₃): δ -73.0; ¹¹B NMR (128 MHz, CDCl₃): δ 28.7. HRMS: Product degrades. **Boroxine**: ¹H

NMR (400 MHz, CDCl₃): δ 8.60 (s, 1H, partially obscured by boronic acid), 8.26 (d, $J_{CF} = 1$ Hz, 1H), 0.43 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃): δ -73.0; ¹¹B NMR (128 MHz, CDCl₃): δ 28.7.

6 Derivatization of Boronic Acids

6.1 Tsuji-Trost Coupling

Methyl-4-(3-methoxy-5-(((trifluoromethyl)sulfonyl)oxy)-4-(trimethylsilyl)phenyl)but-2-enoate (7a)

A 6 mL glass flask equipped with a Teflon cap and magnetic stirrer was charged with boronic acid **6c** (74 mg, 0.2 mmol, 1.2 equiv.), $Pd(OAc)_2$ (1 mg, 0.005 mmol, 2.5 mol%) and KF (46 mg, 0.8 mmol, 4 equiv.). The flask was evacuated and backfilled with argon. 1,4-dioxane (1 mL) was added then methyl-4-bromocrotonate (43 mg, 0.24

mmol, 1.2 equiv.). The resulting suspension was stirred for 18 h at 20 °C. The reaction mixture was diluted with Et₂O (20 mL) and washed with brine (2 × 15 mL), dried (Na₂SO₄), concentrated under reduced pressure and purified by silica gel flash chromatography; eluent system: pentane/Et₂O (8 : 1). R_f = 0.2. Yield = 65% (based on **6c**), colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.04 (dt, *J* = 15.6, 6.7 Hz, 1H), 6.75 (s, 1H), 6.62 (s, 1H), 5.84 (dt, *J* = 15.6, 1.4 Hz, 1H), 3.81 (s, 3H), 3.73 (s, 3H), 3.52 (dd, *J* = 6.7, 1.4 Hz, 2H), 0.35 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 166.5, 165.7, 154.7, 145.7, 142.1, 122.7, 119.1, 118.6 (q, *J*_{CF} = 320.8 Hz), 113.2 (q, *J*_{CF} = 1.4 Hz), 110.0, 55.6, 51.6, 38.2, 0.7; ¹⁹F

NMR (376 MHz, CDCl₃): δ -72.8. HRMS (EI+): m/z calcd for C₁₆H₂₁O₆F₃SiS 426.0780; found 426.0794.

6.2 Trifluoroboronate Potassium Salt

<u>3-methoxy-5-(trifluoroboranyl)-2-(trimethylsilyl)phenyl trifluoromethanesulfonate potassium salt</u> (7b)

Synthesis based on a literature procedure.^[7] Boronic acid **6c** (186 mg, 0.5 mmol). Yield = 99% (based on **6c**), colorless solid. ¹H NMR (400 MHz, CD₃CN): δ 7.07 (s, 1H), 6.95 (s, 1H), 3.83 (s, 3H), 0.33 (s, 10H); ¹³C NMR (101 MHz, CD₃CN): δ 165.8, 155.4, 119.6 (q, J_{CF} = 319.8 Hz), 117.1, 116.0 – 115.9 (m), 113.8 (q, J_{CF} = 1.6 Hz), 77.4, 56.1, 1.1; ¹⁹F NMR (376 MHz, CD₃CN): δ -

73.8, -143.5 (m); ¹¹B NMR (128 MHz, CD₃CN): δ 2.64 (q, J = 39.7 Hz). HRMS (ESI+): m/z calcd for C₁₁H₁₄BF₆O₄SSi 395.0387; found 395.0377.

6.3 Rh-Catalyzed Conjugate Addition

A 6 mL glass flask equipped with a Teflon cap and magnetic stirrer was charged with the appropriate boronic acid (0.2 mmol, 1.2 equiv.), chalcone (42 mg, 0.2 mmol, 1 equiv.), $[{RhCl(COD)}_2]$ (3 mg, 0.006 mmol, 3 mol%) and NaHCO₃ (3.4 mg, 0.04 mmol, 0.2 equiv.). The flask was evacuated and backfilled with argon. 1,4-dioxane (2 mL) and H₂O (0.4 ml) were added and the resulting suspension was stirred for 24 h at 50 °C. The crude mixture was purified by silica gel flash chromatography using the indicated eluent system.

4-(3-oxo-1,3-diphenylpropyl)-2,6-bis(trimethylsilyl)phenyl trifluoromethanesulfonate (7c)

SiMe₃ P_h P_h P_h P_h P_h P_h $SiMe_3$ Boronic acid **6e** (99 mg). Column chromatography eluent: pentane/Et₂O (50 : 1), R_f = 0.2. Yield = 86% (based on **6e**), yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.98 – 7.89 (m, 2H), 7.63 – 7.53 (m, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.39 (s, 2H), 7.35 – 7.29 (m, 2H), 7.28 – 7.19 (m, 3H), 4.87 (t, *J* = 7.3 Hz, 1H), 3.73 (dd, *J* = 16.9, 7.3 Hz, 1H), 0.28 (s, 18H); ¹³C NMR (101 MHz, CDCl₃): δ 197.8, 153.4, 143.2, 142.8, 137.7, 136.9, 134.8, 133.2, 128.7, 128.6, 128.0, 127.7, 126.7, 118.4 (q, *J_{CF}* = 320.0 Hz),

45.4, 44.7, 0.2; ¹⁹F NMR (376 MHz, CDCl₃): δ -72.5. HRMS (EI+): m/z calcd for C₂₈H₃₃O₄F₃Si₂S

2-bromo-4-(3-oxo-1,3-diphenylpropyl)-6-(trimethylsilyl)phenyl trifluoromethanesulfonate (7d)

Br OTf OTf SiMe₃ Ph Ph Ph R_{h} Boronic acid **6b** (101 mg). Column chromatography eluent: pentane/Et₂O (40 : 1), R_f = 0.2. Yield = 93% (based on **6b**), yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.96 – 7.89 (m, 2H), 7.59 – 7.53 (m, 1H), 7.51 (d, *J* = 2.3 Hz, 1H), 7.49 – 7.42 (m, 2H), 7.35 (d, *J* = 2.3 Hz, 1H), 7.34 – 7.28 (m, 2H), 7.26 – 7.22 (m, 3H), 4.83 (t, *J* = 7.2 Hz, 1H), 3.73 (dd, *J* = 17.3, 7.2 Hz, 1H)

1H), 3.67 (dd, J = 17.3, 7.2 Hz, 1H), 0.32 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 197.2, 147.2, 145.5, 142.5, 137.4, 136.7, 135.2, 135.0, 133.4, 128.9, 128.7, 128.0, 127.7, 127.0, 118.5 (q, $J_{CF} = 320.8$ Hz), 116.5, 45.0, 44.5, -0.1; ¹⁹F NMR (376 MHz, CDCl₃): δ -71.8. HRMS (EI+): m/z calcd for C₂₅H₂₄O₄BrSSiF₃ 584.0300; found 584.0309.

6.4 Iodonium Suzuki Coupling

578.1590: found 578.1586.

A 6 mL glass flask equipped with a Teflon cap and magnetic stirrer was charged with the appropriate boronic acid (0.2 mmol, 1 equiv.), iodonium salt (0.2 mmol, 1 equiv.), Pd(OAc)₂ (1 mg, 0.004 mmol,

2 mol%) and Na₂CO₃ (25 mg, 0.24 mmol, 0.2 equiv.). The flask was evacuated and backfilled with argon. Diglyme (0.8 mL) and H₂O (0.2 ml) were added and the resulting suspension was stirred for 20 h at 20 °C. The reaction mixture was diluted with Et₂O (20 mL) and washed with a saturated solution of NH₄Cl (2 × 15 mL), dried (Na₂SO₄), concentrated under reduced pressure and purified by silica gel flash chromatography using the indicated eluent system.

<u>4'-bromo-3-methyl-5-(trimethylsilyl)-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate</u> (7e)

Boronic acid **6b** (71 mg), bis(4-bromophenyl)iodonium triflate (118 mg). Column chromatography eluent: pentane/Et₂O (40 : 1), R_f = 0.2. Yield = 67% (based on **6b**), colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 7.62 – 7.55 (m, 2H), 7.54 – 7.51 (dd, J = 2.4, 0.5 Hz, 1H), 7.45 (dd, J = 2.4, 0.5 Hz, 1H), 7.45 (dd, J = 2.4, 0.5 Hz, 1H), 7.44 – 7.38 (m, 2H), 2.46 (s, 3H), 0.44 (s, 9H); ¹³C NMR (101

MHz, CDCl₃): δ 150.7, 139.7, 138.7, 135.5, 132.9, 132.2, 132.0, 131.8, 128.8, 122.2, 118.6 (q, J_{CF} = 319.8 Hz), 17.4 (q, J_{CF} = 1.4 Hz), 0.1; ¹⁹F NMR (376 MHz, CDCl₃): δ -73.3. HRMS (EI+): m/z calcd for C₁₇H₁₈O₃F₃BrSSi 465.9881; found 465.9873.

3-bromo-5-(trimethylsilyl)-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (7f)

Boronic acid **6d** (84 mg), diphenyliodonium *para*-toluenesulfonate (90 mg). Column chromatography eluent: pentane. $R_f = 0.4$. Yield = 87% (based on **6d**), colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 2.3 Hz, 1H), 7.65 (d, J = 2.3 Hz, 1H), 7.55 – 7.51 (m, 2H), 7.50 – 7.44 (m, 2H), 7.44 – 7.39 (m, 1H), 0.44 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 148.0, 142.3, 138.4, 137.8, 134.2,

129.0, 128.4, 127.2, 118.6 (q, J_{CF} = 321.0 Hz), 116.7, 0.1; ¹⁹F NMR (376 MHz, CDCl₃): δ -71.6. HRMS (EI+): m/z calcd for C₁₆H₁₆O₃F₃SiSBr 451.9725; found 451.9727.

6.5 Iodination

5-iodo-3-(trimethylsilyl)pyridin-2-yl trifluoromethanesulfonate (7g)

A 6 mL glass flask equipped with a Teflon cap and magnetic stirrer was charged with boronic acid **6f** (69 mg, 0.2 mmol, 1 equiv.), *N*-iodosuccinimide (135 mg, 0.6 mmol, 3 equiv.), CuI (4 mg, 0.02 mmol, 10 mol%), 1,10-phenanthroline (7 mg, 0.6 mmol, 10 mol%) and K₂CO₃ (56 mg, 0.4 mmol, 2 equiv.). The flask was evacuated and backfilled with argon. Diglyme (1 mL) was added and the resulting suspension was stirred for 16 h at 40 °C. The reaction mixture was diluted with Et₂O (20 mL) and washed with a 1 to 1 solution of saturated aqueous NH₄Cl and saturated aqueous Na₂SO₃ (15 mL) then wash with brine (10 mL), dried (Na₂SO₄), concentrated under reduced pressure and purified by silica gel flash chromatography; eluent system: pentane/Et₂O (50 : 1). R_f = 0.5. Yield = 93% (based on **6f**), pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.51 (d, *J* = 2.4 Hz, 1H), 8.12 (d, *J* = 2.4 Hz, 1H), 0.37 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 160.0, 154.5, 154.5, 128.7, 118.4 (q, *J_{CF}* = 321.0 Hz), 92.0, -1.7; ¹⁹F NMR (376 MHz, CDCl₃): δ -72.6. HRMS (EI+): m/z calcd for C₉H₁₁NO₃F₃SiSI 424.9226; found 424.9220.

Note: For the identical reaction run without CuI, the conversion after 16 h is 70 %.

6.6 Chan-Lam Coupling

A 6 mL glass flask equipped with a rubber septum and magnetic stirrer was charged with the appropriate boronate (1.2 equiv.), $Cu(OAc)_2 \cdot H_2O$ (0.1 equiv.) and pre-dried 4Å molecular sieves (375 mg/mmol). The flask was evacuated and backfilled with O₂. CH₂Cl₂ (1 mL) was added and the resulting suspension was stirred for 5 min at 20 °C. Morpholine (1 equiv.) was then added and the

mixture was stirred for 20 h at 40 °C. The crude mixture was purified by silica gel flash chromatography using the indicated eluent system.

2-methyl-4-morpholino-6-(trimethylsilyl)phenyl trifluoromethanesulfonate (7h)

Boronic acid **6b** (71 mg, 0.2 mmol), copper (3.2 mg, 0.016 mmol), 4Å MS (75mg), morpholine (14.3 mg, 0.16 mmol). Column chromatography eluent: petroleum ether/EtOAc (10 : 1), $R_f = 0.4$. Yield = 93% (based on morpholine), colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 6.86 (d, J = 2.9 Hz, 1H), 6.76 (d, J = 2.9 Hz, 1H), 3.94 – 3.80 (m, 4H), 3.22 – 3.10 (m, 4H), 2.34 (s, 3H),

0.37 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 150.0, 144.1, 135.1, 131.9, 120.7, 119.9, 118.6 (q, J_{CF} = 319.8 Hz), 66.7, 49.1, 17.7 (q, J_{CF} = 1.4 Hz), 0.1; ¹⁹F NMR (376 MHz, CDCl₃): δ -73.5. HRMS (CI+): m/z calcd for C₁₅H₂₃NO₄SSiF₃ 398.1069; found 398.1070.

2-bromo-4-morpholino-6-(trimethylsilyl)phenyl trifluoromethanesulfonate (7i)

Boronic acid 6d (71 mg, 0.24 mmol), copper (3.2 mg, 0.02 mmol), 4Å MS (75mg), morpholine (14.3

mg, 0.2 mmol). Column chromatography eluent: pentane/Et₂O (9 : 1), R_f = 0.2. Yield = 72% (based on morpholine), colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 7.11 (s, 1H), 6.92 (s, 1H), 3.85 (s, 4H), 3.17 (s, 4H), 0.39 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 150.7, 141.3, 137.3, 121.4, 121.2, 118.5 (q, J_{CF} = 320.4 Hz), 117.0, 66.6, 48.5, 0.1; ¹⁹F NMR (376 MHz, CDCl₃): δ -71.8. HRMS (EI+): m/z calcd for C₁₄H₁₉NO₄F₃SiSBr 460.9940; found 460.9956.

7 Crystallographic Data

Crystal data	Compound 4m	Compound 4h
CCDC-No.	-	-
Empirical formula	$C_{23}H_{29}BBrNO_3$	$C_{17}H_{19}BBrNO_3$, CHCl ₃
Formula weight	458.19	495.42
Crystal description	Colorless block	Colorless block
Crystal size	0.35 x 0.22 x 0.21	0.45 x 0.23 x 0.2
Crystal system, space group	Triclinic P ₁	Orthorhombic, P b c a
Unit cell dimensions:		
а	5.9629(3)	13.0653(7)
b	9.6761(5)	11.0099(6)
С	9.6943(5)	29.9093(17)
α	83.833(3)	90
β	82.215(3)	90
Г	89.828(3)	90
Volume	550.94(5)	4302.4(4)
Z	1	8
Calculated density	1.381 Mg/m ³	1.530 Mg/m ³
F(000)	238	2000
Linear absorption coefficient µ	1.889 mm^{-1}	2.301 mm ⁻¹
Absorption correction	multi-scan, SADABS 2008	multi-scan, SADABS 2008
Max. and min. transmission	0.6257 and 0.7455	0.5929 and 0.7455
Unit cell determination	$2.1 < \Theta < 27.4^{\circ}$	$1.4 < \Theta < 27.2^{\circ}$
	4282 reflections used at 100K	3607 reflections used at 100K
Data collection	-	-
Temperature	100(2)K	100(2)K
Diffractometer	Bruker APEX-II CCD	Bruker APEX-II CCD
Radiation source	fine-focus sealed tube	fine-focus sealed tube
Radiation and wavelength	$MoK_{\alpha}, 0.71073 \text{\AA}$	MoK _α , 0.71073Å
Monochromator	Graphite	Graphite
Scan type	ω scans	ω scans
Θ range for data collection	$2.1 < \Theta < 27.4^{\circ}$	$1.4 < \Theta < 27.2^{\circ}$
Index ranges	$-7 \le h \le 7, -12 \le k \le 12, -12 \le l \le 12$	$-16 \le h \le 16, -14 \le k \le 11, -29 \le l \le 38$
Reflections collected / unique	8642/ 4395	34995/ 4781
Significant unique reflections	4282 with I > $2\sigma(I)$	3607 with $I > 2\sigma(I)$
R(int), R(sigma)	0.0294, 0.0479	0.0429, 0.0583
Completeness to Θ_{max}	99.7%	99.3%
Refinement		-
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / parameters / restraints	4395/270/3	4781/249/0
Goodness-of-fit on F ²	1.015	1.015
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0299, WR2 = 0.0623	R1 = 0.0327, $wR2 = 0.0653$
R indices (all data)	R1 = 0.0313, WR2 = 0.0618	R1 = 0.0557, wR2 = 0.0719
Weighting scheme	$w=1/[\sigma^2(F_o^2)+(aP)^2]$ where $P=(F_o^2+2F_c^2)/3$	$w=1/[\sigma^2(F_o^2)+(aP)^2+bP]$ where $P=(F_o^2+2F_c^2)/3$
Weighting scheme parameters a	0.0302	a = 0.0291, b = 2.1499
Largest Δ/σ in last cycle	0.000	0.001
Largest difference peak and hole	0.527 and -0.248 e/Å ³	0.468 and -0.411 e/Å ³
Structure Solution Program	SHELXS-2014 (Sheldrick, 2008)	SHELXS-2014 (Sheldrick, 2008)
Structure Refinement Program	SHELXL-2014 (Sheldrick, 2008)	SHELXL-2014 (Sheldrick, 2008)

Figure S1. ORTEP drawing of **4m** at 50% probability levels. Hydrogen atoms are omitted for clarity. 4m was refined as an inversion twin with a BASF of 0.53.

Figure S2. ORTEP drawing of **4h** at 50% probability levels. The chloroform solvate is omitted for clarity.

8 References

[1] G. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112-122.

[2] D. Peña, A. Cobas, D. Pérez, E. Guitián, Synthesis 2002, 2002, 1454-1458.

[3] T. Ikawa, T. Nishiyama, T. Shigeta, S. Mohri, S. Morita, S.-i. Takayanagi, Y. Terauchi, Y. Morikawa, A. Takagi, Y. Ishikawa, S. Fujii, Y. Kita, S. Akai, *Angew. Chem. Int. Ed.* **2011**, *50*, 5674-5677.

[4] V. Matoušek, E. Pietrasiak, L. Sigrist, B. Czarniecki, A. Togni, *Eur. J. Org. Chem.* **2014**, 2014, 3087-3092.

[5] F. I. Carroll, T. P. Robinson, L. E. Brieaddy, R. N. Atkinson, S. W. Mascarella, M. I. Damaj, B. R. Martin, H. A. Navarro, *J. Med. Chem.* **2007**, *50*, 6383-6391.

[6] J. Sun, M. T. Perfetti, W. L. Santos, J. Org. Chem. 2011, 76, 3571-3575.

[7] A. J. J. Lennox, G. C. Lloyd-Jones, Angew. Chem. Int. Ed. 2012, 51, 9385-9388.

	- ⁻
	0.0
51'8 2 ∕₌ 6'62	0.5
	1.0
31'9' 13'00 13'00	1.5
	- 0.
	- -
	- 4 0.4
	4.5
	5.0 ppm)
	5.5 f1 (l
	6.0
	6.5
- +T'T	7.0
5'23 [™] 5'29 [™] 5'59 [™]	7.5
1:00 [₹] 1:00 ¹	8.0
	8.5
	- 0.6
	9.5
	0.0
\$10).5 1
517	11
	S19 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$

						-10
₽1.0 —						- 0
001/7						- 10
— 54.82						- 30 -
						- 6
						- 05
			-			
		-			_	- 8
						- 6
						100
-113.84				_		- 110 - 110 - 110
2112 UZ112 						120
~ 130'36 ~ 133'83						130
140.34						140
۲ ۶۰ ۲۵۲ –						150
						160
						170
						180
						190
ő						200
Sime						210
°-B SB SB SB SB SB SB SB SB SB SB SB SB SB						220
oxt					S.	25 - 81

		-10
98.0 — – –		- 0
		10
		- 20
96'+Z		- 30
		- 40
		- 20
98.85 —		- 09
		- 02
-		- 08
Δ Ϸ΄Ϸ 8 — – –		- 06
		- 00
80.211 80.2111 80.211 80.211 80.211 80.211 80.211 80.211 80		110 1(110 1(f1 (ppm)
18.811 25.021 123.56		30 120
124.41		40 1
		50 1
- 124 [.] 48		60 1
- 192°13		70 1
		30 1
		00 18
		- 0
SiMe ₃ OTf		0 20
S 2C		0 21
м-о о	S29) 22(
\land `		230

		: ٩
		0.0
IÞ.O —	± 00.6	0.5
		1.0
-1'34	15.2 4 =	نہ [_]
		0.
		5
		- 3.0 - 3.0
		3.5
		4.0
		4.5
		5.0 pm)
		5.5 f1 (p
		6.0
		6.5
		7.0
		7.5
88.7 —	≖ 16'0	0.
80.8	± 78.0	- 0 - 0 - 0
		- %
		- 6
OTf SiMe ₃		9.5
g 🖉 🚽		10.0
	S32	10.5
		11.0

		-10
-0.10		- 0
		10
		50
		- - 08
		- 6
		- 20
		- 09
		- 02
		- 08
64.48 —		- 06
		- 8
6/'STI -	,	10 1 (mpm)
86.911		20 1 f1 (
21:021 92:221 -		30
- 139'88 96'17√1	 ;	40
70.241 ->		20
15031 —	,	60 1
		70
		80 1
		90
		1 00
SiMe ₃		0 20
23 <u></u>		0 21
°, ,	S33	22
\land `		23(

- 30.02

	1		- 0
			- 0.0
∠ε·ο		18'33 -⊥	- 0.5
			-
T		13'43- ∓	
			- -
			2.0
			2.5
			- 3.0 -
			_ _ 0
			- - 4
			- 4
			5.0 5.0
			5.5 f1 (
			- 0.9
		•	- 6.5
			- 0.
			- -
		_	
66°∠ —		ר 00.2	- 8.
			- 8.5
			- 0.0
⁹			- - - - - -
			- 0.0
m-o		826	.5]
oxt		530	- 0
	I	l	11.

			Manual Manual	-10
-0. ⁻ 36	 			- 0
			ia tul velt je, kog ku	10
			- Second and a second	
			north a state of the second sta	
			no shukanga	- m
				- 4
			An Astron May University	- 20
		1	n men un min min min men	- 09
			n na hain dha na hain an hain dha na h	- 70
/0. P 8 —		 	nam namharan Ma	80 -
2070			n kuluka wa matuka ku	- 06
				100
C0:C11			na n	110 (ppm)
18.911 ~ 00.021 ~		ہ ہے_ ہے_	na na katalan	1 120 f1
~ 123.18			nur Diyyan Yarin Tilan	- 06
- 133'.74 - 133'.74			va na Bultan Ang Julia Ang	+0 1
70.241 ~		 	na manaka ka	0
۲ ↓ ./۲I —			n na managana n	15
			I-CANADAN MANA	16(
				170
			a remain with the first	180
			a na sana na s	190
			in second different lange die	200
e Siv			n - Anno Anno Anno Anno Anno Anno Anno A	210
o-≅ o-®				220
óxt			N N3/	230

		ې ې
		0.0
Δε·0 —		0.5
		1.0
-1.34	 	_ <u>n</u>
		0
		- 2.
		- 3.(
		3.5
		4.0
		4.5
		5.5 5.0 f1 (ppm)
		6.0
		6.5
		7.0
		7.5
		0.0
- < 8.24	· ∓- 10.1	ت. ۳
	<u>−</u> − 56.0	0
		Г б Г б
SiMe3		- 6 - 0
× ۲		10.
Ч Ч С	S40	10.5
		11.0

		; ٩
		0.0
68.0 —	} ≖ II.9	0.5
		1.0
-1'3	} 15.54-∃	
		2
		- 3.0 -
		3.5
		4.0
		4.5
		- 5.0 2pm)
		5.5 f1 (l
		6.0
		6.5
S6'9 - 26'9 -] ۲− 00° آ	7.0
Δ6 [·] 9 ⁻		7.5
		8.0
		8.5
		0.
		- - - - -
Sime		0
		5 10
	S44	10.1
		11.0

- 79.14

					- 10
۲					- 0
					10
07.42					20
55 VC >					- 30
					- 4
					- 20
					- 03
					- 02
	-				
۲ <u>5, 84.</u> 27					- 8
					- 6
			_		- 10 10
					110 f1 (pp
90 211 SZ 5707 TS 77 -/-					120
86.821 J					130
11.321					140
- 148.4 4			_		150
					160
					170
					180
					190
10 ¹					500
ARBON 2h 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,					10
					20 2
⁴⁵⁻⁰² → (¹⁵⁰ − (¹⁵				S49	0 7
ed1					23

-80

-70

-60

-50

-40

				-10
				- 0
				10
				20
18. 2 4.81				30
				- Q
21.01				- 4
- 40 43 				- 20
				- 09
1 8.99 —	-			- 02
0.00				80
82 88				- 06
				100
S6'S0T				110 (ppm)
₩0'SII ~				20 f1
Zə.47				30 1
				- 11
				140
				150
— 160.15				160
				170
				180
				190
/ -o				200
				210
°−m-0•4			055	50
°XT			856	0
		Management		23

				ې ۲
				0.0
— 0'35			म– 56 .8	0.5
				1.0
- T'33			13'25-≖	1.5
				2.0
				2.5
88.2 88.2 78.2			₽ 00.4	3.0
co.c				3.5 -
58.5 →8.5 →8.5			4'13 ⊣	4.0
				4.5
				5.5 5.0 11 (pom)
				6.0
				6.5
				7.0
28.7 کے کی۔32			1.02 ⊣⊺	7.5
28.7 - 78.7 - 78.7 -		_==	1.02 곳 1.02 곳	8.0
S6.7 7	×t			8.5
	2 : 5			- 0.6
	$\langle \overset{o}{\rangle}$			9.5
	4c Simes			10.0
	, , , , , , , , , , , , , , , , , , ,		S 58	10.5
	\wedge			1.0

<u> ۲8.05</u> —

			ΓŸ
~ 0.13		₹ ∠I.6	- 0.0
£C U->		ζ ~ 06 6	0.5
60'I ~_ 91'I ~_] 13' 4 3√ 12'02∕ [≖]	1.0
			1.5
	-		2.0
			2.5
			3.0
		<	3.5 -
			- 4.0
24.8 24.8 24.8			4.5
- 9'90 - 9'20 - 9'25 - 9'25			5.0 (ppm)
25'9 - 65'9 -			- 5.5 f1
29'9 - 29'9 - 72'9 -		r 02'2	- 9
+2'9 92'9 92'9	C C	1.12 2.12 2.12	6.5
68.9 <u>-</u> 46:5 <u>-</u> 46:7 <u>-</u>			7.0
		ן ד- 101.1 ך ד- 100.1	7.5
62'2 62'2		די גון די גון בי בי גון בי פניט	8.0
90'8 - 90'8 -			- 8.5
44.8 25.8 7	Č,		- 6
	4g		0 9.5
	w-o	\$70	5 10.0
	°	570	0 10.
		1	

				ΓŸ
				- 0.0
				0.5
				- 0.
60'I —			13.04-⊥	- <u>-</u>
		-		
				- 2.0
				2.5
				3.0
				3.5
				- 4.0
				4.5
				- - - - -
				1 1 5.5 f1 (pp
				6.0
85'9 - 09'9 - 09'9 -	\sim	=<	F 11.1	6.5
19.9 _\				7.0
SE.7 25.7 25.7	\sim	=	⊩ 60'⊺	7.5
22 2 ~ 50.8 ~ 50.8 ~			ד- 20'ד ד' 80'ד ב- 20'ד	- 0.8
ζ μ .8 —	\sim	_~~	₽ 00 .1	8.5
				- - - -
z				9.5
₽ 6				10.0
, , , , , , , , , , , , , , , , , , ,			S73	10.5
\land `				1.0

			-10
			- 0
			10
			20
94.46			30
			- 6
62.58 —			- 8
			- 6
			10 (mo
			- 11(f1 (pp
۲.۲۹۲۲ → 123.00 → 121.70 →	ده این این این این این این این این این این		120
26'82T -7 67'02T -7			130
28.82	— — — — — — — — — — — — — — — — — — —		140
- 146.91 - 149.94	 		150
			160
			170
			180
			190
			200
			210
		S 74	220
°		~ , .	230

∠Þ.05 —

O O B O O B O O O O A I B

						_ <u>,</u>
						0.0
				-		.5
						- - -
91.1				}	13.48 <u>-</u> 1	
						- #
						2.0
						2.5
62.5—					3.14 -1	3.0
						3.5
						4.0
						- 1 .5 -
						5 5 1 (ppm
05:0						- 0.9
25.9 25.52 25.52	~				⊥.02 ⊣	6.5
S0 Z S0 Z Z0 Z	<u> </u>		_		רי ד∽ 86'0 בי דכיס	7.0
08.7 ²					0 61	7.5
18'Z	77				₹ 1.01	8.0
06,7 - 8.15					E- 00.1	8.5
						0.
ä /						- 6 -
z ^{,z} ,z						- 6 - 0
§_∕ ¥						10.(
°, ™-0					S 82	10.5
						11.0

				ΓΥ
				0.0
				0.5
			_∕6£'.72	1.0
2013			₽८ ८١	1.5
				0
		-		.5
				0
				- 6
				- m
				- 4
				4.5
۵ с .с [–]			- 9C'T	5.0 (ppm)
			₹ 00.1	5.5 f1 (
SZ'9 - SZ'9 -				6.0
22 9 - 22 9 - 96 9 -			עריים ביים ב- 26'0	6.5
∠6'9 - ∠6'9 - 86'9 -	\sim \pm \approx			7.0
66'9 - 66'9 -			5 25 ⁻⁷ 4'97 ⁻⁷ 1'32 - 7	7.5
S0.7 - 20.7 - 20.7 -			- 10.0 1.23 ↓ 10.0	8.0
20'2 - 08'2 - 08'2 -	r N			8.5
08'Z - 18'Z -	 N			9.0
28.7 - 22.7 - 22.7 -	\sim $+$.5
- 2'33 - 2'28 - 2'28				5 0.0
65'Z - 09'Z -			S86	.5 10
₽9 Z - ₽∠'Z _	\rightarrow			0 10
			l	L

			-10
	_		- 0
			0
	-		- +
			- 20
	-		30
			40
— 25°.18			20
			- 09
			- - 02
			- 80
			- 06
			100 (
- 113.64			110 (ppm)
10.021 ~			120 120
44 			30
4130.19 			- 0 1
			1
28.421 —			15(
			160
92.991 —			170
			180
ς.			190
Ae ³ SiMe			- 200
			10
			20 2
XeO ₂ C		S107	0 22
-			23(

94.82 —

(mqq) tì

	j i	0
+9·0 —		- 0
		- 1
		50
		- 06
		- 6
		0
IÞ'SS —		
		- 00
		- 2
		- 80
		- 6
		100
66'711 \		110 (ppm)
90'2TT		120 120 f1
		30
		- 1
		0
		15
0+`S9I —		160
		170
		180
		190
		200
SiMe ₃		210
ec Com		20
`ш-ठ 9	S122	0 2
_		23

			-10
0.02			- 0
			10
			- 20
	_		- 30
			- 40
			- 20
			- 09
			- 02
			- 08
			- 6
			100
			110 110 1 (ppm)
61.021 - 00.711 - 92.00			120 120
123'38	4		130
۲۹۲.77 142.66 ۲۹۲.64			140
- 173 19 - 122'3t			150
			160
			170
			180
			190
ñ			200
e sime b			210
e		S126	220
<u>ዮ</u>			230

- 28.32

59.82 —

он Но^{`В}́

		-10
89.0		- 0
		10
		20
		30
———————————————————————————————————————		- 4
SS'TS — – <u>– – – – – – – – – – – – – – – – – </u>		20
		- 09
		70
		- 80
		- 6
۲ 109.98 ۲ 113.16) 100 m)
92.EIT		11(f1 (pp
	and the second	0 120
۲23.33 آ		- 0
	محمط المحمد	- 14
		15
		16(
		- 170
		180
e s		190
		200
, a la l		210
⁵ C	S138	220
Be Compared and the second sec		230

	Martin Carlos	-10
۷۰۰۵ –	and the constant of the second se	- 0
	ales I free High A	10
		- 20
		- 30
		- 64
		- 20
	Ndforder Annual Contract	- 09
	nonnad ku naga rinnadaga	- 02
	veruntiver adjuntation	- 80
		- 06
	artha (Mharlan (1998))	100
		110 (ppm)
~ 120.20	 a man a chuir an	120 f1
— 173'33 — 172'53 7- 178'34	 nad Address Caller	130
	 anna anna anna	140
132.33	 MUNICANA ANALAN	150
, 148.02 ZiMe ₃ ZiMe ₃	the local band of the	160
	New York Contract of Contract	170
	n chaile an	180
	ard-on a la di di culordoni	190
	Wandala Ala	- 00
	- Joseph Ministry	10
		20 2
	S154	30 2
	ł	7

		-200
		- 190
		- 180
		-170
		- 160
		-150
		-140
		-130
		-120
		-110
		-100
Z9'ZZ- —	_ 	- 70
		- 09-
		- 4-
		- 30
		-20
		-10
		- 0
SiMe ₃		10
	S158	20
<u> </u>		30

