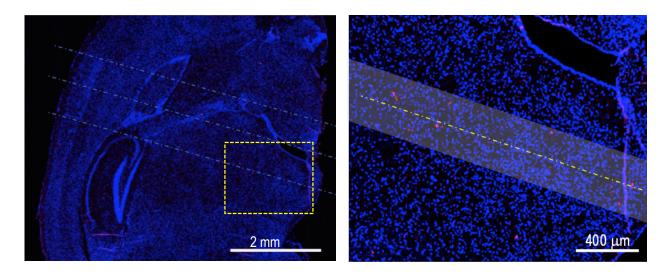
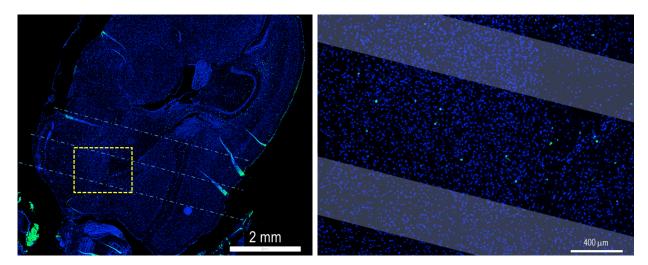
Supplementary Information


Treating brain tumor with microbeam radiation generated by a compact carbon-nanotube-based irradiator: initial radiation efficacy study

Hong Yuan^{1, 2,*}, Lei Zhang³, Jonathan E. Frank², Christina R Inscoe^{3, 4}, Laurel M Burk⁴, Mike Hadsell⁴, Yueh Z. Lee^{1, 2, 4, 5, 7}, Jianping Lu^{3, 4}, Sha Chang^{4, 5, 6, 7}, Otto Zhou^{3, 4, 7}


¹Department of Radiology, ²Biomedical Imaging Research Center, ³Department of Applied Physical Sciences, ⁴Department of Physics and Astronomy, ⁵Department of Biomedical Engineering, ⁶Department of Radiation Oncology, ⁷Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

Supplementary Results:

1. Apoptosis in normal brain tissue after microbeam radiation

2. Proliferation in normal brain tissue after microbeam radiation:

