Supplementary fig. 1.

Supplementary fig. 1. Related to Figure 1. MST1/2 are not required for YAP regulation by upstream signals in U2OS cells.

- (a) Deletion of MST1/2 in U2OS cells.
- (b) Contact inhibition-induced YAP phosphorylation. 1.5×10^5 , 6×10^5 , and 8×10^5 U2OS Cells per well were seeded onto 6-well plates. The cells were harvested for immunoblot 24 hours later.
- (c) 2-DG induced YAP phosphorylation. Cells at low confluence were treated with 25 mM 2-DG for 30 or 60 minutes.
- (d) Serum depletion-induced YAP phosphorylation. U2OS cells at low confluence were incubated with serum-free culture medium for 1.5 or 3.0 hours.
- (e) Latrunculin B (LatB)-mediated YAP phosphorylation. Cells at low confluence were treated with 0.2 ug/ml LatB for 30 or 60 minutes.

Supplementary fig. 2. Related to Figure 2. MAP4Ks are structurally related to MST1/2 and interact with LAT1/2.

- (a) The branch of the human kinome tree where MST1/2 and MAP4K2/4/6 are located.
- (b) Protein structures of MST1/2/3, MAP4K2, and MAP4K4/6. NLS, nuclear localization signal. CNH, citron homology domain.

Supplementary fig. 3.

Supplementary fig. 3. Related to Figure 2. MAP4K4 is a specific kinase for LATS1/2.

- (a) MAP4K4 does not significantly phosphorylate MOB1. Flag-tagged MST2 and MAP4K4 were expressed and purified from HEK293A cells. GST-tagged MOB1 was purified from E coli.
- (b) Interaction of MAP4K4 and LATS1/2 shown by immunoprecipitation of LATS1/2. The plasmids for HAtagged LATS1 or LATS2, and Flag-tagged MST2 or MAP4K4 were transfected into HEK293A cells. HA antibodies were used to immunoprecipitate HA-LATS1/2.
- (c) Interaction of MAP4K4 and LATS2 shown by immunoprecipitation of MAP4K4. The plasmids Flagtagged MAP4K4 and HA-tagged LATS2 were co-transfected into HEK293A cells. Flag antibodies were used for immunoprecipitation.
- (d) Interaction of endogenous LATS1 and MAP4K4. LATS1 antibody and rabbit IgG were used for immunoprecipitation of HEK293A cell lysates.

Supplementary fig. 4. Related to Figure 3. MAP4K4 induces YAP phosphorylation while its dominantnegative form promotes YAP dephosphorylation.

The Kinase dead mutant (KR) and wild-type (WT) MAP4K4 plasmids were transfected to HEK293A cells. 6 hours after transfection, the cells were split and seeded for testing effects of different conditions on YAP phosphorylation, including high cell density, serum deprivation, and LatB treatment.

Supplementary fig. 5.

Supplementary fig. 5. Related to Figure 4. Deleting MAP4K4 alone is not sufficient to compromise any YAP phosphorylation signals.

- (a) The RNA abundance of MAP4Ks based on a deep sequencing of HEK293A cells (Ref 35).
- (b) Deletion of MAP4K4 in the HEK293A cells. Two independent clones (#1 and #2) are shown.
- (c) Contact inhibition-induced YAP phosphorylation in two different cones of MAP4K4 KO cells.
- (d) Serum deprivation-induced YAP phosphorylation in MAP4K4 KO cells.
- (e) Actin depolymerization-induced YAP phosphorylation in MAP4K4 KO cells.

Supplementary fig. 6.

Supplementary fig. 6. Related to Figure 5. Deletion of MAP4K4 in MST1/2-dKO cells decreases and delays YAP phosphorylation induced by various signals.

- (a) Deletion of MAP4K4 in MST1/2-dKO HEK293A cells.
- (b) Decreased YAP phosphorylation from serum deprivation by deletion of MAP4K4 in MST1/2 dKO cells.
- (c) Deletion of MAP4K4 further lowers the responsiveness of YAP phosphorylation to LatB in MST1/2 dKO cells.
- (d) Deletion of MAP4K4 antagonizes contact inhibition-induced YAP phosphorylation and TAZ degradation.

Supplementary fig. 7.

Supplementary fig. 7. Related to Figure 5. Another clone with deletion of MST1/2 and MAP4K4/6/7 shows similar responses to various upstream signals.

- (a) A separate clone with deletion of MST1/2 and MAP4K4/6/7 using different sgRNAs for each of MAP4K4/6/7 in HEK293A cells.
- (b) Contact inhibition-induced LATS and YAP phosphorylation is significantly compromised in the second clone of MM-5KO HEK293A cells. The experiments were performed along with the samples in Figure 5b in the same phos-tag gel. Therefore, the wild-type control cells were omitted.
- (c) Serum deprivation-induced LATS and YAP phosphorylation is largely blocked in MM-5KO HEK293A cells.
- (d) Actin depolymerization-induced LATS but not YAP phosphorylation is largely blocked in MM-5KO HEK293A cells.

Supplementary fig. 8.

Supplementary fig. 8. Related to Figure 6. MAP4K2/4 does not interact with SAV1.

Flag-tagged kinase constructs were transfected into HEK293A cells. Cell lysate was used for immunoprecipitation with anti-Flag antibody. The immunoprecipitates were subjected to Western blot analyses with SAV1 antibody.

Supplementary fig. 9.

Allele 2 5'-GCCAGTTCGGACGTGACCGTGTTCGCGGGCCTGC-3'

Supplementary fig. 9. Related to Figure 7. MAP4K1/2/3 are also kinases for LATS and induce YAP phosphorylation.

- (a) MAP4K2 induces YAP phosphorylation in a LATS1/2 dependent but MST1/2 independent manner.
- (b) MAP4K1 and MAP4K3 show very weak kinase activities toward LATS.
- (c) MAP4K5 is not able to induce YAP phosphorylation.
- (d) The DNA mutation MAP4K1 in the clone of the MST1/2 MAP4K1/2/3/4/6/7 8 gene knockout (MM-8KO) cells shown in Figure S7c.
- (e) The DNA mutation MAP4K2 in the clone of the MST1/2 MAP4K1/2/3/4/6/7 8 gene knockout cells shown in Figure S7c.
- (f) The DNA mutation MAP4K3 in the clone of the MST1/2 MAP4K1/2/3/4/6/7 8 gene knockout cells shown in Figure S7c.

Supplementary fig. 10.

а				b							
Human <i>MAP4K1</i> locus sgRNA	5'-TAACTCCCATGGTAGG 5'-CCCATGGTAGG	PAN GCCACGATGT <u>TGG</u> GCCACGATGT-3'	1 CGTGC-3'	Human <i>MAP4K2</i> locus sgRNA	5'-GC	CAGTTCGGA 5'-GTTCGGA	CGTGAC	CGTGTCG	PAM CGGGGCCT -3'	'GC-3'	
Allele 1	5'-TAACTCCCATGGTAGGC	indel CCACGA A TGT <u>TGG</u>	CGTGC-3'	Allele 1	5'-GCC	AGTTCGGAC	GTGACCO	indel STG TG TC	6 <u>000</u> 000	TGC-3	
Allele 2	5'-TAACTCCCATGGTAGGG	CCAC **** T <u>TGG</u>	CGTGC-3'	Allele 2	5'-GCC	AGTTCGGAC	GTGACCO	GTGTTTCC	s <u>cee</u> ecc	TGC-3'	
с		PAN		d		مwild-type	D LATLS1/2 dKO	D MM-5KO	∽] MM-8K0#2		
Human MAP4K3 locus	5'-GGGTTCCGGCGGGACAA	ATCGAAGCCGGG	GTTCCAGGGG-3'							- 1	100 kd
sgRNA Allele 1	5'-CGGCGGGACA/ 5'-GGGTTCCGGCGGG	AATCGAAGCC-5'	CAGGGG-3'	Y Pho	AP s-tag	1121	-		-	_	70 kd
Allele 2	57 nt deletion in gen 5'-GGGTTCCGGCGGGACA	omic DNA, 22 nt de AATCGAA <mark>A</mark> GCC <u>GC</u>	letion in CDS 566GTTCCAGGGG-3'	pYAP	-S127		112	-	-]-	70 kd
					YAP			-		-	70 kd
					TAZ				-	-	55 kd
				Vin	culin					-	130 kd

Supplementary fig. 10. Related to Figure 7. A second clone with deletion of MST1/2 and MAP4K1/2/3/4/6/7 showed further decreased YAP phosphorylation.

- (a) The DNA mutation MAP4K1 in another clone of the MST1/2 MAP4K1/2/3/4/6/7 8 gene knockout (MM-8KO) cells.
- (b) The DNA mutation MAP4K2 in the second clone of the MST1/2 MAP4K1/2/3/4/6/7 8 gene knockout cells.
- (c) The DNA mutation MAP4K3 in the second clone of the MST1/2 MAP4K1/2/3/4/6/7 8 gene knockout cells.
- (d) YAP phosphorylation is further decreased by deletion of MAP4K1/2/3 in MM-5KO cells as shown in the second clone of MM-8KO cells.

Supplementary fig. 11.

Group1: 1-21

1	ARAF	12	PSKH2
2	AKT3 (isoform 2)	13	PINK1
3	PKN2	14	MAPK7 (isoform 1)
4	AMHR2	15	TNK1
5	FYN	16	AXL
6	RIPK1	17	TNK2
7	LIMK2	18	FGFR3
8	CDK9	19	CDC2L5
9	ARAF	20	PFTK2
10	TIE1	21	ІТК
11	CDC2L1		

Supplementary fig. 11-18. Related to Figure 2. Identification of MST1/2-independent LATS-activating kinases.

A human kinome library of kinase-expressing constructs is used for expression in HEK293A cells and purification of kinases by immunoprecipitation. The purified kinases are applied to the truncated LATS1 recombinant proteins for in vitro kinase assays. The phosphorylation of LATS1 is detected by immunobloting with an antibody targeting the hydrophobic motif of the LATS1 kinase domain (pLATS1-T1079).

Group1: 22-40

Flag- kinases	REALERATION REARATION REALERATION REALERATION REALERATION REARATION REALERATIO	# 10 E E	
pLATS-	-	100 H 100 H	
22	DSTYK (isoform 2)		
23	FGFR1	32	JAK3
24	PSKH1	33	NPR2
25	INSRR	34	MOS
26	IRAK2	35	НСК
27	RAGE	36	NEK11 (isoform 3)
28	PRKACB	37	GRK4
29	FER	38	FASTK
30	STK11	39	MYLK4
31	TESK2	40	DYRK4

Group1: 41-65

11		53	ABL1
41		54	DDR2
42	FLI4	55	ALS2CR7
43	TSSK2	55	
44	PRKY	50	
15	KCRO	57	MAST2
45		58	ULK3
46	FASTK	59	EIF2AK4 (isoform 3)
47	PRKAA1	60	MVLK3
48	WNK1	00	
10	EDHBG	61	DCLK2
4J F0		62	ACVR1C
50	EPHBI	63	FRK
51	NTRK1	64	MVO2D
52	RIPK5	04	IVITU3D
		65	DYRK1B

Group1: 66-77

Flagkinases

pLATS-HM

- 66 ICK (isoform 2)67 IRAK2
- 68 ACVR1B
- 69 PTK2
- 70 PRKX
- 71 GRK6B
- 72 PRKR
- 73 WNK4
- 74 CDK7
- 75 STYK1
- 76 CLK3 (isoform1)
- 77 NEK8

Supplementary fig. 12.

Group 2: 1-23

1	PRKCB	13	NTRK3
2	MERTK	14	GSK3A
2	PCTK3	15	TSSK6
J Л		16	MAP2K7 (isoform 4)
	EDHB6	17	CLK3 (isoform 3)
5		18	EPHA2
7	ERRR2	19	TNNI3K
7 Q		20	CAMKK1 (isoform 2)
0		21	TESK1
9 10		22	DCAMKL2
10		23	PDIK1L
11			
12	ACVK2B		

24		34	PRKCE
24		35	PLK2
25	SGK2	36	RIOK
26	SGK1	37	PRKACB
27	GSG2	38	IKBKE
28	ILK	30	CDK10 (isoform 4)
29	SRPK3	39	CDK10 (ISOIOIIII 4)
30	EIF2AK4	40	ISSK1B
31	PKN1	41	NUAK2
22		42	PIK3R4
22		43	CSF1R
33	PKKGZ	44	STK32C (isoform 2)

- 49 CAMKV 50 MAP3K12 51 MAPK15 52 NEK2 53 ERBB3 54 ITK 55 CSNK1A1 56 TYK2
- 57 CDK8
- 58 BLK
- 59 RET
- 60 CSNK1D (isoform 2)

Group 2: 61-80

C A	D. 4004 4	69	PRKCQ
61	BMPR1A	70	CDK6
62	NRBP2 (isoform 2)	71	MUSK
63	LYN	72	CSNK1E
64	PIM3	73	LCK
65	CSNK1D (isoform 1)	74	KSR
66	STK33	75	TP53RK
67	RPS6KA2	76	PRKCG
68	ALPK1	77	PTK2B
		78	MAP4K2
		79	DKFZp761P0423 (?)
		80	CDK3

Supplementary fig. 13.

1	LOC653052(?)	11	ACVRL1
2	PRKCI	12	PRKCB1
3	PRKCH	13	SGK
4	FES	14	RPS6KL1
5	RPS6KA4	15	EPHA10
6	ΡΤΚ6	16	TBK1
7	TGFBR2	17	CCRK
8	RET	18	TYRO3
9	RIPK3	19	JAK1
10	LOC91807	20	TYRO3
		21	CAMK1G

Group 3: 22-33

- ADCK1 (isoform 2)
- 24 TSSK1
- 25 LIMK1
- 26 PRKACG
- 27 EPHB1
- 28 DSTYK (isoform 1)
- 29 FGR
- 30 CDK10 (isoform 3)
- 31 PAK6
- 32 PRKCZ
- 33 ROR2

Group 2			
45	MYLK2	Group 3	
46	RIPK2	41	CDK4
47	MAP4K4	42	EPHA3
48	FLT3	43	CAMK2B (isoform 2)
		44	BMX
Creation 2		45	PRKAA2
Group 3		46	PFTK1
34		47	DYRK2 (isoform 2)
35	ISSK4 (Isoform 3)	48	AURKC
36	EPHAI	49	MGC42105
37	STK32A	50	NTRK2
38	IGF1R	51	CSNK1A1L
39	DAPK3	52	AKT1
40	PDGFRB	53	UHMK1

- 54 PASK
- 55 PDPK1 (isoform 4)
- 56 PHKG2
- 57 EPHA4
- 58 ADRBK1
- 59 ZAK (isoform 2, or beta)
- 60 PAK4 (isoform 1)
- 61 LOC91461
- 62 STRADB
- 63 DAPK1
- 64 PLK3
- 65 PDGFRA
- 66 TGFBR1
- 67 SGK3
- 68 EIF2AK1
- 69 MAP3K7 (isoform 1A)
- 70 PRKCA

Group 3: 71-82

BMPR1B
PTK6
LOC340371
TRIB3
STK38L
ULK4
SIK1
PCTK2
AURKB
GRK6A
EGFR
MINK1

Supplementary fig. 14.

Group 4: 1-25

1	AKT2	14	DYRK2 (isoform 1)
2	RPS6KA1	15	PAK2
3	HIPK2	16	MAP4K3
4	ULK2	17	PRKD2
5	SRPK1	18	STK38
6	SLK (isoform 2)	19	NEK10
7	BMPR2	20	ΡΤΚ2
8	PLK4	21	BRAF
9	BCKDK	22	NEK9
10	FASTKD1	23	CLK2
11	LMTK2	24	MGC16169
12	AURKA	25	CHEK1
13	ACVR2A		

Group 4: 26-45

- 26 PIM1 (isoform 2)
- 27 МАРКАРК2
- 28 TSSK3
- 29 VRK1
- 30 CDKL4
- 31 CDC2L6
- 32 DAPK2
- 33 MAP4K1 (isoform 2)
- 34 SNRK
- 35 ERBB4
- 36 BMX
- 37 FASTK (isoform 2)
- 38 ALPK2
- 39 DYRK3 (isoform 2, short)
- 40 ERN1
- 41 RPS6KC1
- 42 TAOK3
- 43 MAP4K5
- 44 MAST1
- 45 BUB1B

46	CSNK2A2	59
47	ADCK4 (isoform 1)	60
48	FLJ25006	61
49	PRKD1	62
50	PDK1	63
51	PBK	64
52		65
52		66
55	TTV	67
54	TTK	60
55	МАРКЗ	00
56	NRBP1	69
57	ACVR1	70
58	DMPK	

ADCK4 (isoform 2)
SRPK2
CSNK1G3 (isoform 3 or 4)
AKT3 (isoform 1)
STK16
VRK2
SRC
YES1
MKNK1
FLJ23356
PAK7
PRKAA1

Supplementary fig. 15.

Group 4		G	roup 5		
71	LYK5	1	MAPK14	10	CSNK2A1
72	PDK4	2	NEK3	11	NEK7
73	PNCK	3	PRKACA	12	MAPK10
74	NEK6	4	RIOK2	13	PKMYT1
75	MET	5	RPS6KA6	14	PIM2
		6	CHEK2	15	ΜΑΡΚΑΡΚ3
		7	FASTKD2	16	MAPK13
		8	CSK	17	RIOK1
		9	BCKDK		

Group 5: 18-42

53 CDC2

CDC2L2 69

63	PXK
64	SGK196
65	EPHA7
66	TLK2
67	STRADA
68	STK19 (isoform 2)
70	BRSK2 (isoform 3?)
71	PAK4 (isoform 2)

Supplementary fig. 16.

Group 6: CAMK and CAMKK

CAMKIIA CAMKIID CAMKK1 CAMKK2 CAMK1 CAMK1d CAMK2g-T287D CASK MARK2 MARK3

Supplementary fig. 17.

Group 7: MAPKs

- 1. MAPK14-p38a
- 2. hERK1
- 3. rERk2
- 4. MAPK7-ERK5
- 5. MAPK8
- 6. MAPK9
- 7. NLK
- 8. MAP2K2
- 9. MAP2K3
- 10. MAP2K5
- 11. MAP2K6

- 12. MAP2K7
- 13. MAP3K2
- 14. MAP3K5
- 15. MAP3K6
- 16. MAP3K8
- 17. MAP3K9
- 18. MAP3K13
- 19. MAP3K14
- 20. MAP3K15
- 21. Raf-1
- 22. pWZL-CAMK1g
- 23. pWZL-CAMK2b
- 24. pWZL-CAMK4

Supplementary fig. 18.

Group 8: CKs and PKCs

Flag- kinases	HA HA 992 100 120 120 120 120 120 120 120 120 12	CK1 CK1γ CK1δ CK1ε PKCα PKCδ
Short exposur e		ΡΚϹε ΡΚϹθ ΡΚϹη
pLATS- HM	120- 180- 180- 70- 24 25-	

Note that the molecular weight of pLATS-HM signals is actually the same with that of the PKC kinases.

Supplementary fig. 19. Uncropped immunoblots.

Fig95b	Fig5a	Fig. 57a	Figsbb						12-	31-2014
170 - 170 - 170 - 170 - 170 - 170 - 170 - 170 -	mnsko #8+12 ~~	MMGX0 #12	Fig.56b McRate Wette	MATANEL 812 120- 120- TWITE 170- 		into Figurea	mingleo #18-12 MEMKI 77175K 170 130	***	5. C 190 190 5. C	Fig.5a B Fig.55b Fig.57 Fig.56
тарикц. Fi Ост	g. SED in 55 地			nungeo 8-12	nnQko -12	actin 255 -40				

pLats1 - 77079 Fig.5b. prap-siz7 + LATE 170 - 180 100 YAPTAR - # actin ş 40 vinaulin B. Alesce 130

Fig 50	2DG WT Lots MSE MSM MM WT LOTS MSE MSO SK6	2-DG
	photos var	PLATF-HM Be_ Int
	,	LATSI 120 130 11°
		locating vinculin 170- 130 = 180*
	YAPITAL +	

Supplementary table. 1.

List of sgRNA used for CRISPR

Cell type	Clone	Gene	sgRNAs
LATS1/2 dKO HEK293A		LATS1	CGTGCAGCTCTCCGCTCTAA
		LATS2	TACGCTGGCACCGTAGCCCT
MST1/2 dKO HEK293A		MST1	ATACACCGAGATATCAAGGC
		MST2	AGTACTCCATAACAATCCAG
MST1/2 dKO U2OS	#1	MST1	AGCTTTGTATACGCTGCCAT
		MST2	TTTAATTGCGACAACTTGAC
	#2	MST1	ATACACCGAGATATCAAGGC
		MST2	AGTACTCCATAACAATCCAG
SAV1 KO HEK293A		SAV1	TCCAGGAGGAAGTCCTTCTC
NF2 KO HEK293A		NF2	GTCCATGGTGACGATCCTCA
ΜΑΡ4Κ4 ΚΟ ΗΕΚ293Α	#1	MAP4K4	CAGGACATGATGACCAACTC
	#2	MAP4K4	GGGCGGAGAAATACGTTCAT
MAP4K4/6/7 tKO HEK293A	#1	MAP4K4	GGGCGGAGAAATACGTTCAT
		MAP4K6	CGGACAGGTCGATGTCGTCC
		MAP4K7	CGACTCCCCGGCTCGAAGCC
	#2	MAP4K4	GGGCGGAGAAATACGTTCAT
		MAP4K6	AGGGTCGGCATGTCAAGACG
		MAP4K7	CGACTCCCCGGCTCGAAGCC
MST1/2-MAP4K4/6/7 5KO	#1	MST1	ATACACCGAGATATCAAGGC
		MST2	AGTACTCCATAACAATCCAG
		MAP4K4	GGGCGGAGAAATACGTTCAT
		MAP4K6	CGGCAATGGAACCTACGGAC
		MAP4K7	CGACTCCCCGGCTCGAAGCC
	#2	MST1	ATACACCGAGATATCAAGGC
		MST2	AGTACTCCATAACAATCCAG
		MAP4K4	CAGGACATGATGACCAACTC
		MAP4K6	AGGGTCGGCATGTCAAGACG
		MAP4K7	TTCATCCAGGCTTCGAGCCG

List of antibodies

Gene	Vendor	Catalog #	Used for CRISPR	Dilution for Western blot
LATS1	Cell signaling	3477	Yes	1:2000
LATS2	Cell signaling	5888	Yes	1:1000
	Abcam	ab70565	Yes	1:1000
MST1	Cell signaling	3682	Yes	1:2000
	BD Biosciences	611052	Yes	1:2000
MST2	Abcam	ab52641	Yes	1:2000
MAP4K4	Cell signaling	5146	Yes	1:1000
	Bethy	A301-502A	Yes	1:2000
MAP4K6	Bethy	A302-191A	Yes	1:2000
	Abcam	ab86385	Yes	1:1000
MAP4K7	Santa Cruz	ab95887	Yes	1:1000
	Bethy	A310-985A	Yes	1:1000
NF2	Cell signaling	12888	Yes	1:2000
SAV1	Cell signaling	13301	Yes	1:2000
	Santa Cruz	sc-374366		1:1000
pLATS1-T1079 (HM)	Cell signaling	8654		1:1000
pLATS1-S909 (AL)	Cell signaling	9157		1:1000
YAP	Abcam	ab52771		1:2000
YAP/TAZ	Santa Cruz	sc-101199		1:1000
pYAP-S127	Cell signaling	4911		1:2000
MOB1	Cell signaling	13730		1:1000
pMOB1-T35	Cell signaling	8699		1:1000
Actin	Sigma	A5441		1:5000
Vinculin	Sigma	V9131		1:5000
Flag-HRP	Sigma	A8592		1:5000
Flag	Sigma	F1804		1:2000
HA-HRP	Cell signaling	2999		1:5000
HA	Covance	MMS-101P		1:2000
GST	Sigma	SAB4200237		1:2000
	Cell signaling	2625		1:1000
Мус	Santa Cruz	sc-40		1:250
	Cell signaling	2278		1:1000
KIBRA	Cell signaling	8774		1:2000
GAPDH	Cell signaling	5174		1:2000