#### **Supplementary Figure 1.**



H-02

#### Phylogenetic analysis of sea urchin and various metazoan TGF $\beta$ ligands.

Bayesian phylogenetic tree including 192 various TGFβ ligands. Enlarged subtree corresponds to ADMP ligands. Numbers above nodes correspond to posterior probabilities above 50%. Scale bar unit for branch length is the number of substitutions per site. Musmu\_GDNF sequence was used to root the tree. Abbreviations for species name are the following. Ambulacrarian species: Ampfi: Amphiura filiformis; Parli: Paracentrotus lividus; Ptyfl: Ptychodera flava; Sacko: Saccoglossus kowalevskii; Strpu: *Strongylocentrotus purpuratus.* **Annelid species**: Capte: *Capitella teleta*; Helro: Helobdella robusta; Pladu: Platvnereis dumerilii. Arachnid species: Ixosc: Ixodes scapularis; Metoc: Metaseiulus occidentalis; Stemi: Stegodyphus mimosarum. Cephalochordate species: Brabe: Branchiostoma belcheri; Brafl: Branchiostoma floridae; Braja: Branchiostoma japonicum. Cnidarian species: Acrdi: Acropora digitifera; Acrmi: Acropora millepora; Nemve: Nematostella vectensis; Hydvu: Hydra vulgaris. Crustacean specie: Dappu: Daphnia pulex. Ctenophoran specie: Mnele: Mnemiopsis leidyi. Insect species: Anoga: Anopheles gambiae; Apido: Apis dorsata; Apifl: Apis florea; Apime: Apis mellifera; Drome: Drosophila melanogaster; Nasvi: Nasonia vitripennis; Scham: Schistocerca americana; Trica: Tribolium castaneum; Zoone: Zootermopsis nevadensis. **Mollusc species**: Aplca: *Aplysia californica*; Cragi: *Crassostrea gigas*; Lotgi: Lottia gigantea; Patvu: Patella vulgata. Nematode species: Ancca: Ancylostoma caninum; Brupa: Brugia pahangi; Trisp: Trichinella spiralis. **Onichophoran specie**: Eupro: Euperipatoides rowelli. Placozoan specie: Triad: Trichoplax adhaerens. **Platyhelminth species**: Dugja: *Dugesia japonica*; Echgr: *Echinococcus granulosus*; Hymmi: *Hymenolepis microstoma*; Macli: *Macrostomum lignano*; Schma: *Schistosoma* mansoni; Schme: Schmidtea mediterranea. Poriferan specie: Ampqu: Amphimedon queenslandica. Tunicate species: Cioin: Ciona intestinalis; Halro: Halocynthia roretzi. Vertebrate species: Danre: Danio rerio; Galga: Gallus gallus; Homsa: Homo sapiens; Musmu: Mus musculus; Takru: Takifugu rubripes; Xenla: Xenopus laevis; Xentr: Xenopus tropicalis. Acoel species: Conlo: Convolutriloba longifissura; Hofmi: Hofstenia miamia. Overexpression of ADMP1 or ADMP2 induces pSmad signalling in embryos devoid of Nodal signalling.

### **Supplementary Figure 2.**

A



**Effects of treatments with recombinant Nodal and BMP2/4 on** *admp1* **expression** (A) Inhibition of *admp1* expression by treatment with recombinant BMP4 protein. *admp1* expression was abolished following treatment with BMP4 at 0,1 µg/ml, a concentration that did not dorsalize sea urchin embryos.

(B) Effect of treatment with recombinant Nodal protein on *admp1* expression. Treatments with increasing concentrations of recombinant mouse Nodal protein progressively eliminated *admp1* expression and at 0.75 µg/ml, *admp1* expression was abolished.

## **Supplementary Figure 3.**



# Overexpression of *admp1* or of *admp2* directly induces pSmad1/5/8 phosphorylation

Embryos overexpressing *admp1* or *admp2* were treated with SB431542, fixed at mesenchyme blastula and processed for pSmad1/5/8 immunostaining. Both ADMP1 and ADMP2 induced strong Smad1/5/8 phosphorylation in the presence of SB431542 suggesting that the strong activation of pSmad is caused by direct signalling of ADMP1 and ADMP2 rather than by induction of *bmp2/4*.







**Expression of marker genes at gastrula stage following overexpression of** *admp1* **and** *admp2*. Both overexpression of *admp1* and *admp2* strongly perturbed the expression of D/V marker genes. Following overexpression of *admp1*, ventral dorsal and lateral ectodermal markers were downregulated at gastrula stage and *wnt5* expression was radialized. Embryos overexpressing *admp2* also showed a strong reduction of the expression of lateral ectodermal markers but the expression of *tbx2/3* in the PMCs and of *wnt5* in the vegetal ectoderm was radialized. Also note the significant recovery of the expression of *nodal* and *chordin* at gastrula stage in embryos overexpressing *admp2*.

## Supplementary Figure 5.



## Expression pattern of *bmp5/8* and morphological phenotypes resulting from overexpression of *bmp5/8*.

A. Expression pattern of *bmp5/8*. Maternal *bmp5/8* transcripts are distributed uniformly in the egg and in embryos at cleavage stages. At swimming and mesenchyme blastula stages, zygotic transcripts accumulate in the ectoderm. During gastrulation, *bmp5/8* starts to be expressed in the PMCs located in the lateral clusters and in the dorsal chain of PMCs. At prism stage, expression of *bmp5/8* switches to the dorsal side and is restricted to the PMCs located in the apex of the larva. This late expression of *bmp5/8* is identical to that of *bmp2/4* at a similar stage.

B. Phenotypes resulting from overexpression of *bmp5/8*. Embryos overexpressing *bmp5/8* at 400 and 600 µg/ml display a Nodal loss of function-like phenotype characterized by an a strong radialization, a straight gut, a lack of mouth, and an expansion of the ciliary band to most of the ectoderm. At higher doses however, *bmp5/8* dorsalises the ectoderm resulting in a phenotype indistinguishable from that resulting from overexpression of *bmp2/4*, characterized by an elongated shape of the larva, a thin squamous ectoderm covering the embryo and the presence of long and straight spicules in the vegetal pole region.

#### Supplementary methods

Accession numbers for the sequences used in the trees are: Acrdi\_GDF5-like (BAQ19089), Acrmi\_Dpp (AAM54049), Ampfi\_Afuni (AAX54512), Ampqu\_PAC\_15710663/BMP4-like (XP\_011406805), Ampqu\_PAC\_15723600/BMP2-like (XP\_011402506), Ancca\_TGFb (AAX36083), Anoga\_Mvri (AAT07309), Anoga\_Myogl

(AAT07311), Apido\_LOC102676483 (XP\_006621960), Apifl\_LOC100871171/BMP2-like (XP\_012342257), Apime\_60A (XP\_394252), Apime\_Actv (XP\_001122210), Apime LOC408789 (XP 006567370), Aplca BMP5-like (XP 005112290), Brabe-Nodal (BAC82629), Brafl BRAFLDRAFT 80287 (XP 002604737), Brafl Dpp (AAC97488), Braja BMP3/BMP3b (ACF93445), Brupa TGFb (AAB65415), Capte CAPTEDRAFT\_110325/Nodal (ELT90528), Capte\_CAPTEDRAFT\_172350 (ELU11942), Capte\_CAPTEDRAFT\_173895 (ELU12862), Capte\_CAPTEDRAFT\_184506 (ELU02050), Capte\_CAPTEDRAFT\_184704 (ELU18783), Cioin\_ADMP (BAE06303), Cioin TGFbLig (BAE06534), Conlo BMP2/4 (ACG70809), Cragi BMP2-B (XP 011431554), Cragi BMP3-like (XP 011415620), Cragi EKC42418/BMP3-like (EKC42418), Cragi EKC18750/BMP2 (EKC18750), Cragi GDF2 (CAD67714), Cragi\_GDF3 (CAD67715), Cragi\_Nodal-like (XP\_011447085), Danre\_ActBa (AAH66402), Danre\_ADMP (NP\_571951), Danre\_BMP11 (AAN03678), Danre BMP15 (NP\_001018320), Danre\_BMP2b (BAA24406), Danre\_BMP4 (AAC60285), Danre\_BMP5 (AAH54647), Danre\_BMP7 (NP\_571396), Danre\_Cyc (AAC34361), Danre\_Lefty1 (NP\_571035), Danre\_MSTN/GDF8 (042222), Danre\_MSTN2 (AAT95431), Danre\_Sqt (AAC34360), Danre\_Vg1 (NP\_571023), Dappu\_DAPPUDRAFT\_225730 (EFX77345), Dappu Dpp-like (EFX74191), Drome Actv (061643), Drome CG16987PA/Dawdle (AAF51204), Drome\_Dpp (P07713), Drome\_Gbb/60A (P27091), Drome\_Mvri (NP 524626), Drome\_Scw (P54631), Dugja\_BMP (BAA32087), Echgr\_ADMP1a (CDS21402), Galga\_ADMP (NP\_990153), Galga\_BMP9/Dorsalin (P34822), Galga\_MSTN (042220), Galga\_TGFb2 (P30371), Galga\_TGFb3 (P16047), Halro\_Dpp (BAA31132), Helro\_HELRODRAFT\_98091 (XP\_009013695), Helro\_P15496/HELRODRAFT\_154960 (XP\_009021433), Helro\_P83599/Dpp (XP\_009021901), Hofmi\_ADMP (AID23676), Homsa\_ActvBb (P09529), Homsa\_BMP11 (NP\_005802), Homsa\_BMP15 (NP\_005439), Homsa\_BMP2 (P12643), Homsa\_BMP3 (P12645), Homsa\_BMP3b (P55107), Homsa\_BMP4 (P12644), Homsa\_BMP5 (P22003), Homsa\_BMP6 (P22004), Homsa BMP7 (P18075), Homsa\_BMP8a (NP\_861525), Homsa\_BMP9/GDF2 (Q9UK05), Homsa\_GDF3 (Q9NR23), Homsa\_GDF5 (P43026), Homsa\_GDF8 (014793), Homsa\_LeftyA (000292), Homsa\_Nodal (AAH33585), Homsa\_TGFb2 (P61812), Homsa\_TGFb3 (P10600), Hydvu\_BMP58 (AAS01764), Hymmi\_ADMP1a (CDS29508), Ixosc\_B7PSK4 (/Univinputative (XP\_002402702), Ixosc\_Univin-like (XP\_002402701), Lotgi\_BMP5-8 (BAQ19194), Lotgi\_LOTGIDRAFT\_110168 (XP\_009045543), Lotgi P205842/LOTGIDRAFT 205842 (XP 009063729), Lyghe BMP3 (A0A0A9YL97), Macli\_RNA1310\_15976.1 (RNA1310\_15976.1), Metoc\_BMP7-like (XP\_003737033), Mnele\_TGFb (AEP16388), Musmu\_ActvBa (Q04998), Musmu\_BMP11 (Q9Z1W4), Musmu\_BMP15 (Q9Z0L4), Musmu\_BMP2 (P21274), Musmu\_BMP3 (Q8BHE5), Musmu BMP3b (NP 665684), Musmu BMP4 (P21275), Musmu BMP5 (NP 031581), Musmu BMP6 (P20722), Musmu BMP7 (P23359), Musmu BMP8a (P34821), Musmu\_BMP9/GDF2 (Q9WV56), Musmu\_GDF1 (AAH79555), Musmu\_GDF3 (NP 032134), Musmu GDF5 (P43027), Musmu GDF6 (P43028), Musmu GDF8 (008689), Musmu GDNF (P48540), Musmu Nodal (P43021), Musmu TGFb1 (P04202), Musmu\_TGFb3 (P17125), Nasvi\_ADMP (NP\_001288292), Nemve\_Activin (ABF61781), Nemve admp-related (AFP87424), Nemve\_BMP58 (ABC88372), Nemve\_Dpp (AAR27580), Nemve\_GDF5 (AAS77520), Nemve\_MSTNA (AGL96595), Parli\_Actv (ACZ60068), Parli\_ADMP1 (KP968256), Parli\_ADMP2 (KT276376), Parli\_BMP2/4 (ABG00199), Parli\_BMP58 (KT276377), Parli\_Panda (AIF71192), Parli\_Lefty (AAS00535), Parli\_Nodal (AAS00534), Parli\_Univin (ABG00200), Patvu\_BMP24 (AAM33143), Pladu\_Dpp (CAJ38807), Ptyfl\_ADMP1 (AJS19024), Ptyfl\_ADMP2

(AJS19025), Ptyfl\_BMP2/4 (BAA89012), Sacko\_ADMP1 (NP\_001158394), Sacko\_ADMP2 (NP\_001161498), Sacko\_BMP3 (XP\_002735398), Sacko\_Nodal-A (ACY92597), Sacko Nodal-C (NP 001164721), Scham Dpp (AAA81169), Schma BMP-like (ACG60602), Schme ADMP1a (ADW27179), Schme ADMP1b (ADW27180), Schme ADMP1c (ADW27181), Schme ADMP1d (ADW27182), Stemi BMP-2 (KFM79689), Stemi BMP3b (KFM74932), Stemi BMP4 (KFM66469), Strpu Activin (XP\_011670199), Strpu\_ADMP1 (XP\_011674487), Strpu\_ADMP2 (XP\_003730101), Strpu\_BMP24 (NP\_001116977), Strpu\_BMP3b (XP\_786367), Strpu\_BMP58 (P48969), Strpu\_Panda (XP\_011674529), Strpu\_Lefty (NP\_001123281), Strpu\_MSTNA/MSTN176 (XP 789990), Strpu MSTNB/MSTN027 (XP 003730703), Strpu MSTNC/MSTN220 (XP 788027), Strpu Nodal (NP 001091919), Strpu TGFb2 (XP 793246), Strpu Univin (P48970), Takru-MSTN1 (NP 001027843), Takru-MSTN2 (NP 001027844), Triad\_P57057/TRIADDRAFT\_57057 (XP\_002113173), Triad\_TRIADDRAFT\_58663 (XP\_002114631), Trica\_Dpp (Q26974), Trisp\_TGFB (XP\_003379082), Xenla\_ADMP (AAC59736), Xenla\_Antiv (AAG35771), Xenla\_BMP3 (Q7T2X7), Xenla\_BMP3b (Q7T2X6), Xenla\_BMP4 (P30885), Xenla\_GDF3 (AAH73508), Xenla\_GDF5 (AAT99303), Xenla\_nr2 (AAA97393), Xenla nr5 (BAB18971), Xenla TGF-b1 (P16176), Xenla TGFb2 (P17247), Xenla Vg1 (P09534), Xenla-BMP2A (P25703), Xentr BMP7 (AAT72008), Zoone BMP3 (KDR18230), Zoone\_BMP7 (KDR13694). All accession numbers are Genbank numbers except for "Lyghe BMP3" which is a Uniprot accession number and for "Macli\_RNA1310\_15976.1" which is a sequence found by blast search on the *Macrostomum lignano* genome website (www.macgenome.org).

## **Phylogenetic analysis**

Sequences were retrieved from various databases using blast search or keyword search, and aligned using Clustal Omega<sup>1</sup> (<u>www.clustal.org/omega/</u>) with default parameters. Alignment was manually checked for obvious errors using Aliview<sup>2</sup> ( <u>www.ormbunkar.se/aliview/</u>) then trimmed using Trimalv1.3 <sup>3</sup> (<u>trimal.cgenomics.org/</u>) with user defined parameters (Min. percentage position to conserve: 18, Gap threshold: 0.7, Similarity threshold: 0, Window size: 1). Bayesian phylogenetic analysis was done using MrBayes 3.2.5 <sup>4</sup>, <u>mrbayes.sourceforge.net/</u>) with a mixed amino-acid substitution model, and 5 millions generations. Consensus tree was generated after discarding 25% generations as burn-in.

## **Supplementary References**

- <sup>1</sup> Sievers, F. *et al.* Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Mol Syst Biol* 7, 539, doi:msb201175 [pii] 10.1038/msb.2011.75.
- <sup>2</sup> Larsson, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. *Bioinformatics* **30**, 3276-3278, doi:btu531 [pii] 10.1093/bioinformatics/btu531.
- <sup>3</sup> Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* 25, 1972-1973, doi:btp348 [pii] 10.1093/bioinformatics/btp348 (2009).
- <sup>4</sup> Ronquist, F. & Deans, A. R. Bayesian phylogenetics and its influence on insect systematics. *Annu Rev Entomol* 55, 189-206, doi:10.1146/annurev.ento.54.110807.090529 (2010).