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Numerical Analysis of Poisson Electric Equation for a Particular 9 

Donnan System 10 

The Poisson electric equation was solved numerically for the bulk water-filled pores 11 

within the membrane. The system is homogenous with respect to the y and z coordinates, 12 

and so the Poisson equation takes the form: 13 

                                       d
2
ϕ/dx

2
= - ρ/(80ϵ)                                                                                14 

where ϕ is the electric potential, ρ is the charge density, ϵ is the permittivity of free space 15 

and 80 is the dielectric constant of water. 16 



 
 

We present the numerical analysis for a particular Donnan system that comprises the 17 

following solutions: 18 

On the left-hand side, i.e., at x<0,  19 

                                         C-∞(a monovalent counterion, e.g., C
+
)= 0.9 mM 20 

                                         C-∞(a monovalent coion, e.g., A
-
)         = 0.9 mM. 21 

On the right-hand side, i.e.  at x>0,  22 

                                   C∞(a monovalent counterion, e.g.  C
+
)= 8.1 mM 23 

                                   C∞(a monovalent coion, e.g.  A
-
)         = 0.1 mM 24 

                                   P∞(charged polymer of valence z-P = -8)  = 1.0 mM. 25 

The system is in equilibrium as evidenced by the equality of the products of the permeant 26 

cation and anion on the two sides of the membrane. As required, both solutions are 27 

electroneutral far from the membrane. 28 

Equilibrium is maintained by a potential difference between the two sides of the 29 

membrane: if we set the reference potential ϕ(-∞) to zero, the value of ϕ(∞) is -58.7 mV 30 

at 37
0
C. Since we assume that most of the equilibrium potential drop occurs across the 31 

pores within the membrane, the numerical solution of the Poisson equation is intended to 32 

describe the potential course within the pore from x=-∞ to x=0. As the potential becomes 33 

more negative towards x=0, the concentration of the ions in that layer changes according 34 

to the Nernst equation: 35 

                          Ci(ϕ) = Ci(0) exp(-ziFϕ/RT)                                              [2].    36 

The procedure for the numerical solution shown here proceeded at sequential layers of 37 

water of thickness δx=1Å, after showing that further narrowing of δx does not affect the 38 

results of the analysis. We start at a layer remote from the membrane that is temporarily 39 



 
 

set at x=0. At this layer, ϕ and dϕ/dx are set to zero, whereas d
2
ϕ/dx

2
 is set at a very small 40 

value. Generally, we applied the value of 10
-5

 mV/Å
2 

to
 
this initial layer. (Further 41 

reduction of the initial value of d
2
ϕ/dx

2
 did not affect the course of the potential near the 42 

membrane; it just had the effect of moving the starting point farther away from the 43 

membrane). Then we move closer to the membrane by repetitive 1 Å layer steps. The n'th 44 

layer is, therefore, at a distance of n Å from the starting point. Using Excel, we determine 45 

for each layer of water the following parameters:
 

46 

ϕ(n); This is determined as follows: 47 

ϕ(n) = [d
2
ϕ/dx

2
(n-1) + 2 * ϕ(n-1) - ϕ(n-2)]                                          [3], 48 

where d
2
ϕ/dx

2
 is given in units of mV/Å

2 49 

[C
+
](n) and [A

-
](n) are determined by the Nernst equation for 37

0
C and are given in  50 

10
-3

M/L, which is equivalent to M/m
3
. 51 

ρ(n) is equal to {[C
+
](n) – [A

-
](n)} in units of 96.5 C/L = 96500 C/m

3 52 

d
2
ϕ/dx

2
 (n) =kρ(n).   53 

The proportionality constant k is the value of d
2
ϕ/dx

2
 in mV/(Å)

2
 when the ρ is 96500 54 

C/m
3
. 55 

Calculation of k is shown below. 56 

The procedure is stopped at nfinal where ϕ(nfinal)= ϕ
eq

 (or when absolute value of 57 

ϕ(nfinal+1)>the absolute value of ϕ
eq

).  58 



 
 

At this point it is possible to depict any of the calculated parameters as a function of their 59 

distance from the membrane, m, where the n'th layer is at a distance m (m=n-nfinal) Å 60 

from x=0, i.e., from the junction of pores and the solution on side 2. The curves for ϕ, ρ in 61 

Supplementary Figure S1 are taken from such an analysis for the particular Donnan cell 62 

described above. The curve for the pressure P in this Figure is based either on the 63 

numerical analysis or on the combined numerical analysis of ϕ as a function of x and the 64 

analytical results expressing the value of P as a function of ϕ (see text equation 5). In 65 

comparing the two methods we found that the maximal difference between the P values 66 

at a particular x were less than 2%.  67 

The value of k was determined as follows:  68 

d
2
ϕ/dx

2
= - ρ/(80ϵ) 69 

For ρ = 96500 C/m
3
     d

2
ϕ/dx

2
= - 96500/(80ϵ)  70 

ϵ = 1/(36π * 10
9
)            in units of F/m; hence, 71 

d
2
ϕ/dx

2
= - 96500/(80ϵ) = 96500 * 36π * 10

9
/80)                          in units of V/m

2
. 72 

To convert it to units of mV/Å
2
 we have to multiply it by 10

-17
 since 10

3 
mV = Volt, and 73 

10
20

Å
2
=m

2
. 74 

Therefore, k = 0.001364                                in units of mV/Å
2
/mEq/L 75 

The data of the numerical solution of the Donnan system described in Figure S1 is 76 

presented in the Supplementary Excel file. 77 

 78 



 
 

 79 

 80 

Supplementary Figure S1:  The course of ϕ, ρ and P as a function of distance from 81 

the junction between the pores and the solution on side 2 (which is set at x=0) for the 82 

particular Donnan system described above. It is assumed that the system behaves ideally, 83 

i.e., activity coefficients of the solutes are close to unity. The value of P as a function of x 84 

was obtained by two ways: 1), by the numerical solution of the cumulative force acting 85 

on the charges in the pore and 2), from the analytical solution of P(ϕ) as expressed by 86 

equation 5 in the text and the numerical resolution of ϕ(x) as shown here; the difference 87 

between the two is below the resolution of the plot for all values of x<0. 88 

 89 

 90 

 91 

 92 



 
 

Supplementary Information File 2 93 

 94 

The Contribution of the Action of the Electric Forces within Pores to the 95 

Appearance of Pressure across Membranes in Donnan Systems 96 

We begin by using the well-known expression for the Nernst potential, limiting ourselves 97 

to dilute solutions (where activity coefficients are close to unity), and consider the side 98 

containing only permeant ions (side 1 in text Figure 1): 99 

Ci(ϕ) = Ci(0) exp(-ziFϕ/RT), 100 

 101 

where Ci is the concentration of permeant ion i (mol/m
3
), zi is the valence, F is the 102 

Faraday constant (C/mol), R is the universal gas constant (J/K/mol), T is the absolute 103 

temperature (K), and ϕ is the potential (V); ϕ is set to 0 far from the membrane in the 104 

negative direction. 105 

The charge density ρ (C/m
3
) is 106 

ρ = ∑i Ci(0)ziF exp(-ziFϕ/RT), 107 

so that the force δf (J/m or N) acting on a thin layer of solution of area A (m
2
) and 108 

thickness δx (m) is 109 

δf = - ρ (Aδx) (δϕ/δx) 110 

    = -∑i Ci(0)ziF exp(-ziFϕ/RT) (Aδx) (δϕ/δx). 111 



 
 

The pressure difference δP (N/m
2
) across the layer is thus 112 

δP=δf/A 113 

    = -∑i Ci(0)ziF exp(-ziFϕ/RT) δϕ, 114 

P being a function of x only through the dependence on ϕ, and  115 

δP(ϕ)/δϕ = -∑i Ci(0)ziF exp(-ziFϕ/RT). 116 

If now δ 0, we can integrate P(ϕ) over ϕ to get 117 

P(ϕ)= RT ∑i Ci(0) exp(-ziFϕ/RT) + constant. 118 

The change in P(ϕ) when ϕ goes from 0 to its equilibrium value ϕ
eq

, is thus simply 119 

∆P= P(ϕ
eq

)-P(0)= RT[∑Ci(ϕ
eq

)- [∑Ci(0)]. 120 

Note that 1 mol/m
3
, the units of Ci, is equivalent to 1000 mmol/1000 L or 1 mM.  121 

 122 

The fact that ∆P is dependent on ϕ but independent of x, although ϕ is dependent on x, 123 

implies that the conclusion that ∆P accounts precisely for the difference between the 124 

osmotic values of the two solutions in a Donnan system is true even if there are minor 125 

discrepancies in the numerical values used for the various constants.  126 

 127 

 128 


