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Osmotic Regulation Is Required for Cancer Cell Survival under Solid Stress
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ABSTRACT For a solid tumor to grow, it must be able to support the compressive stress that is generated as it presses against
the surrounding tissue. Although the literature suggests a role for the cytoskeleton in counteracting these stresses, there has
been no systematic evaluation of which filaments are responsible or to what degree. Here, using a three-dimensional spheroid
model, we show that cytoskeletal filaments do not actively support compressive loads in breast, ovarian, and prostate cancer.
However, modulation of tonicity can induce alterations in spheroid size. We find that under compression, tumor cells actively
efflux sodium to decrease their intracellular tonicity, and that this is reversible by blockade of sodium channel NHE1. Moreover,
although polymerized actin does not actively support the compressive load, it is required for sodium efflux. Compression-
induced cell death is increased by both sodium blockade and actin depolymerization, whereas increased actin polymerization
offers protective effects and increases sodium efflux. Taken together, these results demonstrate that cancer cells modulate their
tonicity to survive under compressive solid stress.
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Solid tumors grow under stress from the local tissue. This
growth results in further accumulation of compressive stress
in the tumor. To remain viable and grow in vivo, the tumor
cells must be able to survive under these compressive
stresses, which correspond to mechanical loads of 10–
100 mmHg (1,2). Previous work has shown that this solid
stress prevents the growth of cancer cell spheroids (1).
Moreover, as this stress accumulates in vivo, it can lead to
further adverse effects such as blood vessel compression,
hindering drug delivery (2). Despite the importance of solid
stress in tumor growth, however, few studies have explored
how cancer cells actually support this stress.

Most of the literature suggests that the ability of cells to
resist deformation largely emanates from the cytoskeleton
(3). A series of studies have demonstrated that actin, microtu-
bules, and intermediate filaments all contribute to support
external compressive stresses (4–6). In accord with these
studies, in a genetically engineered model of the epithelial-
mesenchymal transition,we recently found thatmesenchymal
cells could support less stress than their epithelial counter-
parts, which correlated with decreased polymerized actin
and cytoplasmic stiffness (7).Here,we show that compressive
stress is not actively supported by cytoskeletal filaments, but
induces NHE1-dependent sodium efflux from the tumor cells.
Although actin polymerization did not actively support solid
stress, depolymerization of actin mitigated the ability of cells
to efflux sodium. Taken together, these results show that regu-
lation of intracellular tonicity is required for cells to maintain
viability under compressive stress.
Supporters of solid stress

To analyze how cancer cells support compressive-solid
stress, we cultured tumor spheroids from single MCF7
breast cancer cells in inert agarose gels, resulting in the
accumulation of solid stress (1,8). Next, to elucidate the
roles of cytoskeletal filaments in supporting this stress, we
treated the spheroids with a variety of cytoskeleton-stabiliz-
ing and -destabilizing molecules, and tracked changes in
spheroid cross-sectional areas using live-cell microscopy
(for details, see Supporting Materials and Methods in the
Supporting Material). Unexpectedly, depolymerization of
actin filaments using cytochalasin D resulted in an increase
in spheroid size, whereas increasing actin polymerization
with Jasplakinolide had no effect, suggesting that actin
was not primarily responsible for supporting solid stress
(Fig. 1 A). Modulation of microtubule polymerization did
not alter spheroid diameter (Fig. 1 B), and depolymerization
of intermediate filaments with 4 mM of acrylamide (9) pro-
duced a slight increase in spheroid area (Fig. 1 C). Since
none of these treatments produced significant decreases in
spheroid area, indicating that they actively supported stress,
we hypothesized that the stress may instead be supported
by osmotic pressure. Decreasing media tonicity caused
spheroid swelling, whereas increasing the media tonicity
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FIGURE 1 Change in spheroid area after 6 h of treatment, with all values normalized to the initial area before treatment. (A) Depoly-

merization of actin with cytochalasin D (Cyt) and enhanced polymerization with Jasplakinolide (Jasp). (B) Microtubule depolymeriza-

tion with nocodazole (Noc) and stabilization with Taxol (Txl). (C) Depolymerization of intermediate filaments with acrylamide. (D)

Altering media osmolarity with water (hypoosmotic) or 250 mM xylose, sucrose, NaCl, or PEG400 (hyperosmotic). (E) Spheroid per-

meabilization with 0.0025% Triton-X100 (TTX). Values given are mean 5 SE; *p < 0.05, **p < 0.01.
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with a variety of solutes caused spheroids to shrink
(Fig. 1 D). In addition to breast cancer MCF7 cells, this phe-
nomenon was also observed in ovarian cancer OVCAR3
cells and prostate cancer DU145 cells (Fig. S1), suggesting
it is conserved across other solid tumor models.

To verify that these changes were due to solid stress and
were not an artifact of the spheroid culture, we generated
equal-sized spheroids by anchorage-independent growth in
solution for 1 week before embedding them in agarose over-
night for analysis in the absence of significant accumulated
stress. These unstressed spheroids showed larger fold
changes in response to tonicity, presumably because there
was no initial stress, allowing for easier expansion against
the gel. However, in contrast to the stressed spheroids, the
unstressed spheroids collapsed after actin depolymerization
(Fig. S2). This result shows that actin polymerization is
required for cell structure under conditions of minimal solid
stress, but primarily controls the ability of cells to efflux
sodium under higher levels of solid stress.

Finally, to ascertain whether cells in steady-state stressed
spheroids have higher or lower tonicity than their surround-
ing media, we permeabilized cells with 0.0025% Triton-
X100. After permeabilization, the spheroids increased in
area by >25% (Fig. 1 E). Based on osmotic models of
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FIGURE 2 Cancer cells efflux sodium under solid stress. (A) A 2D m

tracer and compressed with 5 mmHg solid stress for 2 h. CoroNa inte

relative to the zero time point. (B) Intracellular sodium under 5mmHg

inhibitor bumetanide (Bum). (C) Intracellular sodium under 5 mmHg

polymerization, and cytochalasin D (Cyt) to depolymerize actin. (D) B

in 3D tumor spheroids. Values given are mean 5 SE, *p < 0.05, **p
cell size, this implies that cells within stressed spheroids
have lower tonicity than their surrounding media, such
that after permeabilization, extracellular ions enter the cells,
inducing an inward water flux (and consequently spheroid
swelling) to equilibrate (10).
Sodium efflux under compressive solid stress

To ascertain how the cells decreased their intracellular
tonicity, we utilized a 2Dmodel of solid stress. Here, instead
of allowing spheroids to accumulate solid stress from
growth, we used weights to directly apply a controlled
5 mmHg stress to a monolayer of cells (11), on the same
order of magnitude as the stresses generated by spheroids
(9.8 5 0.3 mmHg). Quantification of intracellular sodium
with CoroNa Green revealed that the cells effluxed sodium
after mechanical compression (Fig. 2 A).

Although blockade of sodium channel NKKC1 did not
produce a statistically significant difference in sodium efflux
under stress, inhibition of the sodium-hydrogen channel
NHE1 with ethyl-isopropyl amiloride (EIPA) did signifi-
cantly block sodium efflux (p < 0.05; Fig. 2 B). This is
consistent with previous studies that showed that hydrostatic
pressure induces sodium efflux (12). Repeating this
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FIGURE 3 Sodium efflux and actin polymerization are required

for viability under solid stress. (A) Quantification of cell death
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experiment with modulation of actin filaments revealed that
actin depolymerization blocked sodium efflux to a similar
degree as NHE1 blockade. Consistent with this, actin stabi-
lization with Jasplakinolide produced a slight but statisti-
cally insignificant (p ¼ 0.063) increase in sodium efflux
(Fig. 2 C). None of the inhibitors altered sodium levels in
the absence of stress (Fig. S3). These results suggest that
although polymerized actin may not actively support stress,
it is required for cells to function properly under compres-
sion. This is consistent with recent studies that showed the
importance of NHE1 for confined cell migration, where it
colocalizes with polymerized actin (13).

To verify that these results would translate into our 3D
spheroid model, we repeated the spheroid assay. Blockade
of NKCC1 with bumetanide caused modest swelling, but
consistent with the sodium efflux findings, NHE1 blockade
with EIPA produced a larger increase in spheroid cross-
sectional area (Figs. 2 D and S1), which was identical to
that seen with actin depolymerization (Figs. 1 A and S1).
This swelling was not observed in unstressed spheroids
(Fig. S2).
based on the ratio of propidium iodide to calcein AM after 4 h

of compression of a 2D monolayer. Hyper: 250 mM xylose;

hypo: 25% H2O. (B) Cell death in 3D tumor spheroids versus

radial stress. Stress-dependent toxicity is indicated by the slope

value. Representative images of spheroids stained for live cells

(calcein AM, green) and dead cells (propidium iodide, red) are

given below. Scale bar is 50 mm. Values given are mean 5 SE;

# indicates significant difference compared with stressed con-

trol; *p< 0.05, **p< 0.01, ***p< 0.001. To see this figure in color,

go online.
Sodium efflux, tonicity, and actin polymerization
contribute to cell viability under stress

To test whether the observed stress-induced sodium efflux
was actually protective, we finally analyzed the viability of
cells under compression. In our 2D system, we found that
compression with 5 mmHg induced significant cell death
(Fig. 3 A). Although cells in hypertonic media showed
increased death without compression, 5 mmHg of compres-
sion did not significantly increase the amount of death in
these cells, suggesting that it may have served to protect
the surviving cells (Fig. 3A). Increasing actin polymerization
with Jasplakinolide was more protective under stress, signif-
icantly decreasing cell death relative to the compressed
control. Conversely, decreased media tonicity, blockade of
sodium efflux, and actin depolymerization all significantly
increased the amount of cell death under compression
(Fig. 3 A). Although Jasplakinolide pretreatment improved
2D sodium efflux and viability under stress, it was not suffi-
cient to decrease the 3D spheroid size. This may be because
spheroid growth selected for tumor cells that could optimally
efflux sodium under stress and did not need additional poly-
merized actin to increase this efflux rate.

To verify that these mechanisms were conserved in our
3D model, we repeated the analysis of viability after addi-
tion of EIPA and cytochalasin D. These results are presented
as the resulting cell death as a function of radial stress
(Fig. 3 B). If these molecules induce compressive stress-
dependent toxicity, we should see increasing cell death as
a function of radial stress in the spheroids. In the control
condition, there is a weak positive correlation between
radial stress and cell death, which is subsequently increased
by NHE1 inhibition and even further increased by actin
Biophysical Journal 109(7) 1334–1337
depolymerization, demonstrating that both are required for
tumor cells to survive under stress.
CONCLUSIONS

Cells use ion pumps to maintain a constant volume by
modulating their tonicity and subsequently their osmotic
pressure (14). During mitosis, cells also use osmotic pres-
sure to generate a rounding force, which is counteracted
by actomyosin tension (15). Here, we document that under
compressive stress, multicell spheroids as well as cell mono-
layers will decrease their intracellular tonicity by effluxing
sodium, and that although cytoskeletal filaments do not
actively support compressive stress, actin polymerization
is required for osmotic regulation. This finding is consistent
with the work of Hui et al. (12), who found that increased
hydrostatic pressure induced active sodium efflux. Recent
studies using C. elegans suggested that these organisms
may have an absolute internal pressure set point (16). This
could be consistent with the model of cell volume and pres-
sure regulation presented by Jiang and Sun (10), which re-
lates changes in cell volume to water flux controlled by
differences in hydrostatic and osmotic pressures across the
cell membrane. The lower steady-state intracellular tonicity
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under stress implies a negative pressure change across the
cell membrane from osmotic pressure. This negative pres-
sure change may help offset the compressive stress. Taken
together, our results demonstrate that to survive under
compressive stress, cells must be able to modulate their
tonicity by effluxing sodium, and that polymerized actin is
necessary for this process.
SUPPORTING MATERIAL

Supporting Materials and Methods and three figures are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(15)00782-1.
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MATERIALS AND METHODS 

Cell Culture and Spheroid Generation 

Human breast carcinoma MCF7 (ATCC, Manassas, VA) were cultured in RPMI 1640 (Mediatech, 

Herndon, VA) containing 10% FBS (Atlanta Biologicals, Norcross, GA). Spheroids were generated by 

creating a single-cell suspension in 0.75% low-gelling agarose (Type VIIA, Sigma-Aldrich, St. Louis, 

MO) and allowing them to grow for 3 weeks (1).  

Chemical Perturbations 

For hypotonic media, DI water was added to 25-50% v/v, for hypertonic media Xylose (Spectrum), 

Sucrose (BDH), NaCl (Amresco) or PEG400 (TCI) were added to final concentration of 250 mM.  

Chemical inhibitors were used at the following concentrations:  

Chemical Manufacturer Concentration Effect 

Cytochalasin D Enzo 1 μM Depolymerize actin

Jasplakinolide  Enzo 100 nM Increase actin polymerization 

Nocodazole Sigma 20 μM Depolymerize microtubules 

Taxol Enzo 100 nM Stabilize microtubules 

Acrylamide Acros 4 mM Depolymerize intermediate filaments 

Triton-X100 BioRad 0.0025% Permeabilize cells 

EIPA Enzo 50 μM Blocks sodium channel NHE1 

Bumetanide Enzo 20 μM Blocks sodium channel NKCC1 

 

3D Spheroid Compression Model 

After 3 weeks of growth to accumulate solid stress, spheroids were analyzed by live-cell microscopy on 

a Nikon Eclipse Ti inverted epifluorescent microscope, maintained at 37° C and 5% carbon dioxide 

throughout the experiment using an In Vivo Scientific environmental cell chamber and Bioscience Tools 

CO2 controller. After capturing initial images of spheroids, spheroids were treated with inhibitors 

described above and returned to the microscope for continued imaging. Spheroid areas were manually 

traced, the value given represents the spheroid area 6 hours post treatment normalized to the initial area. 

Solid stress was determined as previously described (1). In brief, the deformation in the gel is 

determined from the final spheroid size relative to the initial radius of the single cells they originated 
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from (taken to be 10 μm), and this deformation can be used to determine stresses based on the known 

mechanical properties of agarose.   

Stress-free 3D Spheroid Model 

For an uncompressed spheroid control, spheroids were generated by anchorage independence on top of a 

layer 2.0% agarose. Spheroids were allowed to grow for one week until they reached roughly the 

diameter of week 3 compressed spheroids, and then embedded in 0.4% agarose. Spheroids were allowed 

to equilibrate overnight before analysis as described for the 3D spheroid compression model.  

2D Compression Model 

Cells were grown as a monolayer and then compressed with weighted pistons as previously described 

(2). After reaching 80% of confluence, monolayers were washed with PBS and a 2% agarose solution 

and flattened using a custom well plate insert. After polymerization, this agarose cushion was topped 

with media and allowed to equilibrate in standard culture conditions. To apply stress, custom pistons 

that applied 5 mmHg of solid stress (piston weight divided the piston surface area) were then added and 

incubated for desired period of time. Unstressed controls were topped with coverslips of equal size to 

the pistons to account for differences in oxygen diffusion.  

Live-Dead Quantification 

In order to quantify cell viability, cells were labeled with 10 μg/mL propidium iodide and 2 µM Calcein 

AM (Enzo) to identify dead and live cells, respectively. Images were then collected on a Nikon Eclipse 

Ti inverted epifluorescent microscope as described above. Image analysis was then performed in 

MATLAB, taking cell death as total propidium iodide signal normalized to total Calcein signal. For 2D 

studies, cells were pre-treated with inhibitors for 2 hours before applying stress for 4 hours. For 3D 

studies, spheroids were incubated with inhibitors for 6 hours before performing analysis.  

Intracellular Sodium  

Intracellular sodium was measured using CoroNa Green (Invitrogen, Carlsbad, CA) per manufacturer’s 

instructions. Individual aliquots were solubilized to 1 mM in DMSO.  Cell monolayers were washed 

twice with HBSS before incubation in 10 μM CoroNa green in HBSS for 45 minutes. Cells were washed 

two more times before returning to growth media, and then treated as described in the 2D compression 

model. For quantification, wells were read on a DTX-800 Multimode Detector microwell plate reader 

(Beckman Coulter) at 485nm excitation, 535nm emission. An initial reading was taken before applying 
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5 mmHg stress (or coverslip control) and then a final reading taken two hours later after removing 

weights. Values are reported as final CoroNa signal normalized to initial signal after blank subtraction. 

Statistics  

All studies were performed in triplicate or more. The data are reported as mean ± standard error of the 

mean. Statistical analysis was carried out using a student’s t-test for comparison considering p < 0.05 to 

be significant (***p<0.001,**p<0.01,*p<0.05). 	
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Figure S1. Changes in spheroid cross-sectional area following treatment are conserved across multiple 
types of cancer. Stressed spheroids were exposed to hypotonic media (25% water), hypertonic media 
(250 mM xylose), EIPA to block sodium channels or cytochalasin D (Cyt D) to inhibit actin 
polymerization and normalized to their area before treatment. (A) Ovarian cancer OVCAR-3 spheroids. 
(B) Prostate cancer DU145 spheroids. *P<0.05 relative to control.  
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Figure S2. Changes in cross-sectional area following treatment of unstressed MCF7 spheroids. 
Spheroids were exposed to hypotonic media (25% water), hypertonic media (250 mM xylose), EIPA to 
block sodium channels or cytochalasin D (Cyt D) to inhibit actin polymerization and normalized to their 
area before treatment. While hypotonic and hypertonic showed larger changes than stressed spheroids, 
sodium channel blockade with EIPA did not induce any significant change in spheroid area and actin 
depolymerization induced spheroid collapse instead of swelling. *P<0.05, **P<0.01 relative to control. 
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Figure S3. Intracellular sodium levels in stressed and unstressed monolayers. Cells were loaded with 
CoroNa Green sodium tracer and then treated with desired inhibitors or solvent. Initial readings were 
taken, and then cells were topped with either a glass coverslip (0 mmHg) or a weighted piston of equal 
diameter (5 mmHg) for 2 hours before taking a final reading. All values are normalized to the control 
reading before compression.  
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