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Control of MarRAB Operon in Escherichia coli via Autoactivation
and Autorepression
Mahendra Kumar Prajapat,1 Kirti Jain,1 and Supreet Saini1,*
1Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
ABSTRACT Choice of network topology for gene regulation has been a question of interest for a long time. How do simple and
more complex topologies arise? In this work, we analyze the topology of the marRAB operon in Escherichia coli, which is asso-
ciated with control of expression of genes associated with conferring resistance to low-level antibiotics to the bacterium. Among
the 2102 promoters in E. coli, the marRAB promoter is the only one that encodes for an autoactivator and an autorepressor.
What advantages does this topology confer to the bacterium? In this work, we demonstrate that, compared to control by a single
regulator, the marRAB regulatory arrangement has the least control cost associated with modulating gene expression in
response to environmental stimuli. In addition, the presence of dual regulators allows the regulon to exhibit a diverse range
of dynamics, a feature that is not observed in genes controlled by a single regulator.
INTRODUCTION
Network topology influences gene regulation dynamics
(1,2). For example, a single negative feedback in a network
is known to introduce oscillations, reduce noise, and line-
arize response, whereas a single positive feedback is capable
of exhibiting switchlike response and memory storage
(3–8). However, what benefit can an interlinked negative
and positive feedback confer to a cell? Studies have reported
that interlinked positive and negative feedback in a system
may act as a tunable motif when exposed to a varying envi-
ronment (9–14). One such system operating under both a
positive and a negative feedback loop is the multiple antibi-
otic resistance (marRAB) operon in Escherichia coli.

The locus was discovered during studies of mechanisms
leading to increased resistance to antibiotic tetracycline in
E. coli, and is used as a template for understanding the
mechanisms of intrinsic resistance in enteric bacteria
(15–17). The mar system consists of two divergently posi-
tioned transcriptional units: marC, which encodes for a pu-
tative integral membrane protein with no known function in
antibiotic resistance; and the marRAB operon, which en-
codes genes for three proteins (MarR, MarA, and MarB)
(18,19). While MarA and MarR are transcription factors,
the role of MarB was not characterized until 2013, when
it was reported to repress expression from the marRAB
operon by reducing the rate of marA transcription via an un-
known mechanism (20).

MarR and MarA are DNA-binding transcriptional regula-
tory proteins (18,21). In absence of stress signals (inducers,
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like weak organic acids and other phenolic compounds, pre-
sent in the surrounding cellular environment, or intracellular
metabolic intermediates/products), MarR binds the marRAB
promoter and negatively regulates gene expression (22). In
presence of inducers, MarR binds these inducers and is
then unable to bind DNA (23,24). In such a situation,
MarA binds the marRAB promoter and acts as an activator
of the system (25).

MarR belongs to the MarR family of transcriptional regu-
lators (26). It contains a conserved helix-turn-helix DNA
binding motif and directly binds to palindromic sequences
(TTGCC and GGCAA) as a homodimer on two sites in the
marRAB promoter resulting in repression of the marRAB
operon (22,27). In the presence of small molecules like salic-
ylate and other phenolic compounds, MarR binds these com-
pounds resulting in the loss of DNA-binding ability, leading
to increased transcription of the marRAB operon via MarA
activation (23,25). MarA belongs to AraC/XylS family of
transcriptional regulators and contains two helix-turn-helix
DNA binding domains (28,29). MarA is also regulated at
protein level via rapid degradation by ATP-dependent Lon
protease (30). This rapid degradation of MarA helps the bac-
terium rapidly minimize the cytotoxicity caused due to
MarA-dependent activation of downstream target genes
involved in stress response, as soon as the stress is removed.

The target genes are regulated positively or negatively
by MarA. This control is exhibited by MarA binding a
degenerate 19-basepair sequence known as ‘‘marbox’’
(AYNGCACNNWNNRYYAAAY) in the promoter regions
of the target genes (31). The resultant target proteins control
cellular physiology in a number of ways, including upregu-
lating expression of efflux pumps (e.g., acrAB and tolC);
downregulating expression of porin ompF via control of
transcription of small RNA micF; pH response genes like
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inaA; and genes involved in metabolism (like zwf and purA)
(32–37). Interestingly, cellular response to stress in E. coli is
controlled by two more homologous transcriptional regula-
tors, SoxS and Rob (36,38,39). Together, the three (MarA,
SoxS, and Rob) control expression of >80 genes in E. coli
(40–43). While the three systems have their independent in-
ducers and targets, considerable cross talk is known to exist
between the Mar, Sox, and Rob systems; however, the pre-
cise mechanistic details and physiological significance of
these interactions is yet to be fully understood (44–46).

The marRAB operon has a unique topology. The operon
encodes for an autoactivator and an autorepressor—some-
thing that is unique among all operons in E. coli (25,47). In
this work, we analyze the potential benefits conferred to the
cell by this unique topological design. Our work highlights
the richness in the qualitative responses that the wild-type
marRAB system is able to offer, and we demonstrate that
the wild-type design is also able to dynamically respond to
the changing inducer concentration via a lower control cost.
MATERIALS AND METHODS

The wild-type mar system produces two autoregulators, the MarR and

MarA proteins. MarA positively, and MarR negatively, regulate the system

(22,25,48). MarA regulates expression of various downstream genes in turn

to perform cellular functions. Along with wild-type mar design, two alter-

native designs (activator-only and repressor-only) having a single feedback

loop were studied and compared in terms of various performance factors,

described below. Target expression in the activator-only design is regulated

by an induced activator (A.I), and the repressor-only design is regulated by

an uninduced repressor (R). In our work, we assume that the target expres-

sion is solely dependent on MarA, or A.I, or the absence of R in the three

designs. Hence, we ignore the basal (or expression via other mechanisms)

expression of the target protein. This assumption, however, does not change

our results in any manner. The three designs are as shown in Fig. 1.

We setup a computational framework where we formulated ordinary dif-

ferential equations to deterministically model these three different designs,

and simulated them using ODE45 in the software MATLAB (The Math-

Works, Natick, MA).
Mathematical formulation

Model equations for wild-type design

In this design, it was assumed that MarR binds the marRAB promoter and

represses expression. MarR bound to inducers is unable to bind DNA. MarA

activates transcription from the marRAB promoter as well as the target pro-

moter. The degradation constant for free MarR was kept the same as that for
Biophysical Journal 109(7) 1497–1508
MarR bound to inducers. MarA degraded 10 times faster compared to

MarR, as reported previously in the literature (22–25,27,30,49–51):

d½MarR�
dt

¼ bþ
k �

h
MarA
kDA

i2

1þ
h
MarA
kDA

i2
þ
h
MarR
kDR

i2 � kf ½MarR�

� ½I� þ kr½MarR:I� � kdR � ½MarR�;

(1)

h
MarA

i2

d½MarA�

dt
¼ bþ

k �
kDA

1þ
h
MarA
kDA

i2
þ
h
MarR
kDR

i2 � kdA � ½MarA�; (2)

d½MarR:I�

dt

¼ kf ½MarR� � ½I�� kr½MarR:I�� kdR � ½MarR:I�;
(3)

h i2

d½T�
dt

¼
kT � MarA

kDT

1þ
h
MarA
kDT

i2 � kdT � ½T�: (4)

Model equations for activator-only design

In this design, it was assumed that A, activator, is unable to activate tran-

scription. However, in the presence of inducers (I), A bound to I can bind

DNA and trigger transcription. A bound to I is also able to control target

expression (T):

d½A�
dt

¼ bþ
k �

h
A:I
kDA

i2

1þ
h
A:I
kDA

i2 � kf ½A� � ½I� þ kr½A:I� � kdA � ½A�;

(5)

d½A:I�

dt

¼ kf ½A� � ½I� � kr½A:I� � kdA � ½A:I�; (6)

h i2

d½T�
dt

¼
kT � A:I

kDT

1þ
h
A:I
kDT

i2 � kdT � ½T�: (7)
FIGURE 1 (A) Wild-type network design. MarR

is an autorepressor (dark shaded). When bound to

Inducer (light shaded), MarR is unable to control

gene expression. MarA (solid) is an autoactivator.

MarA also activates target gene expression. (B)

Activator-only network design. Activator protein,

A, is unable to control gene expression. When

bound with inducer, A autoactivates and also

activates target expression. (C) Repressor-only

network design. Repressor protein, R represses its

own and target expression. R bound with Inducer

is unable to control gene expression.
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Model equations for repressor-only design

R is a repressor, and in the absence of inducers, it binds DNA and prevents

transcription. On addition of inducers, R binds I, and the complex R.I is un-

able to bind DNA, resulting in R and target expression (T):

d½R�
dt

¼ bþ k

1þ
h

R
kDR

i2 � kf ½R� � ½I� þ kr½R:I� � kdR � ½R�;

(8)

d½R:I�

dt

¼ kf ½R� � ½I� � kr½R:I� � kdR � ½R:I�; (9)

d½T� kT

dt

¼
1þ

h
R
kDT

i2 � kdT � ½T�: (10)

The description and values of parameters have been listed in Table 1. The

values of parameters in alternative designs were kept same as the corre-

sponding parameters in the wild-type design.
Evolving activator-only and repressor-only
designs using a genetic algorithm to mimic
wild-type response

Our genetic algorithm evolves activator-only and repressor-only networks

to mimic wild-type response, and we then compute and compare various

performance indicators associated with the evolved networks. In our ge-

netic algorithm, all parameters of the activator- and the repressor-only

designs were allowed to acquire a mutation except the one associated

with the degradation of the target protein as we assumed that all three

designs regulate expression of same target gene. Upon mutation, a param-

eter is allowed to acquire a new value from the given range with a uniform

probability. Only one parameter can acquire mutation in single step. Acti-

vator- and repressor-only designs were evolved and a response curve to

inducers was computed. Deviation from the wild-type dose-response curve

to inducers was calculated for each evolved network. Networks with the

minimum average deviations (error) from the wild-type curve were selected

for the next generation in the algorithm. The mutation and selection steps

were repeated until the mutant network did not evolve any further toward

lower deviation from the wild-type curve. More than 500 parallel evolutions

were done independent of each other to ensure that the results were not
TABLE 1 Parameter values used in this study

Parameter Description

B basal activation rate constant of mar, R,

K activation rate constant of mar, R, and A prom

kDA dissociation constant of MarA and A.I to resp

kDR dissociation constant of MarR and R.I to resp

kdA degradation constant of MarA, MarA.I,

kdR degradation constant of MarR, MarR

kf binding rate of MarA, MarR, A, and R to

kr unbinding rate of MarA, MarR, A, and R t

kT activation rate constant of target promoter

kDT dissociation constant of regulator to target

kdT degradation constant of target p

There is insufficient experimental data to uniquely determine all the parameter

estimated from previous studies (22–25,27,30,49–51) and the rest are estimated
biased by the initial mutations selected for. The error between the evolved

variant and wild-type design was calculated by Eq. 11 (where n is number

of inducer concentrations at which the system response was tested):

Error ¼
Pn
i¼ 1

jTðWTÞ�TðEvolvedÞ j
TðWTÞ

n
: (11)

Factors that affect performance

Steady-state response

Steady-state expression of regulators and targets in all three designs was

captured against varying inducers in environment.

Response time

Time required for reaching half of the total difference between the two

steady states of target expression when a system transitioned from one

dose of inducers to another. A number of switches from one state to another

state were simulated in this study.

Control cost

The control cost was determined by the total number of regulators required

to 1) maintain a response at a particular inducer level and 2) switch the

response when system moves from one inducer level to another. All three

designs were simulated in randomly fluctuating environment in terms of

stress level and time. A time profile of all regulatory molecules in response

to the inducer profile was generated. The area under this curve was taken as

a proxy of the control cost of a particular network. A realistic environment

for E. coli is unlikely to see constant inducer concentrations over long pe-

riods. Therefore, we simulate all three network designs in an environment

where the inducer concentration is changing from one level to another in a

discrete fashion. Our results remain independent of frequency of change or

magnitude of inducer levels.

Heterogeneity in the population

To study heterogeneity, we simulated all three designs stochastically using

Gillespie’s algorithm (52). The model for each design was simultaneously

simulated in 1000 cells and dynamics was captured when cells move from

OFF to ON and ON to OFF.

Hysteresis in the system

To study whether and how long a system keeps memory against inducer

level, we experimentally and computationally exposed systems to a range
Value

and A promoters 0.1 time�1

oters under regulation 2 time�1

ective promoters (25) 0.5 concentration

ective promoters (22) 0.025 concentration

A and A.I (30) 0.3 time�1

.I, R and R.I 0.03 time�1

inducers (22,23) 100 concentration�1 , time�1

o inducers (22,23) 1 time�1

under regulation 5 time�1

promoter (fitted) 1 concentration

rotein 0.1 time�1

values. Therefore, the relative sense of some parameter values have been

to fit the kinetic data of expression from our group.

Biophysical Journal 109(7) 1497–1508
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of inducer levels from low to high (switching ON) and high to low (switch-

ing OFF) and captured steady-state expression of target.
Stochastic simulation of wild-type design

We formulated a kinetic model by writing an ordinary differential equation

for each interaction individually in the wild-type design (listed below). Gil-

lespie’s algorithm has been adopted to account for stochasticity (52,53).

The simulation starts with initial concentrations of all species (MarA,

MarR, MarR.I, and T) at zero time step. All concentrations were repre-

sented as the number of molecules of a species divided by the cellular vol-

ume. Relative probabilities of each reaction were estimated at each time

step. One interaction can only take place at each time step based on the rela-

tive probabilities. The concentrations of all species are then updated accord-

ingly, leading to new set of relative probabilities for the next time step. This

is repeated until the system reaches equilibrium (54). All simulations were

done for 1000 cells.

Production of MarR and MarA proteins

r1 ¼ bþ
k �

h
MarA
kDA

i2

1þ
h
MarA
kDA

i2
þ
h
MarR
kDR

i2: (12)

Degradation of MarR

r2 ¼ kdR � ½MarR�: (13)

Binding of inducers to MarR

r3 ¼ kf ½MarR� � ½I�: (14)

Unbinding of inducers to MarR

r4 ¼ kr½MarR:I�: (15)

Degradation of MarR.I

r5 ¼ kdR � ½MarR:I�: (16)

Degradation of MarA

r6 ¼ kdA � ½MarA�: (17)

Production of target

r7 ¼
kT �

h
MarA
kDT

i2

1þ
h
MarA
kDT

i2 : (18)

Degradation of target

r8 ¼ kdT � ½T�: (19)
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Experimental methods

Strains and plasmids
The strain used was E. coli K12 MG1655 and the promoter fusion plasmid

was pMS201 (55,56).

Growth condition

The experiments were performed in Luria Bertani (LB) broth at 37�C.
Kanamycin and chloramphenicol antibiotics were used at concentrations

25 and 34 mg/mL, respectively. Sodium salicylate (Sigma Aldrich,

St. Louis, MO) was used as an inducer (23,24) and 1 M stock was prepared

and filtered with a 0.22-mm membrane filter and stored at �20�C.

Fluorescence assay at single-cell resolution

Escherichia coli containing Pmar promoter fusion (MG1655: 1,618,818–

1,619,243 bps) with green fluorescent protein (GFP) and PinaA promoter

fusion (MG1655: 2,349,723–2,349,441 bps) with GFP were grown in sepa-

rate tubes containing LB media with kanamycin at 37�C with shaking.

E. coli with no GFP was used as negative control. Both cultures were sub-

cultured in separate tubes in 1:500 dilution in LB media with kanamycin

and grown at 37�C with shaking. When the cultures had OD at ~0.2, sodium

salicylate was added in each tube, except onewith no inducer (control tube),

at different concentrations of 1, 2.5, 5, and 7.5 mM, respectively, and incu-

bated at 37�C with shaking for 10 h. Samples were collected from all the

tubes, stored in phosphate-buffered saline (containing 34 mg/mL chloram-

phenicol) and kept on ice in a dark condition. The endpoint fluorescence

values were plotted against respective salicylate concentrations to under-

stand the response of Pmar and target PinaA with a varying dosage of

inducers.

To study transition of cells from high to low inducer levels, the tube with

inducer concentration 7.5 mM culture was centrifuged, the cell pellet was

resuspended in fresh LB media containing kanamycin, and distributed in

five new tubes for each promoter. Sodium salicylate was added in each

tube at different concentrations 1, 2.5, 5, and 7.5 mM, except one with

no inducer (control tube). After 10 h of growth, samples were prepared

and stored in phosphate-buffered saline (containing 34 mg/mL chloram-

phenicol). The previous samples and new samples were then analyzed

with a BD SORP FACSAria (BD Biosciences, San Jose, CA) to get expres-

sion values at a single-cell resolution. The same exercise was repeated for

highest sodium salicylate concentration at 15 mM.
RESULTS AND DISCUSSION

The dynamic range of wild-type design is larger
as compared to an activator-only or a repressor-
only design

Among the 2102 promoters in E. coli, the marRAB promoter
is unique in its design (25,47,57,58). It is the only promoter
in the organism that encodes for an autoactivator (MarA),
and an autorepressor (MarR). While dual control by a single
regulator has been well characterized in a number of sys-
tems in E. coli and other organisms (10,59,60), no other
operon in E. coli is known to encode an autoactivator and
an autorepressor. In this work, we use experiments and sim-
ulations to explore the advantages that the wild-type mar-
RAB design confers to the organism.

To begin, we simulate expression of a target protein T
(which is activated by MarA) in the presence of a range of
inducers. MarRAB system is known to control expression
of a number of downstream genes, and in our simulations,
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protein T is a representative from among these targets. As
shown in Fig. 2 A, we note that the wild-type design is
able to exhibit a graded target response to the presence of
inducers in the environment. While the wild-type design
starts to respond to an inducer concentration of 0.1 A.U.,
its response saturates at a concentration of 10 A.U. To
compare the sensitivity and the dynamic range of wild-
type response with alternate designs, we compared the
wild-type simulation results with two alternate designs.
For the first, an activator-only design, the target expression
was assumed to be controlled by a positive regulator that
acts as a transcription factor when bound with an inducer
(Fig. 1 B). For the second, a repressor-only design, a
repressor was included that shuts off gene expression in
the absence of inducers. Repression in this design is relieved
in the presence of inducers, when a repressor bound to in-
ducers is no longer able to control gene expression (Fig. 1
C). Essentially, these designs equate to rewiring MarR or
MarA from the wild-type design, and thus, reducing the reg-
ulatory design to a more widely observed arrangement for
gene expression control. All biochemical parameters associ-
ated with the three proteins (MarR, MarA, and Target T)
were kept the same for all three designs.

On comparing the two alternate designs with the wild-
type steady-state data at different inducer concentrations,
we noted two important differences. First, for both alternate
systems, the dynamic range of response to inducers was far
smaller than in the wild-type (Fig. 2 A); and second, the acti-
vator-only design exhibits a switchlike induction, where it
transitions from a fully OFF to a fully ON state over a
very small range of inducer values—hence, seemingly un-
able to exhibit a graded response. Systems with positive
feedback have previously been reported to exhibit such dy-
namic behavior (10,61,62). Experimentally, the graded in-
duction of gene expression in the wild-type regulatory
arrangement can be seen for regulator PmarA and target
PinaA in Fig. 2 B.
FIGURE 2 Dose response curve. (A) Wild-type, activator-only, and

repressor-only designs curves as obtained computationally; the x axis rep-

resents Inducer concentration in logarithmic terms and the y axis represents

steady-state expression of target. (B) Wild-type Pmar and PinaA expression

in the presence of varying concentrations of sodium salicylate obtained

experimentally.
The repressor-only and activator-only designs
can be evolved to mimic the wild-type dose-
response to inducers

However, comparisons between wild-type design and the
two alternate designs (generated by just deleting one of
the two regulators) were seemingly unfair. In the alternate
designs, we kept the biochemical parameters associated
with all the interactions equal to those in the wild-type
design. Presumably, the response (in terms of expression
of target, T) of wild-type E. coli to the inducers is optimal
in the actual environment in which E. coli has evolved.
Hence, any alternate design will, over time, tune its interac-
tions, and evolve toward a state that enables it to mimic
the target T response comparable to that in the wild-type
(63–71). Hence, for a more realistic comparison between
designs, we let the two alternate designs evolve to tune their
biochemical interactions, which enable them to mimic the
wild-type response shown in Fig. 3.

A genetic algorithm was used for this purpose (see Mate-
rials and Methods for more details), and the topologies were
evolved to minimize the area between curves of the target
expression at different inducer concentrations in wild-type
and the alternate designs. More than 500 evolved networks
were generated for the activator-only and repressor-only
regulatory designs. Of these, the best three parameter sets
(in terms of minimum error) were selected from each design
(activator-only and repressor-only, as shown in the Fig. 3)
and chosen for further analysis and comparison with the
wild-type design. We note that in our attempts using the ge-
netic algorithm, we were able to generate networks that
closely matched the wild-type behavior in the repressor-
only design. However, in the activator-only design, despite
repeated attempts, we were unable to generate networks in
that topology that matched the wild-type behavior more
closely than shown in Fig. 3. In all designs with the activator
as the sole regulator, positive feedback leads to a switchlike
FIGURE 3 Dose response curves for (the three best) evolved activator-

only and repressor-only network designs. Activator-only and repressor-

only designs were evolved using a genetic algorithm and selected for to

match the wild-type response. The x axis represents Inducer concentration

in logarithmic terms and the y axis represents steady-state expression of

Target.

Biophysical Journal 109(7) 1497–1508
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induction of the target expression, resulting in rapid induc-
tion of the target protein beyond a certain inducer concentra-
tion—a well-characterized observation regarding systems
with positive feedback (10,61,62,72).

Given the evolved networks, which closely match the
wild-type target response to inducers, we compared perfor-
mance of the wild-type design with the evolved networks.
The performance of a network was characterized by the in-
dicators, as mentioned in Materials and Methods.
Repressor-only design is able to match the
dynamics of wild-type response (population
average) but the activator-only design is much
slower (especially from ON to OFF cases)

We quantify response time as the time it takes for the
network to reach 50% of the total change in the target value
as the network moves from one steady state to another. We
note that in wild-type and the evolved networks in repressor-
only design, the time of response exhibits a similar charac-
teristic pattern. In general, the response times are much
faster in these two designs compared to the evolved net-
works in an activator-only design. In the wild-type and the
evolved networks in a repressor-only design, the time of
response increases as the cells move to higher inducer con-
centrations. However, this increase is marginal, and does not
qualitatively change the response time of the system
(Fig. S1 in the Supporting Material).

In contrast, the evolved activator-only networks exhibit a
qualitatively longer response time when shifted from a
higher to a lower inducer concentration (Fig. 4). Thus, the
time to switch OFF the evolved activator-only networks
FIGURE 4 Response time for transition of systems from one Inducer concen

(E–G) Best three evolved repressor-only designs. The x and z axes represent th

network moves from start to end during a switch. The y axis captures the respons

to make comparisons between them easy).
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was much longer compared to the wild-type and evolved
repressor-only networks. This likely has a detrimental effect
on cellular growth, as the cell is producing target T for a
time longer than necessary/optimal. When moving to lower
inducer concentrations, all three evolved networks in the
activator-only design have long response times. The longer
response times when switching the system OFF in the acti-
vator-only design is likely due to the positive feedback
(73,74). Active production of activator A (by itself) results
in only a gradual decrease of intracellular levels of A with
time, resulting in a longer response time and consequently,
a higher cytotoxic effect on the cell.
Cost of response for varying inducer
concentrations in the environment; cost of
control of target gene expression is lower in the
wild-type design compared to the evolved
networks

Next, we quantified and compared the cost of response
among networks in the three different designs. We define
the cost of response as the number of regulator molecules
that need to be produced to launch an optimal (or wild-
type) target response to inducers, as shown in Fig. 2 A. Syn-
thesis of unwanted proteins is known to retard the cellular
growth rate (75–77), and here we wanted to study the cost
of response to a time-varying inducer signal to the cell. In
this regard, we generated three different inducer concentra-
tion profiles in time—where both the inducer levels and the
time for which the level was sustained were randomly varied
(Fig. 5 A). More than 500 networks (in terms of minimum
error) were selected for each of the activator-only and
tration to another. (A) Wild-type. (B–D) Best three evolved activator-only.

e start and end Inducer concentration, respectively, in a logarithm where a

e time required to switch (the scale for the y axis was kept same in all graphs



FIGURE 5 Comparison of control cost of response between wild-type,

evolved activator-only, and evolved repressor-only designs. (A) Inducer

concentration profiles generated where both the Inducer levels and the

time for which the level was sustained were randomly varied. (B) Average

control cost (across the three profiles) in the evolved activator-only (solid)

and evolved repressor-only (shaded) designs was computed (in multiples of

control cost of the wild-type design) and plotted against % error in

mimicking response of wild-type design. The time of these simulations is

assumed to be much smaller than the cell cycle time of the bacteria.

FIGURE 6 Comparison of control cost of response among activator-only,

repressor-only, and evolved wild-type designs. Wild-type design was

evolved to mimic response of activator-only and repressor-only design.

Control cost in each evolved wild-type design was computed (in multiples

of control cost of the activator-only and repressor-only designs) and plotted

against % error in mimicking response of (A) activator-only and (B)

repressor-only design.
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repressor-only designs. Simulations were then carried out to
generate the target response to each inducer-time profile in
wild-type and all networks in the two alternate topologies
(evolved activator-only and evolved repressor-only de-
signs). Similarly, a time-profile of all regulatory molecules
in response to the inducer profile was generated. The area
under this curve was taken as a proxy of the control cost
of a particular network. Cost of each evolved network in
three different inducer time-profiles, and the average cost
of both activator-only (solid dots) and repressor-only de-
signs (shaded dots) (in multiples of cost of wild-type design)
against percent error, is shown in Figs. S2 B and S5 B.

Because the wild-type design has two regulators (MarR
and MarA), whereas the evolved repressor-only and evolved
activator-only have a single regulator (repressor R and acti-
vator A respectively), we had, before these simulations,
intuitively assumed that the control cost of the wild-type
design would be higher than that in the activator-only and
repressor-only designs. The results from our evolved strains
demonstrate that this is not the case. On comparing the
average costs of the wild-type and the evolved repressor-
only designs, we note that in the three inducer time-profiles
tested, a few evolved repressor-only networks (shaded dots)
that are capable of closely mimicking the wild-type
response with ~20% error, but are expensive compared to
wild-type design.

Similar simulations were done with the networks in an
activator-only design. However, as shown in Fig. 3, the
evolved networks in an activator-only design poorly
matched wild-type in terms of the amount of target pro-
duced in response to inducers. As shown in Figs. 5 B and
S2 B, networks in the activator-only design (solid dots),
although closely mimicking the wild-type, were more
expensive than the wild-type. Some of the evolved networks
in an activator-only design could show the same or even
lower cost than the wild-type, but were found to have a
higher percentage of deviation from the wild-type response.

The genetic algorithm failed to evolve into an activator-
only or a repressor-only topology that exhibited target
response similar to that of the wild-type and a control cost
lower than that of the wild-type. Thus, we conclude that
despite encoding for an additional regulator, the wild-type
design is able to launch a cheaper response (target produc-
tion) to inducers.

Hence, our simulations suggest that for a particular
response (target expression versus inducer concentration),
the wild-type design could be optimal in terms of control
cost, when compared against designs with a single regulator
(activator- or repressor-only). This suggests that for a given
response curve, the choice of topology with the minimal
control cost is a nontrivial result—a result likely to dictate
a choice of topology in cells.

Having interlinked positive and negative feedback loops
confers many advantages to the cell, but what could be the
possible disadvantages? For example, will a wild-type cell
still be able to exhibit optimal cost if it has to mimic the
response of a design having a single regulator? To under-
stand this, we independently evolved the wild-type design
200 times toward mimicking the dose-response of a
randomly selected set of activator-only and repressor-only
designs. As shown in Fig. 6 A, when wild-type cells were
evolved to mimic activator-only design, most of the evolved
wild-type networks either failed to mimic or they instead ex-
hibited higher cost than the activator-only design. On the
other hand, the wild-type design could be evolved to mimic
the response of a repressor-only design but is more expen-
sive than a repressor-only design (Fig. 6 B). Hence, opti-
mality of a topology in terms of response might be
dictated by the dose response associated with its inducer.
In terms of control cost, Garcia-Bernardo and Dunlop (48)
has shown that, in an uninduced state, the interlocked
Biophysical Journal 109(7) 1497–1508
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positive- and negative-feedback loops in the Mar system are
responsible for pulselike response in the network (43). This
is thought to be achieved, via the Mar topology, through
expenditure of minimum control cost. Our results show,
that this result perhaps also extends to the induced state of
the system.
FIGURE 7 Comparison of memory storing capability in wild-type and

all activator-only designs. (A) The x axis represents various designs

(wild-type; the original activator-only design, A; and best three evolved

activator-only designs, A1, A2, A3) and the y axis represents corresponding

range of Inducer concentration in which they exhibit hysteresis. (B and C)

The x axis represents the concentration of sodium salicylate (in mM)

and the y axis represents the steady-state expression of (B) Pmar (square)

and (C) PinaA (circle) during OFF to ON (solid) and ON to OFF (open)

conditions.
Wild-type design stores memory over a range of
inducer concentrations

Positive feedback is known to impart memory to the system
(8,10,78). In addition, at a single-cell resolution, positive
feedback can cause a switchlike induction of gene expres-
sion in cells (10,61,62). On the other hand, negative feed-
back is known to speed-up response dynamically (74).
Because the wild-type design of the MarRAB system in
E. coli is composed of both a positive and a negative feed-
back loop, we were interested in exploring the dynamics
of gene expression in these regards.

To study this, we simulated transition of cells from an
initial inducer level equal to zero, to a range of final inducer
levels. To study transition from the ON to OFF state, simu-
lations were carried out with initial conditions correspond-
ing to cells at steady state in the presence of the highest
inducer level. The simulations covered the transition of
these cells to a range of lower inducer concentrations. The
steady-state target expressions at various inducer concentra-
tions, when moved from the OFF (inducer concentration
equal to zero) to ON state, are as shown in Fig. S3. As ex-
pected, the steady-state target expression levels increase
with inducer concentration before exhibiting a plateau.
When the cells at the highest inducer concentration were
transitioned to lower inducer concentration (ON to OFF
transition), the steady state of target molecules was noted
at all intermediate concentrations. The two curves thus
generated (OFF to ON, and ON to OFF) did not overlap, ex-
hibiting the ability of the network to store memory.

As expected, in the repressor-only design, no evolved
network is able to exhibit memory, while in the activator-
only design, all evolved networks exhibited memory. How-
ever, all activator-only networks exhibited memory over a
narrow range at very low inducer concentration. The range
of inducer concentration over which the evolved networks
exhibited memory was larger, compared to the original acti-
vator-only network (Fig. S3), but still much lower than the
wild-type range (Fig. 7 A). This ability to store memory
for a range of inducer values was observed for both marRAB
and the target promoters in wild-type as well as activator-
only networks.

This prediction from the model was confirmed experi-
mentally with the marRAB promoter and the inaA promoter
(a representative target promoter) with a highest inducer
(sodium salicylate) concentration of 7.5 mM (Fig. 7, B
and C) and 15 mM (Fig. S4). Depending on the initial state
of the cells, both promoters exhibited different steady-state
Biophysical Journal 109(7) 1497–1508
expression levels for the marRAB and the target promoter.
The presence of memory in the cell indicates that the cells
are reluctant to move from the state that they are in at a
particular moment. This is likely to ensure the cells 1) do
not respond to any signal that is transient in nature (cellular
topologies have been previously shown to exhibit this prop-
erty (79)); and 2) changes in overall cellular physiology are
minimized (as MarA is known to control >50 genes in
E. coli (43)).
Wild-type design is capable of exhibiting a wide
range of dynamic behavior

Overall, the MarRAB control offers intriguing possibilities
of dynamics of gene expression. To explore the full range
of these dynamics, we simulated the system for a large num-
ber of conditions while varying two parameters: 1) the frac-
tion of expression that is expressed as basal transcription
rate from the marRAB promoter, and 2) ratio of the degrada-
tion rates of the activator (MarA) and repressor (MarR). The
wild-type topology was simulated under various values of
these parameters for a variety of inducer concentrations.
The results are as shown in Fig. 8.

Under the range of parameter values covered, the topology
exhibits three distinct types of behavior in terms of target
expression. As shown in Fig. 8, the solid region highlights
the region where the end-point target expression is almost
zero (<1), i.e., the system is switched OFF. The shaded
region, on the other hand, highlights the area where the



FIGURE 8 Dynamic behavior of wild-type

design in three-dimensional parameter space. The

x axis represents ratio of degradation constants of

MarA and MarR, the y axis represents inducer con-

centration, and z axis represents basal fraction of

total production of regulators. (Solid and shaded)

Region where the end-point target expression is

almost zero (<1) and the region where the

steady-state target expression is R1, respectively.

(Open) Region in the figure represents area with a

sustained oscillatory target response. (Small solid

square) Wild-type design; (small shaded square)

a single point in the parameter space that lies in

qualitatively different response types.
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steady-state target expression is equal to or more than one. In
addition, the system is also able to exhibit oscillations (open
region). This is observed for a narrow range of the two param-
eters—although the range of the parameter changes with the
changing inducer concentration. The oscillations could
either be damped or sustained, depending on their precise
location on the parameter space. In addition, the damped os-
cillations were observed to settle at either a zero or nonzero
value (>1) of the target steady-state expression.

What is critical is that this diversity in the qualitative na-
ture of response to inducers in the wild-type is exhibited for
the same set of parameters. For instance, the small shaded
square in Fig. 8 represents a single point in the parameter
space that lies in qualitatively different response types, de-
pending on the inducers in the surrounding environment.
In our simulations, the wild-type design is represented by
the small solid square in Fig. 8.
Target gene expression at single-cell resolution

The wild-type design responds with a rheostatlike response
at a single-cell resolution (experimentally and computation-
ally; see Fig. S5) during activation. This effectively means
that the MarR-enforced negative feedback is strong enough
to prevent a switchlike activation. When simulations were
performed with a network where the MarR protein degrada-
tion was made infinitely stronger than that taken in the
wild-type model, this behavior still persists. This is likely
because the MarA-dependent activation is independent of
the inducer, and the system always operates at a steady-state
ON condition. None of the evolved activator-only designs
exhibited a switchlike transition from the OFF to the ON
state—likely because, to match the wild-type response, the
positive feedback in the evolved networks is insufficiently
strong to induce a switchlike transition from OFF to ON.
Negative feedback is known to lead to a more homogeneous
population (4,80), and hence, none of the evolved repressor-
only topologies exhibited a switchlike dynamic response
in either the OFF-to-ON or the ON-to-OFF switch. The dy-
namic transition of the wild-type from the OFF to ON state
was also captured experimentally at a single-cell resolution,
and found to be consistent with the model.
As the cells transitioned from the ON to the OFF state, the
wild-type design exhibited a switchlike transition with two
clear populations at intermediate times. However, the nega-
tive feedback in the network slows the separation of the two
peaks and hence, they are only distinct for a small window
of time during the transition (Fig. S5). All evolved networks
based on activator-only topology exhibited a switchlike
transition from the ON to the OFF state. However, the sep-
aration in the two peaks was much greater in the evolved
networks compared to the wild-type. Additionally, one of
the two peaks in the population histogram was the OFF
state, where cells did not have any target protein molecules.
Eventually, all cells move toward this state. The physiolog-
ical significance of heterogeneity when switching the Mar-
RAB system OFF is not known.
CONCLUSION

This study was motivated by the unique topology of the
marRAB promoter in E. coli. This promoter is the only
one in the organism that encodes for an autoactivator as
well as an autorepressor. What benefits does this topology
confer to the organism? Our analysis shows that mixing a
positive and a negative feedback loop in the system enables
the bacterium to exhibit dynamic features associated with
both positive- and negative-feedback loops.

Cellular response to stress signals in E. coli is controlled
by two more homologous transcriptional regulators, SoxS
and Rob (36,38,39). Together, the three (MarA, SoxS, and
Rob) control expression of >80 genes in E. coli, many of
which are controlled by more than one regulator (40–43).
How these three integrate the signals (inducers) and then
translate them into the accurate and timely expression of a
large number of target genes remains unknown.

A key and rather surprising finding from our study was
that the control cost (defined by the number of regulator
molecules required by the system to generate an optimum
target profile) was lower in the wild-type design compared
to the activator- and the repressor-only design. Our naive
assumption was that because the wild-type design involved
two regulators instead of one in the other two designs, its
control cost would likely be significantly higher compared
Biophysical Journal 109(7) 1497–1508
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to the other designs. However, using a genetic algorithm, we
demonstrate that if a cell were to generate a particular (wild-
type) target expression profile (in response to particular dose
of inducers), the wild-type design is less expensive. This
result likely has implications on how a cell chooses regula-
tory topologies for particular functions. On the other hand,
evolving the wild-type design to match the activator-only
or the repressor-only dose-response curve resulted in expen-
sive wild-type topology networks. These results suggest
links among the optimum dose-response curve, a regulatory
topology, and the associated control cost.

The wild-type design exhibits oscillations and heteroge-
neity (but only during transition from the ON to OFF state).
We were unable to demonstrate these features of dynamics
experimentally. However, we speculate that because all
target proteins act at a single-cell level (rather than being ex-
ported as shared goods), the transition from OFF to ON is
homogeneous. However, as the signal is removed, heteroge-
neity is likely to create two subpopulations where one
quickly turns off gene expression, and the other is main-
tained at higher target values (which might be useful in an
instance where the stress were only switched OFF for a short
time). On the other hand, we speculate that oscillations
might be useful for the cell when expression of the target
protein is highly detrimental to cellular growth but is neces-
sary for countering the inducer stress. Exhibition of different
states in an isogenic population is well known to be a strat-
egy employed by bacteria to aid chances of survival in fluc-
tuating environment (81–83). These probabilities remain to
be tested experimentally in the framework of the marRAB
operon in E. coli.
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Supplement Figures 
 

 
Figure S1. Response time calculated in varying inducer concentrations in (A) wild-type, and 
(B-D) evolved repressor-only designs. X-axis and Z-axis represent the "start" and "end" inducer 
concentration in logarithm where network moves from "start" to "end" during a switch. Y-axis captures 
the response time required to switch. 
  



 

 
Figure S2. Comparison of control cost of response between wild-type, evolved activator-only, 
and evolved repressor-only designs. (A) Inducer concentration profiles generated where both the 
inducer levels and the time for which the level was sustained were randomly varied. (B) Control cost 
(across the three profiles) in the evolved activator-only (blue) and evolved repressor-only (red) 
designs was computed (in multiples of control cost of the wild-type design) and plotted against % 
error in mimicking response of WT design. For cost calculations, all regulators in a design in their free 
as well as bound to an inducer were taken into account. 
  



 

 
Figure S3. Hysteresis curve in wild-type and evolved activator-only designs. X-axis represents 
inducer. Blue curve represents transition from a lower to higher inducer concentration, and  red 
dashed line represents a transition from maximum inducer concentration to a lower value. A1, A2, and 
A3 represent the three evolved activator-only designs. 
  



 
 

 
 

Figure S4. Comparison of memory storing capability in wild-type at higher concentration 
(15mM). X-axis represents the concentration of Sodium Salicylate (mM) and Y-axis represents the 
steady state expression of (A) Pmar (Blue square) and (B) PinaA (Red circle) during both OFF to ON 
(Filled) and ON to OFF (Unfilled) condition. 
  



 

 

 
Figure S5. Target gene expression dynamics at a single-cell resolution. Wild-type design 
switches target gene expression like a rheostat with no cellular heterogeneity during (A) transition 
from OFF to ON state. However, two distinct populations are observed during (B) transition from ON 
to OFF state. (C) Single-cell resolution experimental data as cells transition from OFF (no Sodium 
Salicylate) to ON state (5 mM Sodium Salicylate) for PinaA promoter at time, t = 0 (black), 10 (red), 20 
(blue), 30 (green), 60 (yellow), and 180 (maroon) minutes. Results in panels A and B are from 
stochastic simulations (and represent average of 200 independent simulations). Panel C is 
experimental results.  
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