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S1 Additional �le 1: Methods

S1.1 Mapping

S1.1.1 Handling circular references

Prior to performing the endogenous consensus call, all fragments from both the
contaminant and endogenous genomes must be aligned to a reference genome.
Most aligners for next-generation sequencing (NGS) do not allow for circular
reference genomes leading to spurious drops of coverage around the ends. To
circumvent this, the �rst 1000 basepairs of the mitochondrial reference can be
appended at the end and used as new reference. A script 1 folds alignments
spanning the end of the mitochondrion back to the beginning of the reference.
To illustrate the corrective e�ect on coverage, a set of 1M fragments of 100 bp
from the revised Cambridge Reference Sequence (rCRS) mitochondrion (Gen-
Bank: NC_012920) were simulated. Random coordinates were simulated using
a uniform distribution and fragments were allowed to span the sequence junc-
tion as to re�ect circularity. Fragments were simulated using in-house programs
2. The fragments were aligned to the default reference using BWA v0.5.10[1].
In a separate set, the fragments were aligned to the extended reference genome
and fragments spanning the junction of the genome were folded back. Results
show the corrective e�ect of this strategy (see Section S2).

S1.1.2 Mapping sensitivity

The lack of sensitivity of the aligner for highly divergent loci can create a bias
towards having a greater proportion of contaminant fragments aligning than
the average across the mitochondrial genome (see Figure S1). This is particu-
larly true for highly divergent samples like the Denisovan mitochondrion [2]. To
evaluate whether currently used aligners could cause such a bias, aDNA frag-
ments from the Denisovan mitochondrial genome 3 were simulated again using
the strategy described above. The simulated length of the fragments was taken
from empirical distributions (see Section S1.5). Deamination rates were added
using the deamination rates from the single-stranded libraries from [3]. Sequenc-
ing errors were added along with representative quality scores using empirical
rates obtained using Illumina reads of PhiX control. The fragments were aligned
to the extended human mitochondrial reference using both BWA v0.5.10 (with
"-n 0.01 -o 2 -l 16500", optimized for increased sensitivity for ancient DNA [4])
and SHRIMP v2.2.3[5] ("-N 5 -o 1 �single-best-mapping �sam-unaligned �fastq
�sam �qv-o�set 33"). Again, fragments spanning the junction of the genome
were wrapped back at the beginning. The impact of the mapping algorithm
used on coverage versus genome divergence are described in Section S2.

1https://github.com/udo-stenzel/biohazard/
2https://github.com/grenaud/simulateAncientDNA
3GenBank: FN673705.1
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Figure S1: Schematic of the e�ect of using a low sensitivity aligner to the human
mitochondrial reference in regions of high divergence. The endogenous ancient
DNA has higher divergence to the reference than the contaminant creating the
possibility that the endogenous fragments will not align due to a higher edit
distance. Although the distribution of the fragments will be representative of
the contamination rate in regions of low divergence, contaminant fragments may
overtake endogenous ones in regions of high divergence. A paucity of endogenous
fragments could lead to an inability to call certain regions, generating spurious
signals and an overestimate of the contamination rate.

S1.2 Identifying endogenous insertions and deletions

For indels, we consider two separate cases:

• A deletion in our sample (which could also be an insertion in the reference)

• An insertion in our sample (which could also be a deletion in the reference)

Each case is described separately in the sections below. In both cases, we cannot
know a priori without using phylogenetic information in which lineage the indel
occurred. We consider the error rate of indels to be a constant ϵindel for both
cases. This constant is de�ned from the literature on sequencer-speci�c error
rates [6]. Given than an indel was present in the fragment, we consider it to
be present in the original fragment with probability 1− ϵindel and absent with
probability ϵindel. As in the inference of a single nucleotide, the computation
is di�erent depending on whether we consider a single contaminant or multiple
ones.

S1.2.1 Deletions

A deletion refers to missing nucleotides with respect to the reference in either
the contaminant or the endogenous genome. This could be due to a deletion
in the lineage leading to our sample or an insertion in the one leading to the
reference.

Given that a deletion is observed, four di�erent scenarios need to be considered:

• Both endogenous and contaminant genomes have the deletion
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• Only the endogenous genome has the deletion

• Only the contaminant genome has the deletion

• Neither the contaminant nor the endogenous genome have the deletion
and the observation was due to a sequencing error

Let E be the set of fragments came from the endogenous mitochondrial
genome such that E ⊆ R. The observation of a fragment with or without a
deletion changes the likelihood for each possibility. For instance, for the �rst
case, the observation of a fragment Rj with the deletion gives the following term
in the product:

(1−mRJ )[P [Rj ∈ E] · (1− ϵindel) + (1− P [Rj ∈ E]) · (1− ϵindel)] (1)

where mRJ is the probability that fragment Rj is mismapped and where P [Rj ∈
E] is the probability that fragment Rj is endogenous (de�ned in the methods
section of the main manuscript). As both genomes contain the deletion, the
probability of observing the fragment Rj is the probability of having correctly
detected the deletion in either of the two cases. If the fragment does not have
the deletion, still under the assumption that both endogenous and contaminant
genomes have the deletion, the term becomes the probability that either one
contains an error:

(1−mRJ
)[P [Rj ∈ E] · ϵindel + (1− P [Rj ∈ E])) · ϵindel] (2)

as the fragments falsely called it in both cases. A similar computation is done
for the remaining three possibilities but where the indel error term is used
di�erently depending on which genome is believed to have the deletion. Finally,
the possibility with the maximum posterior probability is used to produce both
the endogenous and contaminant genomes. The error probability on that call
is computed by the ratio of the sum of the probabilities for all three least likely
scenarios over the sum of all probabilities.

S1.2.2 Insertion

Insertions are produced in a manner similar to deletions. For the deletion case,
we considered the likelihood of a nucleotide being present or absent at a speci�c
position. In the case of insertions, the possibility of having various nucleotides
being inserted at a speci�c position is considered. The likelihood for each pu-
tative inserted sequence and the absence of an insertion is calculated.

We consider a bi-dimensional matrix for all possible insertions for both the
endogenous and contaminant genomes. Each cell represents a speci�c model
where either genomes could have a given insertion. The likelihood is computed
using a product over all fragments using terms analogous to expressions 1 and 2
depending on which of the two genomes has the insertion for that given model.
Finally, the most likely model is retained. For calling the endogenous consensus
genome, the error probability is marginalized over each possible contaminant
insertion and vice-versa for the contaminant consensus calling.

S1.3 Endogenous consensus calling with multiple contam-

inants

Multiple contaminants with equal contributions represent a more complex prob-
lem for consensus calling, compared to a single one (see Figure S2). Our results
show that schmutzi yields good results (a reliable consensus endogenous genome)
at low contamination rates but not at higher ones (see Section S2).
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Figure S2: Schematic of alignments to the mitochondrial genome where green
lines represent endogenous fragments and red lines, the contamination. How-
ever, depending on whether there is a single source of mitochondrial contamina-
tion (left) or multiple ones (right), the distribution of the bases at a segregating
site can change. Given that the contamination rate is 1

3 for the single con-
taminant scenario, inferring the endogenous and contaminant bases is straight-
forward, as the relative number of each base follows the expected distribution.
However, in the �gure to the right, knowing that the contamination rate is 2

3
does not translate into observing this fraction of a particular contaminant base.

S1.3.1 Calling the endogenous nucleotide

Given that the fragment Rj was correctly mapped, it originated either from the
endogenous or the contaminant genome. Let P [Rj ∈ E] be the probability that
the fragment came from the endogenous genome (refer to methods section of
the main document for further information). The probability that the fragment
stemmed from the contaminant genome is simply 1− P [Rj ∈ E].

We seek to compute the probability of observing ri on fragment Rj given that
be is the putative endogenous base. Let M be the event that Rj was correctly
mapped. In the case where the fragment Rj is a contaminant fragment, no
information can be obtained on the probability of observing base ri given be
hence the uniform prior for nucleotides is used:

P [ri|be,M ] = P [Rj ∈ E] · Pe[ri|be] + (1− P [Rj ∈ E]) · 1
4

(3)

This term is similar to the way P [ri|be, bc,M ] is computed for the single
contaminant case with the exception of the lack of a single contaminant base bc.
The remaining computations are identical to the case with a single contaminant.

S1.3.2 Insertions

We compute the likelihood of all observed insertions at a given position, assum-
ing that unobserved insertions have a negligible likelihood. We also consider the
likelihood for not having an insertion. For a given insertion, if it is observed in
a fragment, the term in the product becomes the following expression:

(1−mRJ
) · P [Rj ∈ E] · (1− ϵindel) (4)

wheremRJ is the probability of mismapping for that given fragment and P [Rj ∈
E] is the probability that Rj is endogenous. However, for the remaining inser-
tions, the following term is used:

(1−mRJ ) · P [Rj ∈ E] · ϵindel (5)

The most likely insertion is produced and the error probability is de�ned as the
ratio of the sum of the probabilities for possible insertions minus the most likely
over the sum of all probabilities.
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S1.3.3 Deletion

We consider the likelihood of two scenarios: either the endogenous genome
has a deletion or it does not. Again, using the assumption of independence
of observation for each fragment, we multiply the likelihood for each fragment
independently for each of these two possibilities. For the former, where the
endogenous genome has a deletion, for each fragment Rj with a deletion, the
term in the product becomes the term de�ned in equation 4. For the second
scenario, where the endogenous does not have the deletion and the fragment
Rj has the deletion, the expression used is de�ned by equation 5. If fragment
Rj does not have a deletion, the two previously de�ned terms are swapped for
one another in the products. Finally, a deletion in the endogenous consensus is
produced if the likelihood of such an event exceeds the likelihood of not having
a deletion. The error probability is computed by taking the ratio of the second
most likely scenario over the sum of the probabilities for both possibilities.

S1.4 Comparison to existing methods

Although there have been descriptions of methods to estimate the contamination
rate, there is currently no software implementation of an algorithm to estimate
contamination for aDNA samples that is widely available for download. To
provide a comparison to such methods, the maximum likelihood model described
in [7, 8] was implemented and used on our simulated datasets. The predicted
contamination rate was compared to the simulated one.

Brie�y, a rate of sequencing error denoted ϵ is estimated using monomorphic
regions of a set of mitochondrial genomes. The fragments are aligned against
the endogenous consensus call and a database of 311 potential contaminant
mitochondria as described in the original methodology. Since our simulations
used a single contaminant, a single genome was used in the database. We ran
the method once using the closest mitochondrial genome in the database and
once more using the same contaminant used in the simulations.

For a read Ri aligned to the endogenous genome, we compute Mi,e and Ni,e

for the number of matches and mismatches respectively. The read is also re-
aligned to the contaminant genome and the same analogous quantities, Mi,c

and Ni,c are computed. Given the error rate ϵ, the number of matches and
mismatches to the endogenous genome, we compute the probability of observing
Ri aligned to the endogenous mitochondrion as:(

Mi,e +Ni,e

Ni,e

)
(1− ϵ)Mi,e(ϵ)ni,e (6)

In the original description, a vector of probabilities describes the probability
that read Rj came from each possible contaminant genome in the database
and the endogenous mitochondrial genome. This vector is used to compute the
probability of observing read Rj . In our simulations, as we have two genomes,
this expression becomes:

(1− c) ·
(
Mi,e +Ni,e

Ni,e

)
(1− ϵ)Mi,e(ϵ)ni,e + c ·

(
Mi,e +Ni,c

Ni,c

)
(1− ϵ)Mi,c(ϵ)ni,c (7)

where c is the predicted contamination rate. Finally, the most likely contamina-
tion rate given the data is produced by assuming that each fragment represents
independent observations as described in [7]. As the method requires the en-
dogenous consensus call, the mitochondrial genome produced by PMDtools and
htslib was used as they represent the state of current methods. As the target
contamination rate, we used the number of contaminant fragments over the total
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as the method operates on a per fragment basis rather than on per nucleotide
basis.

S1.5 Distribution of the endogenous and contaminant frag-

ment size

It was previously suggested in the literature that endogenous and contaminant
fragments might have di�erent size distributions where the endogenous frag-
ments are shorter than the contaminant fragments [9, 10]. To measure this, we
analyzed the fragments from the Sima de los Huesos hominin [11] that aligned
to the mitochondrial genome. As it was heavily contaminated, fragments could
be separated into those supporting an endogenous or a contaminant base using
diagnostic positions that supported an archaic hominin base or a present-day
human one. The size distribution for both was plotted (see Figure S3).
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Figure S3: Size distribution of the endogenous (green) versus contaminant (red)
fragments in the Sima de los Huesos sample.

S1.6 Database of putative contaminants

To predict accurate rates of contamination, we require a database of human
mitochondrial sequences that are representative of the natural diversity while
restricting the total number of sequences due to the computational overhead. As
two nearly identical mitochondrial sequence will yield the same contamination
rate, having the same sequence twice in the database will result in redundant
computations. We downloaded every human mitochondrial sequences from Gen-
bank and performed a multiple sequence alignment using ma�t v7.017b [12] due
to its speed and multithreading options. All pairwise sequence distances were
computed. We pruned the results according to a minimal pairwise edit distance
as to have a non-redundant database of 197 records (see Tables S1 and S2).
This database is distributed as part of the software package.

Furthermore, the "�usepredC" option in the overall wrapper script allows the
user to introduce the predicted contaminant as a database record. This option
is recommended for cases where the contamination is very high thus allowing for
adequate characterization of the contaminant mitochondrial genome, assuming
a that a single contamination source is responsible for most of the contaminating
present-day human fragments. As this is not known in advance, we recommend
to run the wrapper once with this option and once without.
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S1.7 Test data

Our algorithm was tested on simulated data and empirical ancient DNA datasets
as well. We sought to test schmutzi's ability to call the endogenous mitochon-
drial genome and, assuming that the contamination stemmed from a single
source, the accuracy in calling the contaminant's mitochondrial genome as well.
To show our robustness to contamination, we sought highly contaminated sam-
ples. Further, we sought to measure whether the contamination estimate from
schmutzi would be within the estimates obtained by simple contamination de-
termination based on diagnostic positions.

We tested schmutzi on two heavily contaminated biological aDNA datasets.
These aDNA datasets (B9687 and B9688) described by [13] pertained to the
same Mezmaiskaya Neanderthal individual described in [14]. The latter had
the advantage of stemming from an extraction with low amounts of present-day
human contamination (0.6%). Therefore, the endogenous consensus call should
be identical to the Mezmaiskaya mitochondrial genome (GenBank: FM865411).
The contaminating genome however, was not characterized.

The total number of fragments and bases aligning to the mitochondrial refer-
ence was calculated (see Table S3). Using diagnostic positions for Neanderthal
mitochondrial sequences, the number of contaminant and endogenous fragments
was tallied (see Table S4). A contamination estimate could be computed by us-
ing the ratio of contaminant fragments over the sum of fragments that were
�agged as either contaminant or endogenous. Further, this estimate was recom-
puted by using the sum of the nucleotides instead of the number of fragments.
This led to a di�erent contamination estimate for the �rst sample as there is a
di�erence in length between endogenous and contaminant fragments (see Sec-
tion S1.5). Maximum likelihood [15] phylogenetic inference was performed using
phylip [16] v 3.69 with default parameters using the mitochondrial genomes enu-
merated in Table S5. Multiple sequence alignments that were used as input were
obtained from prank[17] v 140603.

S1.7.1 B9687

The details of the experimental procedures for the B9687 samples are found in
[13]. Brie�y, two extracts of the Mezmaiskaya 1 individual were prepared from
107 mg (extract ID: E734) and 90 mg (extract ID: E373) bone powder using
the extraction protocol described in [18]. Sequencing libraries of the extracts
were generated using single-stranded library preparation method [19] and dou-
ble indexing was performed on the libraries [20]. All libraries were subsequently
enriched for mitochondrial DNA using human mitochondrial DNA probes fol-
lowing the protocol detailed in [7].

For the B9687 sample, the coverage is the highest among our empirical sam-
ples at 710X (see Table S3). Aligned fragments were separated according to
whether they stemmed from the endogenous (Neanderthal) or the contami-
nant (present-day human) mitochondrial genomes using 111 diagnostic posi-
tions (�xed sites between 7 Neanderthals and 21 present-day humans) on the
mitochondrial reference. This separation into two sets was used to quantify con-
tamination and yielded an estimate in the 43-45% range depending on the metric
used (see Table S4). An analysis of the length distribution of the endogenous
and contaminant fragments revealed an excess of fragments with approximately
the same size as the sequencing read length (see Figure S4). After communica-
tion with the authors, this e�ect is unlikely to stem from library preparation but
is more likely an artifact of the extraction procedure. Other libraries prepared
using the same protocol does not show this enrichment of fragments with the
same size as the length of sequencing. This entails that the use of length will
not help our algorithm in gaining greater power to recognize the endogenous
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base. Deamination patterns were measured on both the fragments labeled as
endogenous and those identi�ed as contaminant (see Figure S5). As the deam-
ination rates of the endogenous fragments are several fold higher than the ones
found for the contaminant ones, our algorithm can use this information to dis-
entangle which base is likely to be endogenous and which is likely to be the
contaminant one. Furthermore, the deamination rates for the contaminants are
very low, enabling the possibility of getting an estimate of contamination based
on deamination rates alone (see Methods Section in the main document).
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Figure S4: Density plot of the size of the fragments identi�ed as endogenous
(Neanderthal in green) and contaminant (present-day human in red) in the
B9687 sample.
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Figure S5: Deamination patterns for the fragments identi�ed as endogenous
and contaminant in the B9687 sample for the 5' end (left) and 3' end (right).
The fragments were identi�ed as either Neanderthal (top) or present-day human
(bottom).

S1.7.2 B9688

B9688 was the second sample described in [13]. It was sequenced in a similar
way as B9687, however, coverage was slightly lower at 635X. Using the same
diagnostic positions as B9687, aligned fragments were split into two sets, those
supporting a Neanderthal base and those supporting a present-day human one.
Contamination estimates for this sample were between 48% and 50%, higher
than the B9687 sample (see Table S4). A measure of fragment length revealed
the same enrichment for fragments with the same length as the original fragment
previously seen in B9687 (see Figure S6). Contaminant fragments also showed
very low rates of deamination (see Figure S7).
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Figure S6: Density plot of the size of the fragments identi�ed as endogenous
(Neanderthal in green) and contaminant (present-day human in red) in the
B9688 sample.
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Figure S7: Deamination patterns for the fragments identi�ed as endogenous
and contaminant in the B9688 sample for the 5' end (left) and 3' end (right).
The fragments were identi�ed as either Neanderthal (top) or present-day human
(bottom).
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Sample HaploGrep Predicted Sample HaploGrep Predicted
ID Quality Haplogroup ID (cont.) Quality (cont.) Haplogroup (cont.)
JQ703873 94.1 A2i GQ301880 87.1 M22b
KC711027 89.5 B2a1 FJ543105 96.9 M23
AP008393 95.1 B4c1b1a KJ154498 96.5 M27a
DQ834259 63.3 B4c1b2c KJ154685 86.5 M27b
AP008788 91.2 B4f KJ154771 96.0 M27c
KF540901 83.2 B5a2a2 KJ154541 93.7 M28a
AP008273 96.7 B5b1a2 DQ137407 98.7 M29a
FJ951464 95.3 C5b1a KC990685 75.0 M2a1a
FJ951600 85.9 D4 EU443449 98.5 M2b3a
FJ858886 89.6 D4b1 KC911426 91.1 M2c
FJ168748 97.0 D4h3a9 AY950293 96.7 M31a1b
FJ951465 100.0 D5a2a2 GQ389779 98.4 M32c
KJ154788 98.8 E1b1 HM030510 91.0 M33b1
KF849964 94.4 F1a1d JX462713 97.0 M33d
KC252477 100.0 F3b1a AY922304 98.3 M34a1a
KF451331 93.9 F4a2 FJ383405 89.4 M38b
KF148403 92.9 G2a1 KC990670 72.0 M42'74
HM454265 92.2 I1a DQ404443 83.3 M42a
JQ797764 94.8 J1b1a2b FJ380216 82.3 M42b
JQ797929 96.2 J2a2b FJ383746 89.4 M42b1a
JQ702671 95.9 K1a1b1a KC990667 63.0 M5
KJ185548 98.9 L0a1b1a1 JX289098 91.5 M50a2
EF184602 94.8 L0a2 GQ301882 97.2 M51a2
KC533465 87.7 L0a2a2a FJ383491 94.0 M52b1a
KJ185995 84.5 L0a'b FJ383439 94.6 M53b
EU092936 94.1 L0b KC896622 97.3 M55
KF672800 89.8 L0b FJ383762 87.9 M57a
KC346214 97.6 L0d1b2b2a JX289110 81.9 M58
KC533490 94.4 L0d1c1a DQ834260 79.4 M59
KC346193 98.9 L0d2a1c KC505104 87.6 M59
KC345912 98.9 L0d2b1a1a JQ446396 83.7 M5a1a
KC346210 97.3 L0d2c1a KC990648 72.3 M5a2a1a
KC533475 98.8 L0d3b FJ383550 84.1 M5b2b1
EF184595 82.6 L0f FJ544233 96.6 M62b2
EF184598 87.4 L0f KC887484 96.9 M68a1a
EU092870 90.2 L0f1 HM596653 79.1 M69
KJ185400 88.1 L0f1 FJ383302 93.7 M6a1a
EF184596 85.3 L0f2a GQ119039 94.2 M73a
EF184599 91.0 L0f2a HM030520 88.0 M74b
EF184597 97.8 L0f2a1 HM030540 90.6 M75
EU092786 100.0 L0f2b HM030525 81.1 M76
KC345794 100.0 L0k1a2 AP009443 98.0 M7a1b2
KM101649 98.4 L1b1a4 KF540526 99.0 M7b1a1i
KC533514 87.4 L1c1 KC252522 88.1 M8a3a
HM771141 98.1 L1c1a1a1a JX289130 89.1 M91a
JX303768 90.5 L1c1a2 KC887486 100.0 M91b
KJ185481 95.0 L1c1b JN048455 60.7 N10
JQ701901 92.3 L1c1c HM030542 84.3 N10a

Table S1: Mitochondrial sources of contamination provided with the software.
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Sample HaploGrep Predicted Sample HaploGrep Predicted
ID Quality Haplogroup ID (cont.) Quality (cont.) Haplogroup (cont.)
HM771166 91.9 L1c1d HM030500 98.8 N10b
KJ185466 92.1 L1c2a2 KF540803 82.6 N11a
EU092718 94.3 L1c3a1a GU733776 97.9 N11b
KC257334 97.1 L1c3b2 JN226143 85.9 N13
HM771117 97.8 L1c4a JQ705527 94.9 N1a1a1a2
JX303797 98.5 L1c5 JQ704073 94.2 N1a3a1
EU273489 90.0 L1c6 EF661011 97.7 N1b1a2
JQ044836 90.4 L1c6 KC867135 99.7 N3a
EF184581 77.0 L2'3'4'6+ GU480021 76.4 N5a
JQ045090 99.2 L2a1f KC505118 97.4 N7a1
KJ185427 88.4 L2a5 HM030548 89.2 N8
JQ701833 97.5 L2b1a3 AY289059 74.4 O
JQ044878 99.2 L2c2b2 KC993994 98.8 P10
KJ185421 98.1 L2d1a EF061154 78.0 P3b1
KJ185902 95.6 L2e1a EF061158 92.6 P4a
DQ341081 96.5 L3a1b AY289064 80.3 P4b
JN655803 79.0 L3a+709 AY289053 73.8 P6
KJ185776 97.0 L3b1a1a KF451181 99.1 Q1c
DQ341074 94.0 L3c KJ154822 95.0 Q2a
KC622102 100.0 L3d3a1a AY289079 85.1 Q3a
JX303776 96.0 L3e1 JF824990 87.0 R11b
EU092895 92.5 L3e3b AY714045 96.6 R1a1a
JN655842 90.1 L3f1a1 KC911319 77.7 R2
JQ045052 92.2 L3f1b1a AY963584 93.6 R21
JN655832 83.7 L3f2a1 GU170818 86.7 R30a1b1
EU092877 84.6 L3f2b AY714050 88.7 R30b1
AF347000 96.3 L3h1a2a1 FJ004826 98.2 R31a1
JN655838 94.8 L3h1b1a AY714046 92.8 R31b
JN655820 97.7 L3h2 FJ004811 99.0 R7b1a1
JN655789 95.0 L3k1 JF742196 90.7 R8a1a1a2
JN655802 88.7 L3x2a DQ404441 89.4 S1a
FJ460531 95.8 L4a1 AY289067 96.6 S3
JQ044848 93.6 L4b1a JQ705673 94.5 T2e
EU092951 96.9 L4b2a2b KC911502 90.2 U1a1a
EF556173 97.8 L5a1a JQ705704 92.5 U1b1
KC911364 94.5 L5b1a KC533515 96.4 U2a2
EU092802 93.8 L6a KF450851 95.4 U2b2
FJ770941 82.5 M JX984460 83.0 U2c1
KF451676 92.5 M10a1+16129 KC990647 62.3 U2c1
KC709481 92.8 M11c JQ706067 92.4 U2d2
KJ446520 96.2 M12a1a2 KJ445816 91.0 U2e1h
KF451769 81.6 M13 JX153094 87.3 U3a2
FJ544230 95.6 M13a2 JQ704121 96.7 U4c1a
JX289092 90.0 M13c GU296627 95.0 U5b2b1a2
EF495222 77.7 M14 KC152579 91.4 U6a5
GU810076 92.3 M17a KC911508 92.3 U7a3
DQ779925 93.8 M1a3b JX273294 85.5 U8b1a2
HM030505 96.9 M20 KC911536 83.4 U8b1a2
GQ119046 84.2 M21a AY339492 96.6 W1a
JF739541 87.9 M21b1a JN415482 90.1 X2b+226
JX289109 94.9 M21b2

Table S2: Mitochondrial sources of contamination provided with the software
(cont.).
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sample ID origin total fragments total bases coverage
B9687 Mezmaiskaya 162,035 11,773,544 710.577
B9688 Mezmaiskaya 148,817 10,533,824 635.755

Table S3: Number of fragments, sum of all bases and coverage for our datasets
from empirical samples

sample endogenous contaminant contamination
fragments base fragments base rate per rate per

pairs pairs fragment base
B9687 30,876 2,443,418 23,598 1,989,785 0.433 0.449
B9688 25,437 1,971,127 24,083 1,972,954 0.486 0.500

Table S4: Tally of the fragments that support diagnostic positions in the archaic
humans and ad hoc contamination estimate.

type of sample Genbank accession
Revised Cambridge Reference Sequence (rCRS) NC_012920
present-day human AF347008
present-day human AY195788
present-day human AF347015
present-day human AF347014
present-day human AY289070
present-day human AF381982
present-day human AY195773
present-day human AY195779
present-day human AY882391
present-day human AY882415
present-day human AY882404
present-day human AF346963
present-day human AY882386
present-day human AY289093
present-day human AF347007
present-day human AY289095
present-day human AY289060
present-day human AY195752
present-day human AY882417
present-day human AY195789
Denisovan phalanx NC_013993
Sima de los Huesos NC_023100
Neanderthal Mezmaiskaya1 FM865411
Neanderthal Feldhofer1 FM865407
Neanderthal Feldhofer2 FM865408
Neanderthal Vindija33.25 FM865410
Neanderthal Vindija33.16 AM948965
Neanderthal Sidron FM865409
Neanderthal Altai KC879692
Pan paniscus NC_001644

Table S5: Description of samples used in the maximum likelihood tree with
accession identi�er
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S2 Additional �le 1: Results

S2.1 Mitochondrial mapping strategies

To show the gains of rewrapping the fragments around the junction section of
the mitochondrial genome, a set of 1M fragments from the human reference were
simulated. The fragments were taken from the human reference using the same
strategy described in the methods section and using the length distribution of
the contaminant sequences for the biological data seen in Figure S3. Mapping
was performed with BWA v0.5.10 with increased sensitivity ("-n 0.01 -o 2 -l
16500") against the rCRS human reference and against the extended one with
the �rst 1000 basepairs copied at the end where fragments exceeding the length
of the reference were wrapped around to span the break point of the reference
genome sequence. Figure S8 shows the coverage for the �rst and last bases
of the mitochondrial reference. The advantage of accounting for circularity in
mapping is seen by the more even coverage, compared to the alignment to the
standard reference genome.

0 100 200 300 400

0
10

00
20

00
30

00
40

00

Coverage along the first bases of the mitochondrial reference
using the default methodology

Position along the mitochondrial reference

C
ov

er
ag

e

0 100 200 300 400

0
10

00
20

00
30

00
40

00

Coverage along the first bases of the mitochondrial reference
using the the rewrapping methodology

Position along the mitochondrial reference

C
ov

er
ag

e

16200 16300 16400 16500

0
10

00
20

00
30

00
40

00

Coverage along the last bases of the mitochondrial reference
using the default methodology

Position along the mitochondrial reference

C
ov

er
ag

e

16200 16300 16400 16500

0
10

00
20

00
30

00
40

00

Coverage along the last bases of the mitochondrial reference
using the the rewrapping methodology

Position along the mitochondrial reference

C
ov

er
ag

e

Figure S8: Coverage for the �rst 400 bases of the mitochondrial genome (top)
and last 400 bases (bottom) for simulated short fragments from the rCRS ref-
erence. Without accounting for circularity (left) an arti�cial drop of coverage
can be seen. However, if circularity is taken into account (right), the end of the
sequence in the reference �le does not in�uence coverage.

As mentioned in the methods section, fragments from the Denisovan mito-

16



chondrial genome were simulated. Its divergence against the human genome
was plotted (see Figure S9). The regions of the mitochondrial genome with the
highest divergence can be found around the D-loop. Figure S10 shows the cor-
relation between divergence and coverage. When using BWA, even with param-
eters tailored for aDNA, a lesser number of fragments align to highly divergent
loci. SHRIMP, a more sensitive aligner (see [21]) seems more robust to highly
divergent loci. To avoid coverage biases between endogenous and exogenous
material, a sensitive aligner is required to accurately quantify contamination.
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Figure S9: Divergence of the Denisovan mitochondrial genome when aligned to
the human reference for windows of 150 basepairs. The most divergent portion
of the genome are found in the vicinity of the D-loop.
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Figure S10: E�ect of Denisovan mitochondrial divergence on coverage depend-
ing on the aligner. Certain mitochondrial loci of the Denisovan mitochondrial
genome are highly divergent to the human reference. The coverage per region
is presented both for simulated endogenous fragments from the Denisovan (left)
and contaminant fragments (right). BWA (red) performs well at low divergence.
At high levels of divergence, the fraction of the contaminant and endogenous
fragments that align will not follow the average over the entire genome thus po-
tentially leading to overestimates of contamination rates. SHRIMP (blue) has
greater sensitivity to higher divergence and therefore this e�ect is less promi-
nent.

S2.2 Empirical data

S2.2.1 Contamination estimate based on deamination

For the Mezmaiskaya datasets, the maximum a posteriori estimates for contam-
ination based on deamination alone were found at 51.0±0.5% and 44.5±0.5%
for the B9687 and B9688 samples respectively. The posterior probability distri-
bution was plotted for both samples (see Figure S11). In both cases, the true
contamination rate is unknown but both estimates fall within a few percent of
the ones presented in Table S4 that were measured using diagnostic positions,
thus providing a reasonable initial estimate.
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Figure S11: Distribution of the posterior probability for contamination rates as
measured by endogenous deamination rates. For our two Mezmaiskaya samples
B9687 (left) and B9688 (right), the fraction of contaminant fragments over the
total sum is also represented (dotted line).

S2.2.2 Contamination estimate based on divergent bases

For both Mezmaiskaya datasets, we obtained a contamination rate of 43.0±1.0
and 48.0±1.0 using schmutzi without the inclusion of the predicted contam-
inant. In both cases, the contamination estimate increased by exactly 1% if
the predicted contaminant was used in the database of contaminants (option
"�usepredC", see section S1.6). These estimates are closer to the expected ones
presented in Table S4 and fall within the lower and upper bounds. The posterior
probability distribution shows the peak estimate close to the one obtained using
the diagnostic positions (see Figure S12).
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Figure S12: Distribution of the posterior probability for contamination as mea-
sured by the endogenous genome and the database of putative contaminants.
For the two Mezmaiskaya samples B9687 (left) and B9688 (right), the fraction
of contaminant bases over the total sum is also represented (dotted line).

S2.2.3 Endogenous mitochondrion consensus call

To verify whether the inferred endogenous and contaminant genomes would re-
spectively fall within the predicted archaic and human clades, a maximum likeli-

19



hood tree was constructed using the mitochondrial genomes from 20 present-day
humans and nine archaic hominins enumerated in Section S1 (see Figure S13).
The Mezmaiskaya B9687 and B9688 samples cluster with the Mezmaiskaya
genome. The contaminant genomes all fall within human variation except the
Mezmaiskaya B9687 without any quality �lters applied where the contaminant
mitochondrion falls outside of all human variations. This is due to low quality
bases as a reiteration the phylogenetic reconstruction using only high quality
bases resulted in an inferred contaminant mitochondrion which falls within the
variation of extant humans. Furthermore, the likelihood of the tree increases as
only high quality bases are retained. Attempts to assign the inferred contami-
nants to known haplogroups are presented in section S2.2.4.
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Figure S13: Maximum likelihood trees for the Mezmaiskaya B9687 (top) and
B9688 (bottom). The un�ltered data (left) and bases with quality greater than
200 on the PHRED scale (right) were plotted separately. The outgroup used is
the bonobo mitochondrial genome.

As the Mezmaiskaya mitochondrial genome had been previously sequenced
using data with low present-day human contamination, the endogenous consen-
sus call for both Mezmaiskaya datasets could be compared to this mitochondrial
genome. The results for the Mezmaiskaya B9687 sample are described in the
main text. Here we describe the quality of the endogenous call we obtained for
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Mezmaiskaya B9688.
An alignment of the un�ltered predicted Mezmaiskaya B9688 genome to the

original mitochondrion from the same individual revealed a total of ten mis-
matches, two of which had very low quality score (5.09715 and 83.9567 respec-
tively) while the eight remaining mismatches were all concentrated in a range
of 60 basepairs at the end of the mitochondrial reference (positions 16129-16190
on the mitochondrial reference). Using a �lter for high quality bases (Q≥200)
eliminated the �rst two miscalls in that loci but left six mismatches in the afore-
mentioned locus of 60 bases on the mitochondrial genome. A closer look revealed
a high level of divergence of the Mezmaiskaya mitochondrial genome to the hu-
man reference and a drop of coverage in that area. At position 16,139 on the
rCRS, for instance, total coverage was 431X and where the contaminant base
had 327X coverage thus 75.9% of the fragments. In contrast, the genome-wide
mean coverage was 636X and the contamination rate was 48-50% . To verify
whether this was due to a bias caused by the short-read aligner, we re-aligned
the fragments to the Mezmaiskaya mitochondrial genome. Our results (data
not shown) revealed the same drop in coverage in the same area. Communi-
cation with the authors involved in generating the original data revealed that,
like Mezmaiskaya 1, a mitochondrial capture was performed using a tiled array
only with the human base on the probes. Therefore, this artifact was likely due
to capture bias which is currently not modeled.

We sought to verify whether schmutzi could call the endogenous mitochon-
drial genome for samples with low amounts of contamination as well. We ran
schmutzi on subset of fragments from the Ust'-Ishim genome [8] (avg. coverage
= 124X), the Altai Neanderthal [14] (avg. coverage = 1076X) and the Denisovan
individual [22] (avg. coverage = 258X) and compared it to the published refer-
ence. In all cases, our prediction was identical to the published reference except
for the Denisovan genome where there was an overprediction of one low qual-
ity cytosine in a large 6 basepairs insert adjacent to the poly-cytosine strectch
(position 5894-5899 on the rCRS).

S2.2.4 Contaminant mitochondrion consensus call

As previously mentioned, since there are no tools to call the contaminant mito-
chondrial genome and since the contaminant was not previously characterized,
our inferred contaminant genomes could not be compared to a known sequence.
However, as there is a �nite set of mitochondrial haplotypes among present-
day humans, the predicted contaminant sequence can be compared to existing
haplotypes to determine whether it falls within a given haplogroup (i.e. the
diagnostic positions for this haplogroup are found).

We present the most likely haplogroup as determined by haplogrep [23, 24]
and the calls produced by schmutzi at the diagnostic positions for the most
likely haplogroup.

For both Mezmaiskaya samples, the most likely haplogroup as determined by
haplogrep was T2b3, a haplogroup predominantly found in Eurasia [25]. All but
one of the 33 diagnostic positions were found in the predicted contaminant for
the B9687 sample (see Table S6). The single mismatch had low quality relative
to the other diagnostic positions. The other Mezmaiskaya sample B9688 had
no mismatches for all of the 33 diagnostic positions (see Table S7).
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position reference diagnostic predicted base quality on a predicted is equal
base base with max. likelihood PHRED scale to diagnostic ?

73 A G G 1126.34 yes
151 C T T 206.893 yes
263 A G G 664.649 yes
709 G A A 1073.22 yes
750 A G G 1293.59 yes
930 G A A 309.252 yes
1438 A G G 994.094 yes
1888 G A A 284.227 yes
2706 A G G 244.6 yes
4216 T C C 96.8476 yes
4769 A G G 709.473 yes
4917 A G G 252.591 yes
5147 G A A 241.557 yes
7028 C T T 1151.05 yes
8697 G A A 40.3619 yes
8860 A G G 1082.47 yes
10463 T C T 65.6473 no
10750 A G G 899.204 yes
11251 A G G 411.396 yes
11719 G A A 1096.27 yes
11812 A G G 305.569 yes
13368 G A A 412.61 yes
14233 A G G 232.08 yes
14766 C T T 935.827 yes
14905 G A A 396.984 yes
15326 A G G 1146.32 yes
15452 C A A 308.629 yes
15607 A G G 297.883 yes
15928 G A A 80.2745 yes
16126 T C C 28.9019 yes
16294 C T T 226.685 yes
16296 C T T 212.763 yes
16304 T C C 210.421 yes

Table S6: Predicted contaminant from the Mezmaiskaya sample B9687 with the
diagnostic positions for the T2b3 haplogroup. The base quality reported is from
the output of schmutzi and is on a PHRED scale.
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position reference diagnostic predicted base quality on a predicted is equal
base base with max. likelihood PHRED scale to diagnostic ?

73 A G G 1085.01 yes
151 C T T 122.804 yes
263 A G G 892.348 yes
709 G A A 1216.99 yes
750 A G G 1490.97 yes
930 G A A 231.495 yes
1438 A G G 1173.56 yes
1888 G A A 201.053 yes
2706 A G G 232.934 yes
4216 T C C 71.3592 yes
4769 A G G 957.917 yes
4917 A G G 264.455 yes
5147 G A A 173.945 yes
7028 C T T 1407.42 yes
8697 G A A 75.387 yes
8860 A G G 1127.82 yes
10463 T C C 25.2927 yes
10750 A G G 968.847 yes
11251 A G G 202.335 yes
11719 G A A 1444.12 yes
11812 A G G 165.341 yes
13368 G A A 179.121 yes
14233 A G G 263.217 yes
14766 C T T 1117.02 yes
14905 G A A 312.261 yes
15326 A G G 1409.39 yes
15452 C A A 146.847 yes
15607 A G G 293.051 yes
15928 G A A 236.537 yes
16126 T C C 143.69 yes
16294 C T T 108.801 yes
16296 C T T 133.758 yes
16304 T C C 135.182 yes

Table S7: Predicted contaminant from the Mezmaiskaya sample B9688 with the
diagnostic positions for the T2b3 haplogroup. The base quality reported is from
the output of schmutzi and is on a PHRED scale.
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S2.2.5 Contamination estimate for 4 ancient mtDNA studies from

di�erent laboratories

We evaluated how schmutzi would perform on various publicly available aDNA
datasets. Sequencing data from several early modern humans from Haak et al.

[26] 4, an early modern human from Kostenki (Seguin-Orlando et al. [27]) 5,
a contaminated Neanderthal from Okladnikov (Skoglund et al. [28]) 6 and an
early modern human with higher coverage from Mal'ta (Raghavan et al. [29])
7 were downloaded. The aDNA fragments were aligned to the mitochondrial
rCRS reference using SHRIMP v2.2.3 (with the same parameters described in
section S1.1.2). Our tool was used on all samples but we only report here the
results for the 15 largest datasets from the 69 samples from the Haak et al.

study.
In addition to schmutzi, we also ran contamMix version 1.0-10, previously

described in [7] and [8], to provide a comparison to an existing method in terms
of contamination estimates and runtime. We ran schmutzi's normal iterative ap-
proach. To make sure that the potentially di�erent endogenous consensus call
does not in�uence the contamination estimates, we also ran "mtCont" alone us-
ing the same endogenous consensus sequence as the one provided to contamMix.
We also compared the runtime of the two programs. In addition, we compared
the estimates returned by both schmutzi and contamMix to the ones reported
in the original publications which were assessed using a third method. The
original publication for Raghavan et al. used private mutations and diagnostic
positions were used for the Skoglund et al. study. This provided a third party
estimate for two out of the four studies. Three out of the four studies pre-
sented data from modern humans and diagnostic positions for archaic hominins
(Neanderthals/Denisovans) are not applicable for modern humans (see section
S1.5).

Both schmutzi's mtCont and contamMix were run on a server using AMD
Opteron(tm) Processor 2.8GHz CPUS and by limiting the use to 3 cores. When
testing mtcont alone, to make sure that solely the contamination estimate was
being tested independently of schmutzi's ability to jointly infer the endoge-
nous mitochondrial sequence, the same endogenous mitochondrial sequence and
aligned fragments was provided to both programs. In the case of Kostenki
and Okladnikov, the reference from NCBI's GenBank was used (GenBank ID
FN600416.1 and KF982693.1 respectively). For the remaining two studies, a
consensus was generated by using "samtools mpileup" with a minimal coverage
of 10 bases and a consensus of 80%, similarly to the approach described by
Raghavan et al. [29].

Results show that schmutzi produces estimates where the 95% con�dence
intervals overlap with those from contamMix for the Kostenki and Haak et al.

studies (see Table S8). As there were no contamination estimates computed
using a third method, we can only state that they are generally in agreement.
However, to obtain the estimates, schmutzi runs 3 times faster than contamMix.

For the Kostenki sample, the iterative approach to infer the endogenous
genome simply from the BAM �les was not possible given the low sequence
coverage (fewer than 4k aDNA fragments per library). For the Okladnikov data,
schmutzi's contamination estimate is closer than contamMix's, to the estimate
reported by the authors which was computed using diagnostic positions.

We note that the sequence fragments published for the Mal'ta specimen have
extremely low levels deamination (<4% at the ends of the fragments). This is
much lower than expected for a sample of this age, and leads to an incorrect

4Data obtained from ftp.sra.ebi.ac.uk/vol1/ERA412/ERA412803
5Data obtained from http://ricco.popgen.dk/thor�nn/kos18octBlue.bam
6Data obtained from the authors
7Data obtained from the authors
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estimation of the contamination (60%) in the initial iteration of contDeam. In
subsequent iterations this estimate is reduced (60% → 53% → 36% → 12% →
5%) (Table S8). However, the �nal estimate remains an apparent over-estimate
compared the private site-based approach used by Raghavan et al (cite). A
more detailed analysis of the e�ects of (unexpectedly) low deamination rates on
estimation of the contamination prior are presented in section S2.3.4.

We also compared the endogenous consensus call to the publicly available
mitochondrial references for Kostenki (GenBank ID: FN600416.1) and Oklad-
nikov (GenBank ID: KF982693.1). For the Okladnikov sample, we only detect a
single di�erence between the published reference and our endogenous consensus
call. At position 514 on the rCRS, the published reference shows the deletion of
two bases while schmutzi predicts the deletion of 4 bases. A manual inspection
of the alignments in IGV [30] showed that schmutzi's prediction is likely correct.

For the various Kostenki datasets, coverage was uneven and very sparse
across the mitochondrial genome. This initially lead to the endogenous predic-
tions for the di�erent sets showing a large number of di�erences to the published
genome (246-326). However, no divergent base was found when a threshold of
35 (PHRED scale) on the �nal prediction score produced by our software thus
indicating that those were due to poor coverage.
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S2.3 Simulated data

For the simulated data, the accuracy of the consensus call for both the endoge-
nous and the contaminant genomes was evaluated as the original mitochondrial
genomes were known. We also measured the correlation between the simulated
contamination rate and the one calculated by schmutzi.

S2.3.1 Endogenous mitochondrion consensus call

As detailed in the methods, fragments from three endogenous mitochondrial
genomes (Denisovan, Neanderthal and early modern human (EMH)) were each
blended independently with the fragments of a contaminant individual at var-
ious rates. Two sets were created, one where the endogenous fragments had
a damage pattern consistent with a double-stranded library and the other set
with a single-stranded library. For the former, the endogenous consensus was
also computed using PMDtools and htslib to provide a comparison. We also
compared the approach to infer the endogenous consensus of keeping fragments
with signs of deamination, masking the deaminated bases and calling a con-
sensus using "samtools mpileup". For each set, schmutzi was run using default
parameters and the edit distance of the predicted endogenous genome to its re-
spective reference was computed. Furthermore, we computed the edit distance
of the predicted contaminant to the original contaminant mitochondrion. We
also ran schmutzi using the multiple contaminant option (described in section
S1.3) and compared its predicted endogenous genome. All the data presented
in the remaining tables were computed without using any �lters on the result-
ing predictions as to accurately represent error rates. Practically speaking, we
encourage users to retain only high quality predictions for downstream analyses.

As our algorithm relies on computing the length and deamination patterns of
the endogenous and contaminant fragments, a paucity of contaminant fragments
at low contamination rates can result in the program stopping after the �rst
iteration. In subsequent tables, a † symbol on a data point indicates that
the algorithm did not continue on to the second iteration due to a lack of
detected contaminant at low simulated contamination rates, thus the results
presented are the ones from the �rst iteration. At high contamination rates, as
the prediction of the endogenous genome becomes more arduous, the endogenous
consensus genome will contain more bases from the contaminant, thus leading
to an underestimation of contamination, which can in turn lead to the algorithm
not converging. As we mention in the software manual, a corrective measure
can be performed by using the predicted contaminant genome as a putative
contaminant source via the "�usepredC" option. Sets marked with a ‡ indicate
that the predicted contaminant was used as a contaminant source. For very hard
targets (e.g., EHM with around 90% contamination), the work�ow provided
by the wrapper script diverges even with the option of using the contaminant
source. For such hard targets, manual intervention would be required and data
that caused this type of problem is marked with an ∗ in subsequent tables.

For the simulated EMH, the endogenous genome predicted by schmutzi is
identical to the simulated data, up to a contamination rate of 35% for the
double-stranded data and up to a contamination rate of 40% for single-stranded
libraries (see Tables S9 and S10). As single-stranded data had greater rates of
deamination, there is more power to accurately predict the contaminant and
endogenous bases. As the contamination increases, more indels and mismatches
appear. The consensus made on the deaminated fragments using PMDtools
and htslib has two indels compared to the endogenous genome, both of which
are located in a region of two consecutive insertions in the EMH mitochondrion
genome.

For the Neanderthal data, the results for the double-strand protocol are
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presented in the main text. The same comparison to the endogenous genome
was made using the data simulated under a single-stranded protocol (see Table
S12). Our algorithm was able to perfectly predict the endogenous genome up
to a contamination of 25% and with a single mismatch up to a contamination
rate of 90%. That single mismatch occurred in a region of high divergence of
the Neanderthal genome and had a low quality score relative to the neighboring
bases. For the Denisovan simulations, we computed the edit distance of the
predicted endogenous genome to the Denisovan one (see Table S14 and S13).
This dataset had the highest divergence to the human reference. A single re-
current error was present even at low contamination around base 302 on the
rCRS due to high divergence creating ambiguous short-read alignments. How-
ever, re-running schmutzi's endogenous callers using the predicted endogenous
genome as reference successfully removes this single mismatch (data not shown).
Despite this, our algorithm was more robust to high contamination than the cur-
rent approach of isolating deaminated fragments and calling a consensus. For
all three types of endogenous genomes, at low levels of contamination (up to
10%), schmutzi did not go forward after the �rst iteration due to the lack of
contaminating fragments. However, in all cases, the endogenous genome called
after the �rst iteration gave an inference of su�cient quality with no or very
few mismatches to the original genome.

Our simulations show that the multiple contaminant option works well at
very low rates of contamination, but does not at medium or high rates (see
Tables S9 through S14).

Contamination schmutzi PMDtools
rate Default Multiple and htslib

parameters Contaminants
0.01 16570/0/0 † 16570/0/0 16566/1/3
0.05 16570/0/0 † 16570/0/0 16566/1/3
0.10 16570/0/0 † 16570/0/0 16566/1/3
0.15 16570/0/0 16570/0/0 16566/1/3
0.20 16570/0/0 16567/1/2 16566/1/3
0.25 16570/0/0 16567/1/2 16566/1/3
0.30 16570/0/0 16567/1/2 16566/1/3
0.35 16570/0/1 16567/1/3 16566/1/3
0.40 16569/1/1 16567/1/3 16566/1/3
0.45 16569/1/1 16547/21/3 16566/1/3
0.50 16569/1/1 16547/21/3 16566/1/3
0.55 16569/1/1 16547/21/3 16566/1/3
0.60 16570/0/2 16547/21/3 16566/1/3
0.65 16570/0/2 16547/21/3 16566/1/3
0.70 16570/0/2 16547/21/3 16566/1/3
0.75 16569/1/2 ‡ 16547/21/3 16566/1/3
0.80 16569/1/2 ‡ 16547/21/3 16566/1/3
0.85 NA/NA/NA ∗ 16547/21/3 16564/3/3
0.90 NA/NA/NA ∗ 16547/21/3 16564/3/3
0.95 NA/NA/NA ∗ 16547/21/3 16560/7/3

Table S9: Edit distance to the original endogenous genome using an early mod-
ern human genome and a double-strand protocol. The original endogenous
genome had 16547 matches, 21 mismatches and 3 indels to the contaminant.

For calling the endogenous mitochondrial genome consensus, the mapping
iterative assembler (MIA) was originally developed for reconstructing the Nean-
derthal mitochondrial genome [31]. MIA has been used for reconstructing the
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Contamination schmutzi mpileup consensus
rate Default Multiple on deaminated

parameters Contaminants fragments
0.01 16570/0/1 † 16570/0/0 16567/1/2
0.05 16570/0/0 † 16570/0/0 16567/1/2
0.10 16570/0/0 † 16570/0/0 16567/1/2
0.15 16570/0/0 16570/0/0 16567/1/2
0.20 16570/0/0 16567/1/2 16567/1/2
0.25 16570/0/0 16567/1/2 16567/1/2
0.30 16570/0/0 16567/1/2 16567/1/2
0.35 16570/0/0 16567/1/3 16567/1/2
0.40 16569/1/1 16567/1/3 16567/1/2
0.45 16569/1/1 16548/20/3 16567/1/2
0.50 16570/0/2 16547/21/3 16567/1/2
0.55 16569/1/1 16547/21/3 16567/1/2
0.60 16570/0/2 16547/21/3 16566/2/2
0.65 16570/0/2 16547/21/3 16566/2/2
0.70 16570/0/2 16547/21/3 16562/6/2
0.75 16570/0/2 16547/21/3 16562/6/2
0.80 16570/0/2 ‡ 16547/21/3 16561/7/2
0.85 16569/1/2 ‡ 16547/21/3 16558/7/5
0.90 16569/1/2 ‡ 16547/21/3 16561/7/2
0.95 16568/2/2 ‡ 16547/21/3 16553/10/7

Table S10: Edit distance to the original endogenous genome using an early
modern human genome and a single-strand protocol. The original endogenous
genome had 16547 matches, 21 mismatches and 3 indels to the contaminant.

mitochondrial genome for multiple samples [32, 7, 3]. The latest version of MIA8

was used on our simulated datasets and the distance to the original endogenous
genome was computed (see table S15). Our results show that present-day hu-
man contamination quickly overruns the consensus call. This e�ect limits the
applicability of a straightforward consensus call to samples with low rates of
present-day human contamination.

S2.3.2 Contaminant mitochondrion consensus call

As previously mentioned, no currently available tool enables users to the call the
contaminant mitochondrial genome. However, we compared schmutzi's consen-
sus call for the contaminant genome to the original contaminant genome used
by computing the edit distance as a metric (see Table S16 and S17). At very low
rates of contamination, schmutzi is unable to call the contaminant mitochon-
drial genome. For contamination rates of about 20% and higher, the prediction
of the contaminant genome is nearly perfect regardless of which endogenous
genome was used.

E�ect of lower coverage In section S2.3.3, we describe the e�ect of subsam-
pling the original BAM �le on the contamination estimate for simulated datasets
with heavy present-day human contamination. This is done to evaluate the lim-
its of our algorithm in terms of coverage on the most di�cult targets. We report
here the edit distance to the simulated endogenous Neanderthal genome as a
function of coverage for the same di�cult targets as presented in Section S2.3.3

8URL: https://github.com/udo-stenzel/mapping-iterative-assembler ver-
sion:5a7fb5afad735da7b8297381648049985c599874
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Contamination schmutzi PMDtools
rate Default Multiple and htslib

parameters Contaminants
0.01 16565/0/0 16565/0/0 16561/2/6
0.05 16565/0/0 † 16565/0/0 16561/2/6
0.10 16565/0/0 16565/0/0 16561/2/6
0.15 16565/0/0 16565/0/0 16560/3/6
0.20 16565/0/0 16564/1/0 16560/3/6
0.25 16565/0/0 16562/2/1 16558/5/6
0.30 16564/1/0 16559/5/5 16558/5/6
0.35 16564/1/0 16550/3/28 16556/7/6
0.40 16564/1/0 16542/22/6 16555/8/6
0.45 16564/1/0 16355/209/6 16553/10/6
0.50 16563/2/0 16355/209/6 16553/10/6
0.55 16564/1/0 16355/209/6 16554/9/6
0.60 16563/2/0 16355/209/6 16551/12/6
0.65 16563/1/1 16355/209/6 16551/12/6
0.70 16562/1/2 16355/209/6 16548/15/6
0.75 16563/1/1 16355/209/6 16546/17/6
0.80 16561/2/2 ‡ 16355/209/6 16545/18/6
0.85 16563/1/1 ‡ 16355/209/6 16544/19/6
0.90 16561/3/1 ‡ 16355/209/6 16539/24/6
0.95 16550/15/7 ‡ 16355/209/6 16532/31/6

Table S11: Edit distance to the original endogenous genome using a Neanderthal
genome and a double-strand protocol. The original endogenous genome had
16355 matches, 209 mismatches and 6 indels to the contaminant.

(48% present-day human contamination). We ran schmutzi with the inclusion
of the estimate of the fragment length in the computation to insure the highest
accuracy in terms of endogenous base prediction.

Our results show that even at 48% contamination, our algorithm is able to
call the endogenous genome sequence down to a coverage of about 20X (see Table
S18). The few mismatches that are observed can be avoided by �ltering on the
log of the posterior probability of the endogenous base provided by our program.
However, this �ltering comes at a cost. For instance, at 15X coverage for this
very di�cult contamination rate, we lose about 1k bases. As seen in previous
sections, the prediction is slightly more accurate for the single-stranded data as
higher rates of deamination allows our algorithm to identify the endogenous base
with greater precision. It should be noted that for lower rates of contamination,
our algorithm can achieve an endogenous prediction even at a lower coverage.

S2.3.3 Contamination estimate based on deamination

We also sought to measure the correlation of the contamination estimates ob-
tained using endogenous deamination patterns to the simulated ones. This is
the contamination estimate provided to the endogenous caller for the �rst itera-
tion. We measured correlation between simulated and predicted contamination
rates for full datasets with 1M fragments. We also measured robustness to low
coverage by subsampling the set taken from the set containing 1M fragments
with 40% contamination. The target contamination rate for the simulations was
calculated as the fraction of fragments pertaining to the contaminant over the
total.
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Contamination schmutzi mpileup consensus
rate Default Multiple on deaminated

parameters Contaminants fragments
0.01 16565/0/0 16565/0/0 16565/0/0
0.05 16565/0/0 16565/0/0 16565/0/0
0.10 16565/0/0 16565/0/0 16565/0/0
0.15 16565/0/0 16564/1/0 16565/0/0
0.20 16565/0/0 16564/1/0 16565/0/0
0.25 16565/0/0 16562/2/1 16565/0/0
0.30 16564/1/0 16559/5/5 16565/0/0
0.35 16564/1/0 16550/3/28 16565/0/0
0.40 16564/1/0 16549/15/6 16565/0/0
0.45 16564/1/0 16356/208/6 16565/0/0
0.50 16564/1/0 16355/209/6 16565/0/0
0.55 16564/1/0 16355/209/6 16564/0/1
0.60 16564/1/0 16355/209/6 16563/1/1
0.65 16563/1/1 16355/209/6 16560/4/1
0.70 16564/1/0 16355/209/6 16556/8/1
0.75 16563/1/1 16355/209/6 16546/7/23
0.80 16563/1/1 16355/209/6 16548/15/6
0.85 16564/1/0 16355/209/6 16544/20/1
0.90 16563/2/0 16355/209/6 16536/25/4
0.95 16558/7/0 16355/209/6 16524/33/12

Table S12: Edit distance to the original endogenous genome using a Neanderthal
genome and a single-strand protocol. The original endogenous genome had
16355 matches, 209 mismatches and 6 indels to the contaminant.

Full datasets

Our software, schmutzi, was run on our simulated datasets with 1M frag-
ments to estimate contamination based on deamination patterns alone. We ran
our software for both categories of sets: one category where the endogenous
genome had a double-stranded type of damage pattern, and the other where a
single-stranded damage pro�le was used.

Our results show that, regardless of the simulated DNA library-preparation
protocol, our algorithm produces an estimate that is close to the simulated
rate (see Figure S14). Furthermore, these estimates are robust to lower or
higher divergence of the contaminant genome to the endogenous one, as this
relationship is not a priori needed for this approach to produce an estimate.

Subsampled datasets

To evaluate the robustness of our contamination estimate based on deam-
ination patterns to lower coverage, the dataset with 1M fragments and 40%
contamination from the previous section was subsampled at various fractions
ranging from 0.01 to 0.5. Our algorithm to predict contamination based on
deamination patterns was run on those and the correlation to the original con-
tamination rate was plotted (see Figure S15). Our results show that for the
contamination estimate to be stable, a minimal mitochondrial coverage of about
100X to 250X is needed, which, depending on the size of the aDNA fragments,
represents approximately 50k to 100k mapped fragments. The simulated type
of library protocol or the type of endogenous genome used does not seem to
a�ect the prediction.
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Contamination schmutzi PMDtools
rate Default Multiple and htslib

parameters Contaminants
0.01 16569/1/0 16569/1/0 16557/2/19
0.05 16569/1/0 16569/1/1 16557/2/19
0.10 16569/1/1 16566/2/2 16557/2/19
0.15 16569/1/1 16566/2/5 16557/2/19
0.20 16568/2/0 16559/3/11 16557/2/19
0.25 16567/3/0 16558/4/12 16557/2/19
0.30 16567/2/1 16554/8/14 16557/2/19
0.35 16567/2/1 16552/9/17 16555/4/19
0.40 16567/3/0 16515/46/17 16554/5/19
0.45 16567/3/2 16174/387/17 16554/5/19
0.50 16568/2/0 16174/387/17 16551/8/19
0.55 16568/2/2 16174/387/17 16550/9/19
0.60 16566/2/4 16174/387/17 16549/10/19
0.65 16566/2/4 16174/387/17 16547/12/19
0.70 16566/2/4 16174/387/17 16544/15/19
0.75 16566/2/4 16174/387/17 16541/18/19
0.80 16566/4/2 16174/387/17 16534/25/19
0.85 16567/3/4 16174/387/17 16532/27/19
0.90 16565/5/7 ‡ 16174/387/17 16529/31/17
0.95 NA/NA/NA ∗ 16174/387/17 16512/48/17

Table S13: Edit distance to the original endogenous genome using a Denisovan
genome and a double-strand protocol. The original endogenous genome had
16174 matches, 387 mismatches and 17 indels to the contaminant.

Contamination schmutzi mpileup consensus
rate Default Multiple on deaminated

parameters Contaminants fragments
0.01 16569/1/0 16569/1/0 16560/1/9
0.05 16569/1/0 16569/1/0 16560/1/9
0.10 16569/1/0 16566/2/2 16560/1/9
0.15 16569/1/0 16566/2/5 16560/1/9
0.20 16567/3/0 16559/3/11 16560/2/8
0.25 16568/2/0 16559/3/14 16560/2/8
0.30 16567/3/0 16555/7/14 16559/3/8
0.35 16567/3/0 16552/9/17 16560/2/8
0.40 16567/3/0 16542/19/17 16566/1/3
0.45 16567/3/0 16174/387/17 16560/1/9
0.50 16567/2/1 16174/387/17 16560/2/8
0.55 16568/2/0 16174/387/17 16559/3/8
0.60 16567/3/2 16174/387/17 16561/1/8
0.65 16567/3/2 16174/387/17 16560/1/9
0.70 16568/2/2 16174/387/17 16557/5/8
0.75 16569/1/2 16174/387/17 16558/9/3
0.80 16568/2/2 16174/387/17 16549/13/8
0.85 16569/1/4 16174/387/17 16538/23/12
0.90 16569/1/2 16174/387/17 16524/37/12
0.95 16563/7/7 16174/387/17 16505/56/12

Table S14: Edit distance to the original endogenous genome using a Denisovan
genome and a single-strand protocol. The original endogenous genome had
16174 matches, 387 mismatches and 17 indels to the contaminant.
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Contamination MIA
rate (with -k 12)

EMH Neanderthal Denisovan
0.01 16570/0/0 16523/1/4 16560/0/5
0.05 16565/1/3 16549/10/4 16565/0/6
0.10 16565/1/3 16545/10/4 16565/0/6
0.15 16565/1/3 16528/10/4 16548/0/12
0.20 16562/1/3 16360/11/4 16211/0/14
0.25 16547/1/3 16355/13/5 16175/2/14
0.30 16547/1/3 16355/18/5 16175/5/15
0.35 16547/1/3 16355/18/6 16174/19/17
0.40 16547/1/3 16355/20/6 16174/27/17
0.45 16547/2/3 16355/29/6 16174/30/17
0.50 16547/3/3 16355/44/6 16174/41/17
0.55 16547/3/3 16355/58/6 16174/65/17
0.60 16547/3/3 16355/109/6 16174/106/17
0.65 16547/3/3 16355/195/6 16174/220/17
0.70 16547/16/3 16355/209/6 16174/386/17
0.75 16547/20/3 16355/209/6 16174/387/17
0.80 16547/21/3 16355/209/6 16174/387/17
0.85 16547/20/3 16355/209/6 16174/387/17
0.90 16547/21/3 16355/209/6 16174/387/17
0.95 16547/21/3 16355/209/6 16174/387/17

Table S15: Edit distance of the consensus genome predicted using MIA to the
original endogenous genome when using a double-strand protocol. The con-
taminant genome had 16547 matches, 21 mismatches and 3 indels to the early
modern human genome, 16355 matches, 209 mismatches and 6 indels to the
Neanderthal genome and 16174 matches, 387 mismatches and 17 indels to the
Denisova genome.
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Contamination schmutzi with default
rate parameters
0.01 16538/20/44 † 16442/127/40 16311/254/150
0.05 16537/21/34 † 16358/211/62 † 16563/2/13
0.10 16544/25/11 † 16567/0/2 16566/0/6
0.15 16568/1/2 16567/0/2 16566/3/2
0.20 16568/1/2 16569/0/0 16568/0/1
0.25 16568/1/2 16569/0/0 16569/0/0
0.30 16569/0/1 16569/0/0 16569/0/0
0.35 16569/0/0 16569/0/0 16569/0/0
0.40 16569/0/0 16569/0/0 16569/0/0
0.45 16569/0/0 16569/0/0 16569/0/0
0.50 16569/0/0 16569/0/0 16569/0/0
0.55 16569/0/0 16569/0/0 16569/0/0
0.60 16569/0/0 16569/0/0 16569/0/0
0.65 16569/0/0 16569/0/0 16569/0/0
0.70 16569/0/0 16569/0/0 16569/0/0
0.75 16569/0/0 ‡ 16569/0/0 16569/0/0
0.80 16569/0/0 ‡ 16569/0/0 ‡ 16569/0/0
0.85 NA/NA/NA ∗ 16569/0/0 ‡ 16569/0/0
0.90 NA/NA/NA ∗ 16569/0/0 ‡ 16569/0/0 ‡

0.95 NA/NA/NA ∗ 16569/0/0 ‡ NA/NA/NA ∗

Table S16: Edit distance of the predicted contaminant genome to the original
contaminant genome when using a double-strand protocol. The contaminant
genome had 16547 matches, 21 mismatches and 3 indels to the early modern
human genome, 16355 matches, 209 mismatches and 6 indels to the Neanderthal
genome and 16174 matches, 387 mismatches and 17 indels to the Denisova
genome.
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Contamination schmutzi with default
rate parameters
0.01 16537/21/35 † 16435/134/12 16196/369/114
0.05 16538/20/35 † 16567/0/2 16565/1/13
0.10 16537/21/35 † 16567/0/2 16566/0/6
0.15 16568/1/2 16568/0/1 16566/3/2
0.20 16568/1/2 16569/0/0 16566/3/0
0.25 16568/1/2 16569/0/0 16569/0/0
0.30 16569/0/0 16569/0/0 16569/0/0
0.35 16569/0/0 16569/0/0 16569/0/0
0.40 16569/0/0 16569/0/0 16569/0/0
0.45 16569/0/0 16569/0/0 16569/0/0
0.50 16569/0/0 16569/0/0 16569/0/0
0.55 16569/0/0 16569/0/0 16569/0/0
0.60 16569/0/0 16569/0/0 16569/0/0
0.65 16569/0/0 16569/0/0 16569/0/0
0.70 16569/0/0 16569/0/0 16569/0/0
0.75 16569/0/0 16569/0/0 16569/0/0
0.80 16569/0/0 ‡ 16569/0/0 16569/0/0
0.85 16569/0/0 ‡ 16569/0/0 16569/0/0
0.90 16569/0/0 ‡ 16569/0/0 16569/0/0
0.95 16569/0/0 ‡ 16569/0/0 16569/0/0

Table S17: Edit distance of the predicted contaminant genome to the original
contaminant genome when using a single-strand protocol. The contaminant
genome had 16547 matches, 21 mismatches and 3 indels to the early modern
human genome, 16355 matches, 209 mismatches and 6 indels to the Neanderthal
genome and 16174 matches, 387 mismatches and 17 indels to the Denisova
genome.

average double-stranded single-stranded
coverage mismatches (q20) mismatches (q20)
15.2 13 (15430/0) 17 (15529/0)
20.5 8 (16225/1) 6 (16347/0)
24.9 6 (16509/0) 3 (16489/0)

Table S18: E�ect of coverage on accuracy of the endogenous consensus call for
simulated data. The number in parentheses represent the number of matches
and mismatches to the original endogenous mitochondrial genome.
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Figure S14: Simulated contamination rates versus predicted contamination ones
using deamination patterns alone. Our algorithm was tested on sets containing
1M simulated aDNA fragments using as endogenous genome an early modern
humans (top), Neanderthals (middle) and a Denisovan(bottom). We tested our
algorithm both with simulated double-stranded (left) and single-stranded (right)
protocols. The dotted black line represents a perfect prediction.
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Figure S15: Simulated contamination rates using subsampled sets from a 1M
fragment dataset where the original contamination rate was 40% (dotted black
line) versus the predicted ones using deamination rates alone. The vertical black
lines represent the boundaries of the 95% con�dence interval.
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S2.3.4 Biases a�ecting the prior contamination estimate based on

deamination

The contamination prior obtained for the �rst iteration relies on measuring
deamination patterns for the endogenous fragments versus the entire dataset
(see main text). One of the approaches to infer endogenous deamination rates
is by conditioning on one end of the fragment being deaminated and measuring
deamination rates for the other end, a previously described methodology (see
[11]). However, while we use this approach to obtain an initial mitochondrial
contamination estimate, it can be used for contamination estimates in itself
under the following assumptions:

• There is a su�cient number of fragments to allow estimates of deamination
rates

• Deamination rates of the endogenous fragments are su�ciently high. Hav-
ing endogenous fragments with no deamination patterns will not yield an
accurate estimate

• The aDNA fragments from the present-day humans that contaminate the
sample are not themselves deaminated

• The rates of deamination of the 5' end of the fragment are independent of
the rates of deamination of the 3' end and vice-versa

Impact of low deamination rates

To measure the impact of having low deamination rates, we repeated simu-
lations by adding various rates of deamination for the endogenous fragments for
simulated datasets with 50% contamination. We ran schmutzi's contamination
estimate based on deamination patterns on our simulations. Our results pre-
sented in Table S19 show that a minimum deamination rate of 5-10% at least
one end of the fragment is required to have a contamination estimate within
2-3% of the simulated contamination rate if 1M fragments are used. When a
small number of fragments are used (100k), higher rates (40% and above) of
deamination are required to obtain a reliable contamination estimate. At inter-
mediate data sizes (500k), rates of deamination upwards of 15% are needed to
obtain a reliable contamination estimate.

Impact of deamination for contaminating fragments

To measure the impact of various rates of deamination for the contaminant
fragments, deamination was added to the simulated contaminant fragments. A
contamination rate of 50% was used for our simulation sets 1M fragments for
various rates of deamination for both the endogenous and contaminant frag-
ments. Schmutzi's contamination estimate was used on those datasets. Our
results show (see Table S20) that even a small amounts of deamination for the
contaminant can lead to an underestimate. This e�ect less pervasive if the en-
dogenous fragments have high levels of deamination or if the contaminant has
very low levels of deamination.

Independence tests for deamination on each end

The contamination estimate based on deamination relies on measuring en-
dogenous deamination rates and plotting the posterior probability for a non-
informative contamination prior. Diagnostic positions cannot always be used
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for measuring endogenous deamination rates for aDNA data. Therefore, our
algorithm needs to condition on having one deaminated base on one end to
measure endogenous deamination rates on the other and vice-versa. One under-
lying assumption is that deamination on one end is independent of deamination
the other end. We sought to determine whether deamination rates on either
end of the fragment were independent of deamination on the other end. We
measured deamination rates on the 5' end conditioning on whether the 3' end
was deaminated (C→T) or not (C→C). The converse was also measured. We
evaluated subsets of the Altai Neanderthal [14], the Denisovan individual [22],
the Loschbour individual [3], the Afontova Gora and Mal'ta genomes [29] (see
Table S21). We ran a χ2 test on a two by two contingency table with one
degree of freedom to test whether deamination on one end was independent of
deamination on the other end. For all samples, except the Altai, the p-value
was not su�ciently low to the point of concluding that deamination on one end
is linked to deamination on the other. However, it should be noted that this is
an assumption used by our algorithm and, if this assumption is incorrect and
endogenous deamination rates are overestimated, an overestimate of the actual
contamination rate will ensue.
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S2.3.5 Contamination estimate based on divergent bases

Once the endogenous consensus call is completed, contamination rates can be
computed using this consensus and a set of putative mitochondrial contami-
nants. This process is repeated until a stable contamination rate is reached and
the �nal rate is produced. Similarly to the section above, we sought to measure
the correlation between this �nal contamination rate and the prede�ned target
contamination rate used in the simulated data. The target contamination rate
for the simulations was calculated as the fraction of bases pertaining to the
contaminant over the total sum.

Full datasets

As mentioned in the methods, users can run the prediction with or without
the inclusion of the predicted contaminant as a record in the database of putative
contaminants. We ran schmutzi on our six types of previously described datasets
of 1M fragments. We ran schmutzi once with the inclusion of the predicted
contaminant and once again without this option.
Full datasets: Using the records in the database only

Using solely the records in the database described in Section S1, the contami-
nation rate was computed once the algorithm reached convergence. This option
always results in an underestimate of the true contamination rate as some sites
on the mitochondrial genome will not be considered due to natural divergence
between the actual contaminant and the closest record in the database. We plot-
ted the correlation between the simulated contamination rate and the predicted
one (see Figure S16).

For both archaic hominins, due to the large numbers of segregating sites com-
pared to the contamination source, the e�ect of this underestimate is minimal
as the contamination estimate is highly correlated with the simulated one. For
the EMH, due to the smaller divergence between the contaminant and endoge-
nous genomes, very few sites are considered and the e�ect of the underestimate
is more prominent, especially at higher contamination rates. In the following
section, we show that these more di�cult targets can be predicted by including
the inferred contaminant in the database of putative contaminant genomes.
Full datasets: Including the predicted contaminant

We re-ran our program on the same datasets used in the previous section with
the inclusion of the predicted contaminant. The correlation between the sim-
ulated contamination rate and the predicted one was plotted (see Figure S17).
The program performed well for both archaic hominin genomes, similarly to
the previous section, as high divergence between the contaminant and the en-
dogenous genomes provide an easy target for contamination estimates. For the
EMH, the underestimate seen in the previous section is corrected for using the
predicted contaminant as information. However, this approach does not per-
form well at very low levels of contamination, as adequate characterization of
the contaminant genome is not feasible.

Subsampled datasets

To measure the robustness of our algorithm to low coverage samples, the
dataset with 40% contamination rate was subsampled at rates ranging from 0.5
down to 0.01. Two distinct approaches were taken when rerunning schmutzi on
the resulting datasets. The �rst involved the default behavior of predicting the
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Figure S16: Simulated contamination rate versus the predicted one for datasets
containing 1M fragments each. The endogenous genome used was either an
early modern human (top), a Neanderthal (middle) or a Denisovan (bottom)
and the simulated aDNA damage pattern was either double-stranded (left) or
single-stranded (right). The data points where our program stopped after the
�rst iteration due to lack of contaminant fragments to characterize are marked
in red. As mentioned in the previous sections, for the EMH at high levels of
contamination, our algorithm did not converge.
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Figure S17: Simulated contamination rate versus the predicted one using the
predicted contaminant as putative contaminant source for datasets containing
1M fragments each. The endogenous genome used was either an early mod-
ern human (top), a Neanderthal (middle) or a Denisovan (bottom) and the
simulated aDNA damage pattern was double-stranded (left) or single-stranded
(right). As for the previous graphs, the data points where schmutzi did not con-
verge are omitted which mostly occur with a EMH as endogenous with either
too little or too much contamination.
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endogenous genome and scanning the contaminant database to estimate con-
tamination rates. However, for very low coverage samples, getting an accurate
resolution of the endogenous mitochondrial genome is often di�cult. Some-
times, investigators have access to an endogenous mitochondrial genome that
can serve as a close proxy (e.g. a di�erent Neanderthal for a Neanderthal sample,
a mitochondrial genome from the same haplogroup for early modern humans)
to determine whether this low coverage sample is heavily contaminated. This is
useful to prioritize which extractions are the most promising and should be fur-
ther sequenced. The second approach therefore involved taking the endogenous
consensus from the original high coverage dataset and using it as the endoge-
nous genome. This latter approach has the advantage of being highly robust
to low coverage but requires a well-characterized endogenous genome or a very
close proxy.
Subsampled datasets: Using a consensus from the dataset itself

Using the default methodology, we inferred contamination rates from the pre-
dicted endogenous genome and putative contaminants in the database. As the
simulated contamination rate was known, we plotted the �nal contamination
rates as a function of coverage (see Figure S18). For both archaics, the contam-
ination estimate is reliable from about 100X or 200X coverage for the single-
stranded and double-stranded rates of deamination respectively. For the EMH,
the contamination estimate remains an underestimate since schmutzi does not
use the predicted contaminant as a putative source of contamination with de-
fault parameters.
Subsampled datasets: Using a consensus from a higher quality source

In the previous section, we saw that schmutzi performed well at coverages lev-
els that are routinely seen in aDNA projects due to the relative abundance of
the mitochondrial DNA compared to nuclear [10]. However, in certain studies,
the relative amount of non-bacterial DNA is relatively small leading to extracts
yielding low coverage across the mitochondrial genome (e.g. less than 50X). In
those cases, neither approach to estimate contamination by deamination pat-
terns or by endogenous consensus calling followed by comparison to a database
yielded accurate estimates.

A hurdle in predicting contamination using low coverage samples is the in-
ability to accurately call the endogenous mitochondrial genome. However, it is
possible that researchers have access to a higher quality mitochondrial genome
from the same individual (obtained using mitochondrial capture for example)
and wish to prioritize which extractions are most promising to fully sequence
the nuclear genome. It is also possible to determine from which clade or hap-
logroup the individual being sequenced belongs to therefore providing a close
proxy. Our results show that if a research group has access to a high quality
mitochondrial genome from a close proxy, contamination can be estimated even
at low coverage. This approach can be useful if a group prepared a new library
from a Neanderthal extract and wishes to estimate contamination despite low
coverage across the mitochondrial genome. Knowing that the sample pertains
to a Neanderthal entails that a high quality mitochondrial genome from a dif-
ferent Neanderthal can be used as substitute. The contamination rate could
therefore be estimated for the new low coverage library. We supplied our con-
tamination estimator with the endogenous genome predicted from the original
1M datasets. Our results show that our estimates are accurate for even very
low coverage samples. (see Figure S19).

For both archaics hominins, the estimate is close to the actual simulated
rate even at low coverage. For the EMH, the underestimate due to the exclu-
sion of the contaminant is still noticeable however, the estimate o�ers greater
robustness to low coverage rates compared to simply estimating contamination
using the endogenous consensus from the sample itself.
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Figure S18: Predicted contamination rates at various rates of coverage using
schmutzi with default parameters. The endogenous genome used was either
an early modern human (top), a Neanderthal (middle) or a Denisovan (bot-
tom) and the simulated aDNA damage pattern was double-stranded (left) or
single-stranded (right). The black dotted line corresponds to the simulated
contamination rate.
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Figure S19: Predicted contamination rates at various rates of coverage using
schmutzi with default parameters but with the endogenous genome inferred from
the original set from which the fragments were subsampled. The endogenous
genome used was either an early modern human (top), a Neanderthal (middle)
or a Denisovan (bottom) and the simulated aDNA damage pattern was double-
stranded (left) or single-stranded (right). The black dotted line corresponds to
the simulated contamination rate.

48



S2.3.6 Comparison to existing methods

Using the maximum likelihood method previously described in the literature [7],
a contamination estimate for each simulated set of 1M fragment was computed.
Our results measure the correlation between the simulated contamination rate
and the one obtained using this method (see Figure S20). As the contami-
nating mitochondrial genome was known, the program was run once where this
genome was used as the contamination source. The program was run again using
the closest mitochondrial genome to the contaminant one in the 311 database
records provided in the original description of the method. One issue with this
maximum likelihood method is the inability to quantify the three main sources
of uncertainty: sequencing errors, deamination and mismappings. The result is
an estimate that misses the simulated contamination rate at lower and higher
levels of contamination. An underestimate of the error rate leads to an overes-
timate of the contamination rate and vice-versa. Mitigating measures against
deamination can be taken like trimming the ends of fragments or restricting
the analysis to transversions only. However these approaches su�er from resid-
ual deamination in the middle of the fragments and reduction of ascertainment
power respectively. The impact of mismappings could be mitigated by �ltering
for fragments with high mapping quality but this does not guarantee that every
fragment is correctly mapped to its original position.

49



●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Simulated contamination rate

P
re

di
ct

ed
 c

on
ta

m
in

at
io

n 
ra

te

Simulated versus predicted contamination rates for
 early modern human  with a  double−stranded  protocol

using a previously published maximum likelihood algorithm
and the closest proxy for the contaminant

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Simulated contamination rate

P
re

di
ct

ed
 c

on
ta

m
in

at
io

n 
ra

te

Simulated versus predicted contamination rates for
 early modern human  with a  double−stranded  protocol

using a previously published maximum likelihood algorithm
and the original contaminant

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Simulated contamination rate

P
re

di
ct

ed
 c

on
ta

m
in

at
io

n 
ra

te

Simulated versus predicted contamination rates for
 Neanderthal  with a  double−stranded  protocol

using a previously published maximum likelihood algorithm
and the closest proxy for the contaminant

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Simulated contamination rate

P
re

di
ct

ed
 c

on
ta

m
in

at
io

n 
ra

te

Simulated versus predicted contamination rates for
 Neanderthal  with a  double−stranded  protocol

using a previously published maximum likelihood algorithm
and the original contaminant

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Simulated contamination rate

P
re

di
ct

ed
 c

on
ta

m
in

at
io

n 
ra

te

Simulated versus predicted contamination rates for
 Denisovan  with a  double−stranded  protocol

using a previously published maximum likelihood algorithm
and the closest proxy for the contaminant

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Simulated contamination rate

P
re

di
ct

ed
 c

on
ta

m
in

at
io

n 
ra

te

Simulated versus predicted contamination rates for
 Denisovan  with a  double−stranded  protocol

using a previously published maximum likelihood algorithm
and the original contaminant

Figure S20: Predicted contamination rates at various rates of coverage using a
previously described maximum likelihood method. The method was tested on
sets containing 1M simulated aDNA fragments using as endogenous genome an
early modern humans (top), Neanderthals (middle) and a Denisovan(bottom).
The method was used by including the closest record in the 311 mitochondrial
genome database described in the method (left). To present the upper predictive
limit, the actual contaminant used in the simulation was included (right). The
dotted black line represents a perfect prediction.
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S2.3.7 Multiple contaminants

As seen in the methods section, the algorithm assumes a single contaminant
nucleotide at a given position. If multiple human mitochondrial genomes from
present-day humans with several divergent positions contaminate the ancient
sample, positions where one of the contaminant genomes shares an allele with
the endogenous one can lead to underestimates. The biggest hurdle for our al-
gorithm is not the number of contaminant mitochondria but rather, the sharing
of alleles with the endogenous genome.

We sought to evaluate how our estimates would be a�ected as a result of
having more than one mitochondrial genomes that contaminate the endogenous
sample. Simulations of 170k aDNA fragments with an early modern human
and Neanderthals as endogenous samples were repeated using a mix of a sec-
ond mitochondrial genome (GenBank ID: EU926618.1) in addition to the pre-
viously used contaminant mitochondrial genome (GenBank ID: KJ446110.1).
This second contaminating mitochondrion had an edit distance of 21 to the �rst
contaminant mitochondrial genome, comparable to the distance of the endoge-
nous early modern human genome to the �rst contaminant mitochondrion (edit
distance: 24) and the second one (edit distant: 21).

The mixture proportion of the two mitochondrial genomes ranged from 0%
to 50% with steps of 10%. Single-stranded damage was added only to the
endogenous material as described in the Methods section of the main text.
Contamination rates varied from 0% to 90%. Contamination estimates were
produced using the predicted contaminant bases for estimates starting from 20%
contamination rate onwards as the prediction of the contaminant mitochondrial
genome becomes feasible at this level (see Results in the main text).

Our results show that high mixture proportions of multiple contaminants do
not a�ect our contamination estimates at low rates of contamination (<20%) for
the early modern humans (see Figure S21A). At medium rates of contamination
(>20% and <70%), an underestimate of about 8% can be seen at the highest
rate of blending. At high levels of contamination (>70%) and at a higher mix-
ture of multiple contaminants (40% and 50%), higher underestimates are seen.
However, when the endogenous mitochondrial genome is that of a Neanderthal,
the contamination estimates are more robust to higher mixtures of contaminant
mitochondrial genomes (see Figure S21B). This robustness is due to the greater
agreement between the two contaminant mitochondrial genomes relatively to
the Neanderthal mitochondrial genome. The presence of multiple contaminant
genomes also does not a�ect the estimates produced using deamination patterns
(see Figure S21C and D).
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Figure S21: E�ect of having multiple contaminant bases at various blends of
contaminant mitochondrial genomes (x-axis) on the contamination estimate pro-
duced by schmutzi (y-axis) for di�erent rates of simulated contamination (see
color codes in the legend). The x-axis represents the proportion at which con-
taminant genomes were mixed while the colored lines represents the proportion
at which these contaminant genomes were mixed with the endogenous one. A)
E�ect on the predicted contamination estimate of multiple contaminant genomes
for an early modern human as the endogenous genome. B) E�ect of multiple
contaminants on contamination estimates using a Neanderthal mitochondrial
genome as the endogenous sample. C) and D) Contamination estimates based
on deamination patterns for the early modern human and Neanderthal genomes.
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