
Expanded View Figures

A [Start-End	Mass	∆ppm	Amino acid sequence	Modification
	44-57	1649.7837	0.34	KYNTDCVQGLTHSK	CAM
	203-217	1618.7424	-0.65	VDNSSLTGESEPQTR	
	218-230	1540.6576	-0.014	SPDCTHDNPLETR	CAM
	436-448	1274.6368	1.11	DVAGDASESALLK	
	603-615	1380.7412	-1.7	VIMVTGDHPITAK	
	620-637	1828.9146	-1.1	GVGIISEGNETVEDIAAR	
	689-697	1086.585	-0.47	LIIVEGCQR	CAM
	884-901	2230.9764	-0.13	TVNDLEDSYGQQWTYEQR	
	903-930	3337.66135	-2.34	VVEFTCHTAFFVSIVVVQWADLIICKTR	2 CAM
ļ	903-928	3267.54015	-1.01	VVEFTCHTAFFVSIVVVQWADLIICK	N-Acetyl, 2 CAM, 1 DTSSP

Identification of Na⁺/K⁺-ATPase subunit a3 specific peptides by cross-linking/MS

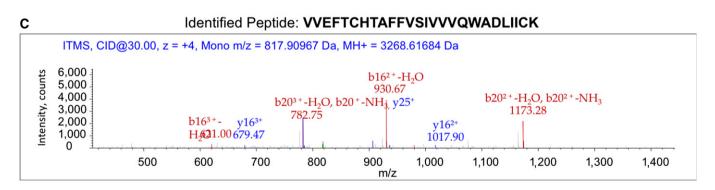
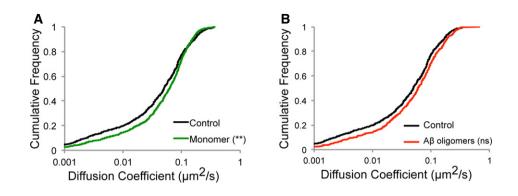
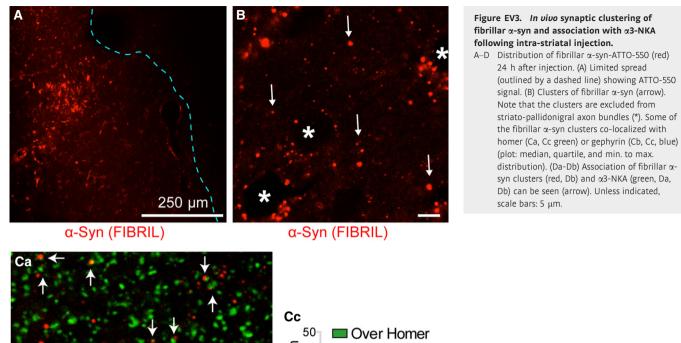
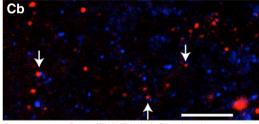


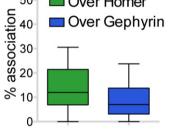
Figure EV1. Assessment of the interaction between α 3-NKA and α -syn cross-linking/MS.

A List of α 3-NKA peptides identified from neurons exposed for 10 min to fibrillar α -syn, cross-linked with DTSSP, pulled-down, reduced and alkylated, digested by trypsin, and analyzed by MS/MS through an α 3-NKA-targeted identification with SEQUEST.

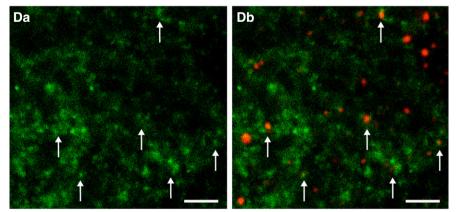
B MS/MS spectrum of α3-NKA peptide TVNDLEDSYGQQWTYEQR [884-901].

C MS/MS spectrum of α3-NKA peptide VVEFTCHTAFFVSIVVQWADLIICK [903-928] with one N-terminal acetylation (+42 Da), two carbamidomethyl cysteines (Cys908 and Cys927, +57 Da), and one DTSSP cross-linked residue (S915 or K928, +145 Da).

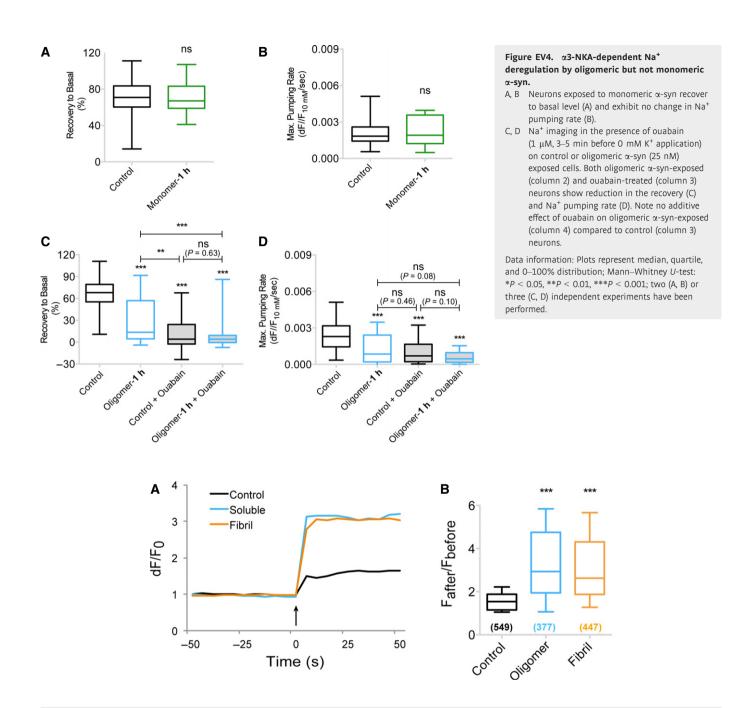





Figure EV2. α 3-NKA diffusion in the presence of monomeric α -syn and A β oligomers.

A, B Monomeric α-syn-exposed (50 nM, 60 min, green) neurons showed no slowdown in diffusion coefficient of pHluorin-α3-NKA (A) (number of QDs: control, 674; monomer, 865; Kolmogorov–Smirnov test, **P < 0.01). (B) No slowdown in the diffusion coefficient of α3-NKA following exposure (200 nM, 60 min) to Aβ oligomers (number of QDs: control, 674; Aβ oligomers, 450; Kolmogorov–Smirnov test, ns = non-significant).</p>



α-Syn (FIBRIL) / Homer



α3-NKA / α-Syn (FIBRIL)

Figure EV5. Increase in glutamate-induced Ca²⁺ influx following α-syn exposure.

A, B DIV 16–19 striatal neurons were exposed (1 h) to oligomeric (25 nM, blue) or fibrillar (0.03 nM, orange) unlabeled α -syn. Unexposed control is shown in black. Glutamate-evoked (arrow, 100 μ M, A) Ca²⁺ rise was measured following Fluo-4-AM dye labeling. Note a larger Ca²⁺ influx in cells exposed to α -syn assemblies. Averaged normalized (dF/F₀) fluorescence intensity for all cells is shown (B). Box plot in (B) shows the distribution of change in fluorescence intensity for all cells (box plot: median, quartile, and 10–90% distribution; Mann–Whitney U-test: ***P < 0.001; number of cells (*n*) is shown in parentheses in B; five independent experiments).