SUPPLEMENTARY INFORMATION

Experimental verification and molecular basis of active immunization against fungal pathogens in termites

Long Liu[#], Ganghua Li[#], Pengdong Sun, Chaoliang Lei, Qiuying Huang * College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China

[#] These authors contributed equally to this work

* Correspondence: Dr. Qiuying Huang

No.1, Shizishan Street, Hongshan District, Wuhan 430070, China

E-mail: qyhuang2006@mail.hzau.edu.cn Tel: 86-27-87287207

□ control-treated termite/naive nestmate

Supplementary Figure 1. Observation of stomodeal trophallaxis for different treatment groups.

(A) The frequency of stomodeal trophallaxis of different treated groups. (B) The frequency of stomodeal trophallaxis at different times between fungus-treated termites and naive nestmates over 5 d. Pairing groups include naive nestmates (N), control-treated termites (C) and fungus-treated termites (F). Error bars represent mean \pm SEM. Different letters indicate significant differences (Tukey's HSD test, p < 0.05).

Supplementary Figure 2. Detection of conidia on fungus-treated termites and their nestmates.

Conidia were found on the legs (A), joints of the legs (B) and abdominal cuticle (C) of the fungus-treated termites. In comparison, relatively low amounts of conidia were found on the legs (D), joints of the legs (E) and abdominal cuticle (F) of their nestmates.

Function	Protein name	Unigene ID	Accession No.	Score	E-value	Fold change
Stress response	60S ribosomal protein L23	Znev 11393	XP 001942614.1	126	4.00E-66	1.24
·	isocitrate dehydrogenase			952	0	1.57
	glutathione S-transferase D1		AFK49803.1	288	4.00E-109	0.78
	cuticle protein 19	Znev_10404	P45583.1	445	2.00E-24	0.71
	protein-disulfide isomerase	Znev_03262	XP_975184.2	276	0	1.89
	glutathione S-transferase	Znev_00817	AFZ78680.1	190	4.00E-111	2.22
	cytochrome P450	Znev_14802	BAD84176.1	223	1.00E-169	1.91
	chitinase	Znev_05886	XP_003436306.1	54	5.00E-105	0.71
	chitin metabolic	Znev_18457	XP_001945816.1	57	5.00E-46	0.66
	hypothetical protein TcasGA2_TC000103	Znev_08435	EEZ99522.1	155	0	0.79
	hypothetical protein TcasGA2_TC013127	Znev_05812	EFA03207.1	49	4.00E-12	1.65
	hypothetical protein TcasGA2_TC015417	Znev_14079	EFA05262.1	240	6.00E-129	0.77
Immune signaling	GTPase Ras	Znev_14471	XP_307965.4	111	3.00E-84	1.32
	ubiquitin conjugating enzyme	Znev_05594	XP_001518397.2	170	2.00E-31	0.70
	26S proteasome	Znev_05722	DAA34352.1	366	2.00E-68	0.80
	Ras-related protein	Znev_00355	XP_002024575.1	131	4.00E-53	1.29
	transglutaminase	Znev_13185	P52183.1	112	0	1.89
	histone H3	Znev_04751	NP_002098.1	121	2.00E-72	5.84
Immune effector	histone H1-II-1	Znev_12492	XP_002422630.1	189	4.00E-19	4.56
	histone H1-II	Znev_12491	EFA13427.1	167	3.00E-25	2.44
Biosynthesis	small nuclear ribonucleoprotein F	Znev_18326	EFN72155.1	65	2.00E-33	4.37
	hypothetical protein SINV_06138	Znev_09984	EFZ21040.1	351	6.00E-93	0.74
	copa protein	Znev_06668	AAI50356.1	83	5.00E-42	0.81

Supplementary Table 1. Identification of differentially expressed proteins in *R. chinensis* infected by *M. anisopliae* using iTRAQ proteomics.

Metabolism	ATP synthase oligomycin sensitivity conferral protein	Znev_00096	ABD98749.1	61	7.00E-75	1.79
	transketolase-like protein 2	Znev_11074	EFN73921.1	240	0	1.96
	phosphoglycerate mutase 1	Znev_02731	EFN64748.1	102	5.00E-120	1.35
	serine/threonine-protein phosphatase alpha-1 isoform	Znev_03910	EFN86649.1	145	7.00E-158	0.68
	PREDICTED: tubulin alpha-1C chain-like	Znev_15255	XP_003826076.1	2192	4.00E-56	0.62
	hypothetical protein DAPPUDRAFT_305931	Znev_15191	EFX63892.1	86	3.00E-93	1.93
	PREDICTED: 60S ribosomal protein L31-like	Znev_12203	XP_003491807.1	62	8.00E-50	1.43
	ribosomal protein	Znev_03722	CAB46822.1	96	2.00E-48	1.37
	hypothetical protein AND_02423	Znev_01471	EFR28979.1	107	2.00E-28	1.53
	proteasome subunit beta 7	Znev_02538	EHJ64129.1	52	3.00E-104	1.77
	PREDICTED: eukaryotic translation initiation factor 2 subunit 1-like	Znev_03136	XP_003691549.1	108	4.00E-153	1.74
	hypothetical protein SINV_10530	Znev_03341	EFZ16690.1	132	3.00E-41	1.77
	ribosomal protein S12	Znev_05370	AAM33784.1	60	5.00E-68	0.55
	SUI protein	Znev_01101	ADJ68166.1	54	4.00E-29	0.71
	ribosomal protein L36e	Znev_10183	CAR94544.1	59	4.00E-55	0.72
Development	hypothetical protein SINV_02609	Znev_01719	EFZ11601.1	199	0	1.71
	troponin i	Znev_15251	XP_001661109.1	366	3.00E-39	0.75
	PREDICTED: annexin-B9-like	Znev_05200	XP_003693405.1	283	8.00E-121	1.25
	aldo-keto reductase, partial	Znev_12732	AEV89779.1	127	2.00E-91	1.40
Other functions	group II PLP decarboxylase	Znev_05056	XP_002433673.1	115	3.00E-19	0.66
	hypothetical protein SINV_15420	Znev_07932	EFZ09502.1	198	7.00E-23	1.33
	PREDICTED: prostaglandin reductase 1-like	Znev_13724	XP_001603755.1	70	1.00E-107	3.57
	n/a	Znev_09000	n/a	169	n/a	1.38
	hypothetical protein SINV_11708	Znev_03344	EFZ21891.1	39	1.00E-58	1.84
	AGAP003540-PA	Znev_02356	XP_562377.4	32	2.00E-09	6.46
	MBD2-interacting zinc finger, isoform CRA_a	Znev_06037	EAW67460.1	26	4.00E-65	1.37

PREDICTED: uncharacterized protein LOC755912, partial	Znev_04048	XP_001192548.2	114	2.00E-07	1.83
PREDICTED: similar to AGAP007325-PA isoform 5	Znev_07036	XP_976127.1	144	5.00E-41	1.70
PREDICTED: LOW QUALITY PROTEIN: protein CLP1 homolog	Znev_01522	XP_003401895.1	33	0	1.58
PREDICTED: protein ETHE1, mitochondrial-like	Znev_04335	XP_003481924.1	45	4.00E-14	2.31
D-aspartate oxidase	Znev_06652	EGI66218.1	25	2.00E-11	2.03
haloacid dehalogenase-like hydrolase domain-containing protein 2	Znev_12098	EFN61412.1	124	4.00E-85	1.57
hypothetical protein DAPPUDRAFT_18429	Znev_09951	EFX73538.1	33	6.00E-18	2.21
GF22955	Znev_12980	XP_001964611.1	122	4.00E-38	1.25
PREDICTED: sulfide:quinone oxidoreductase, mitochondrial-like	Znev_01082	XP_003730634.1	159	1.00E-18	0.76
PREDICTED: hypothetical protein LOC100575643	Znev_16651	XP_003247465.1	102	7.00E-06	0.72
n/a	Znev_02478	n/a	77	n/a	0.57
PREDICTED: hypothetical protein LOC409010	Znev_08111	XP_392539.3	58	9.00E-15	0.43
hypothetical protein AND_20271	Znev_03253	EFR20331.1	81	1.00E-131	0.77

Protoin nome	Unigono ID	Pontido coguenco	Quadrupolo 1	Quadrunala 2	Collision	Retention
Frotein name	Unigene ID	Peptide sequence		Quadrupole 3	energy	time (min)
60S ribosomal protein L23	Znev_11393	DYDALDVANK	562.266935	845.436323	29.1	15.73
			562.266935	546.288202	29.1	15.73
			562.266935	431.261259	29.1	15.73
isocitrate dehydrogenase	Znev_13297	VTIIPGDGIGPEISAAVQK	933.022565	999.546936	42.4	22.91
			933.022565	942.525472	42.4	22.91
			933.022565	603.346051	42.4	22.91
		SLEGYETLYDNVDVVTIR	696.016148	702.414465	35.5	23.77
			696.016148	587.387522	35.5	23.77
			696.016148	488.319108	35.5	23.77
		ENTEGEYSGIEHEIVDGVVQSIK	844.741523	944.541122	43.5	25.09
			844.741523	730.445765	43.5	25.09
			844.741523	475.287474	43.5	25.09
glutathione S-transferase D1	Znev_15569	LYFDIGTLYQR	694.864077	965.505071	33.9	24.34
			694.864077	850.478128	33.9	24.34
			694.864077	737.394064	33.9	24.34
cuticle protein 19	Znev_10404	AAPAVDYYAYPK	664.829703	1018.488024	32.8	16.93
			664.829703	919.41961	32.8	16.93
			664.829703	804.392667	32.8	16.93
		GEYSLVEPDGTVR	711.348988	773.378808	34.5	17.22
			711.348988	644.336215	34.5	17.22
			711.348988	432.256508	34.5	17.22
protein-disulfide isomerase	Znev_03262	VLVSSNFDEVAFNK	784.901388	969.467623	37.1	21.13
			784.901388	822.399209	37.1	21.13

Supplementary Table 2. Sequences and transitions of 14 target proteins detected by MRM.

			784.901388	479.261259	37.1	21.13
GTPase Ras	Znev_14471	SFEDIGGYR	522.243263	809.378808	27.7	16.65
			522.243263	680.336215	27.7	16.65
			522.243263	565.309272	27.7	16.65
ubiquitin conjugating enzyme	Znev_05594	TDQVIQALVALVNDPEPEHPLR	818.771089	974.505406	42.1	27.21
			818.771089	748.410049	42.1	27.21
			818.771089	522.314692	42.1	27.21
		ADLAEEYLK	526.268947	865.46656	27.8	18.60
			526.268947	752.382496	27.8	18.60
			526.268947	552.302789	27.8	18.60
26S proteasome	Znev_05722	IVAFVGSPVETEEK	752.898314	975.462932	36.0	19.00
			752.898314	831.409439	36.0	19.00
			752.898314	506.245669	36.0	19.00
hypothetical protein SINV_06138	Znev_09984	LFIGGLDYR	527.290016	940.488693	27.8	21.59
			527.290016	793.420279	27.8	21.59
			527.290016	680.336215	27.8	21.59
		GFGFITYSR	524.266541	843.435929	27.7	21.07
			524.266541	639.346051	27.7	21.07
			524.266541	526.261987	27.7	21.07
		GFGFVEFEDYDPVDK	882.393592	980.420732	40.6	24.06
			882.393592	851.378139	40.6	24.06
			882.393592	458.260925	40.6	24.06
copa protein	Znev_06668	LVGQSIIAYLQQK	730.927208	1063.614622	35.2	20.21
			730.927208	863.498529	35.2	20.21
			730.927208	679.377351	35.2	20.21
		LSFLYLITGNLDK	748.921592	873.504009	35.8	28.42

			748.921592	760.419945	35.8	28.42
			748.921592	546.288202	35.8	28.42
transketolase-like protein 2	Znev_11074	SIPGSTVFYPSDAVSTER	638.314417	961.458515	32.3	20.38
			638.314417	864.405751	32.3	20.38
			638.314417	662.34678	32.3	20.38
phosphoglycerate mutase 1	Znev_02731	FDIAHTSVLTR	420.562938	813.457727	20.5	17.74
			420.562938	676.398815	20.5	17.74
			420.562938	575.351137	20.5	17.74
troponin i	Znev_15251	FDLEYAVK	492.755475	837.43526	26.6	19.69
			492.755475	722.408317	26.6	19.69
			492.755475	480.28166	26.6	19.69
		DFEISDLNAQVNDLR	874.926122	929.479919	40.4	23.08
			874.926122	744.399878	40.4	23.08
			874.926122	517.272886	40.4	23.08
PREDICTED: annexin-B9-like	Znev_05200	EFAGSLEDGYLSIVK	814.414328	1023.535703	38.2	23.65
			814.414328	894.49311	38.2	23.65
			814.414328	559.381374	38.2	23.65

Experiments	Replicates	Colonies
Behavioural observation	10	Colony number 1, 3, 4, 6, 7, 10, 11, 12, 13, 16
Fungal detection	9	Colony number 1, 2, 3, 7, 10, 11, 12, 13, 16
Antifungal activity	10	Colony number 1, 3, 4, 6, 7, 10, 11, 12, 13, 16
CFUs observation	5	Colony number 5, 9, 10, 11, 15
Antifungal substances transfer (new nestmates)	8	Colony number 2, 3, 7, 10, 11, 12, 15, 16
Antifungal substances transfer (body parts)	4	Colony number 2, 3, 7, 12
Antioxidant enzymes	5	Colony number 3, 7, 12, 13, 16
Gene expression	3	Colony number 2, 7, 10
iTRAQ proteomics	3	Colony number 4, 8, 14
MRM assays	3	Colony number 4, 8, 14

Supplementary Table 3. The distribution of the 16 colonies of *R. chinensis* for each experiment.

Supplementary Text 1. Experimental protocols.

Antifungal activity assay

For each replicate per treated type consisting of a pool of five individuals, we crushed five termites in centrifuge tubes with liquid nitrogen and then used phosphate buffered saline (PBS) to dissolve them in a proportion of 1 mg of body weight to 5 µL of PBS. Then, the homogenates were centrifuged at 6000 x g for five minutes at 4 °C and then 20 µL of the extract supernatants were centrifuged at 6000 x g for five minutes at 4 °C again. Then, 10 µL of the supernatants were extracted and stored at -80 °C until antifungal activity assay. For the antifungal activity of the two body parts (abdomen cuticle and thorax), we froze and dissected 20 fungus-treated and 20 control-treated termites. Each treated type consisting of a pool of abdomen cuticles and thoraces of five termites were crushed in liquid nitrogen in each replicate, then were dissolved in 50 µL of PBS and performed as the methods described above. For the antifungal activity of stomodeal droplet, we obtained the stomodeal droplets of 20 fungus-treated individuals and 20 control-treated individuals. Because we only retrieved 0.1 µL regurgitate from one termite with capillary, we pooled stomodeal droplets of five termites in each replicate and dissolved stomodeal droplets in 1.5 µL of PBS. The supernatant of abdomen cuticles and thoraces, and the stomodeal droplet were stored at -80 °C until antifungal activity assay. When measuring antifungal activity, we used 96-well microplates with 50 µL potato dextrose (PD), 2 µL blastospores (10⁶ spores/mL), 2 µL supernatant or stomodeal droplets per well. Additionally, we used 50 µL PD, 2 µL the blastospores, 2 µL PBS per well for spores-growth control, and 50 µL PD, 4 µL PBS per well for standards. After 24 hours of cultivation in constant temperature shaker (200 rpm; 25 °C ± 1 °C), the absorbance of each well was measured by the microplate spectrophotometer (wavelength: 600 nm).

Confirmation of identity of CFUs as *M. anisopliae* by PCR.

We extracted DNA of *M. anisopliae* (strain IBCCM321.93) as positive controls and that of *Beauveria bassiana* (strain GIM3.428) as negative controls directly from our fungal culture. We also extracted DNA of CFUs from fungus-treated termites and their nestmates to determine whether the CFUs from dissected body contents of the termites were truly *M. anisopliae*.

DNA was extracted by the method of CTAB. The fungal material was scraped lightly from the Petri Dish, and crushed in liquid nitrogen for 30 seconds, and then heated at 65 °C for 30 second. The procedure was repeated for three times. The fungal material was then resuspended with 1 mL CTAB buffer (2% CTAB, 0.75 M NaCl, 50 mM Tris/HCl pH 8.0, 10 mM EDTA) and then add 10 μ L Proteinase K (TaKaRa) to the suspension. Each suspension was incubated for 1 hour at 55 °C and mixed by vortexing for 5 seconds every 10 minutes. We added 1 mL chloroform/isoamyl alcohol (24:1) and mixed. The mixture was centrifuged at 12 000×g for 10 minutes. The upper phase (contain DNA) was removed to a new 1.5 mL tube. The DNA was extracted by chloroform/isoamyl alcohol (24:1) for two times by the method described above to remove the protein in DNA. The upper phase (about 300 μ L) was incubated at -20 °C for 30 minutes with 600 μ L ethyl alcohol and 30 μ L NaAc (3 M). Then the mixture was centrifuged at 12 000 ×g for 15 minutes to collect the DNA. DNA pellets were washed by 1 mL 75% ethyl alcohol. After centrifuged at 12 000 ×g for 10 minutes, the solution was abandoned. DNA pellets were dried at room temperature for 15 minutes and then dissolved by 50 μ L ddH₂O.

The universal primer: ITS1 (5'-TCCGTAGGTGAACCTGCGG-3') and ITS4 (5'-TCCTCCGCTTATTGATATGC-3') were used to amplify the sequence of *M. anisopliae*. The protocol of PCR action contains 12.8 μ L of ddH₂O, 0.4 μ L of ITS1 (10 μ M), 0.4 μ L of ITS4 (10 μ M), 1 μ L of DNA template, 3.2 μ L of dNTP Mixture (2.5 mM each), 2 μ L of 10×LA Taq Buffer II (Mg²⁺ Plus) and 0.2 μ L of TaKaRa LA Taq (5 U/ μ L). PCR reactions were performed in a thermocycler (MyCyclerTM Thermal Cycler, Bio-Rad) with the following amplification conditions: 4 minutes denaturation of 95 °C, followed by 35 cycles of 95 °C for 30 seconds, 55 °C for 30 seconds and 72 °C for 1 minute, and final extension at 72 °C for 7 minutes. The PCR products were purified by Wizard[®] SV GeI and PCR Clean-Up System, and the sequence of geI extraction products was confirmed by sequencing.

The specific primer for *M. anisopliae* (forward: 5'- TTATCCAACTCCCAACCCCT-3', reverse: 5'- TCCTGTTGCGAGTGCTTTAC-3') were designed according to the sequence amplified by the universal primer. The protocol of PCR action contains 12.8 μ L of ddH₂O, 0.4 μ L of forward

primer (10 μ M), 0.4 μ L of reverse primer (10 μ M), 1 μ L of DNA template, 3.2 μ L of dNTP Mixture (2.5 mM each), 2 μ L of 10×LA Taq Buffer II (Mg²⁺ Plus) and 0.2 μ L of TaKaRa LA Taq (5 U/ μ L). PCR reactions were performed under the following conditions: 4 minutes denaturation of 95 °C, followed by 35 cycles of 95 °C for 30 seconds, 59 °C for 30 seconds and 72 °C for 40 seconds, and final extension at 72 °C for 7 minutes. The PCR products were confirmed by the agarose gel electrophoresis.

Activity assay of defensive enzymes

One fungus-treated (or control-treated) termite and five nestmates were cultivated together for 5 d. There were 15 replicates of interactive cultivation for pathogenic fungus treatment and control treatment, respectively. Then, 15 nestmates from three replicates were pooled and crushed by liquid nitrogen and dissolved in a proportion of 1 mg of body weight to 10 µL of PBS. The homogenates were centrifuged at 10,000 × g for 15 min at 4 °C and the supernatant as samples of enzyme activity assay was used for analysis. We determine protein concentrations using bovine serum albumin as the standard¹. The activities of superoxide dismutase (SOD, 5 replicates per treatment) and catalase (CAT, 5 replicates per treatment) were determined according to the protocols offered by manufacturer (Nanjing Jiancheng Bioengineering Institute, Jiangsu, China). To determine SOD activity, we used the systems of xanthine reacting with xanthine oxidase and measured their absorbance spectrophotometrically at 550 nm. One unit of SOD activity was determined as the number of enzyme required for 50% inhibition of the xanthine and xanthine oxidase system reaction in 1 mL enzyme extraction of 1 mg protein. SOD activity was expressed as U mg⁻¹ protein. To calculate CAT activity, we measured the amount of a faint yellow complex produced by surplus H₂O₂ reacting with ammonium molybdate spectrophotometrically at 405 nm. One unit of CAT activity was defined as the amount decomposing H₂O₂ per second per mg protein. CAT activity was also expressed as U mg⁻¹ protein.

Expressions of immune genes

One fungus-treated (or control-treated) termite and five nestmates were cultivated together for 5 d. The five nestmates were pooled and crushed in 1.5 mL centrifuge tube with liquid nitrogen, using sterilized disposable tissue grinding pestles. Total RNA of samples was extracted using TRIzol according to manufacturer protocol. The purity and concentration of the extracted RNA were determined by Thermo NANO DROP 2000 Spectrophotometer. Approximately 1µg RNA was treated by DNase-I, and then was converted to single-stranded cDNA using PrimeScript RT reagent Kit (perfect real time) (TaKaRa, Dalian, China). The cDNA products were then diluted with deionized water to 25-fold as template for the real-time PCR of *phenoloxidase* and 125-fold as templates for the real-time PCR of *system* (Bio-Rad, USA). Reaction mixtures, containing 10 µL of SYBR Premix Ex TaqTM II (TaKaRa, Dalian, China), 0.4 µL of forward primer (10 µM), 0.4 µL of reserve primer (10 µM), and 2 µL of template cDNA were performed as the following reaction condition: 95 °C for 3 min, followed by 40 cycles of 95 °C for 10 s and 58 °C for 30 s.

According to the sequences of the other termites, primers were designed using Primer Premier 5. Based on the acquired sequences of *R. chinensis*, specific primers for real-time PCR were designed by Beacon Designer 7.7. The expressions of fungus-treated groups were calibrated by those of control-treated groups. The relative gene expressions were calculated by the method of $2^{-\Delta\Delta}$ Ct². The real-time PCR were performed on three biological replicates each containing three technical replicates.

Referential sequences and primers used for PCR amplification of immune genes.

Gene Name	Accession	Source	Orientation	$(5' \rightarrow 3')$ Primer Sequence
	Number for			
	Referential			
	Sequence			
β-actin	DQ206832.1	Reticulitermes	Forward	CTCAGGTGATGGTGTCTC
		flavipes	Reverse	CAGGTAGTCGGTCAAGTC
phenoloxidase	KF277251.1	Coptotermes	Forward	TGACAACAGCACTAACAGCCC
		formosanus	Reverse	TCATCACCACCTTGCACCC
transferrin	AF535146.1	Mastotermes	Forward	TCCAAAATACCCCATCAAGAC
		darwiniensis	Reverse	AAGTGACGCAGAACCTCACTG
termicin	ID FJ184569.1	Reticulitermes	Forward	GGACTCTCTGTATCCTGCTCG
		chinese	Reverse	AGACATGGGTGCTAAAAATGG
defensin	Unigene 11869	Odontoterms	Forward	TCATTCTGGCTGCCCTGT
		formosanus	Reverse	GGTCGGATATCTTCCTGTTGTG

Primers used for real-time PCR verification of immune genes.

Gene Name	Orientation	(5' \rightarrow 3') Primer Sequence
β-actin	Forward	CTCAGGTGATGGTGTCTC
	Reverse	CAGGTAGTCGGTCAAGTC
phenoloxidase	Forward	AGTTCAGGAAGCGTGTAA
	Reverse	CATTGGCATCTGGTGTATC
transferrin	Forward	ATGCACGGCTTGCCTGTTAT
	Reverse	TGTGTGCGCTCTGTGAGCA
termicin	Forward	TCGTCTTTCTGGTCGTAGTG
	Reverse	CAGTGGTGATAGAGATGATA
defensin	Forward	GTCTGCTGAACACAACAAT
	Reverse	GGTCACAGGTTACTCGTT

Protein preparation

Termite samples were ground into powder in liquid nitrogen and extracted with Lysis buffer (7 M Urea, 2 M Thiourea, 4% CHAPS, 40 mM Tris-HCl, pH 8.5) containing 1 mM PMSF and 2 mM EDTA (final concentration). After 5 min of vigorous vortex, 10 mM DTT (final concentration) was added to the samples. The suspension was sonicated at 200 W for 15 min and then centrifuged at 30 000×g for 15 min at 4 °C. The supernatant was mixed well with 5× volume of chilled acetone containing 10% (v/v) TCA and incubated at -20 °C overnight. After centrifugation at 4 °C, 30 000×g for 15 min, the supernatant was discarded. The precipitate was washed with chilled acetone three times. The pellet was air-dried and dissolved in Lysis buffer (7 M urea, 2 M thiourea, 4% NP40, 20 mM Tris-HCl, pH 8.0-8.5). The suspension was sonicated at 200 W for 15 min and centrifuged at 4 °C, 30 000×g for 15 min. The protein in the supernatant was transferred to another tube and reduced with 10 mM DTT (56 °C for 1 h). Cysteine residues blocked with 55 mM iodoacetamide (IAM) (darkroom temperature for 1 h). Protein was precipitated with chilled acetone at -20 °C for 2 h. After centrifugation at 4 °C, 30 000×g for 15 min, the supernatant was discarded, and the pellet was air-dried for 5 min, dissolved in 500 µL 0.5 M TEAB, and sonicated at 200 W for 15 min. Finally, the samples were centrifuged at 4 °C, 30 000×g for 15 min. The supernatant was transferred to a new tube and

determined by the protein-dye method of Bradford (1976) using bovine serum albumin as a quantitative standard¹. The proteins in the supernatant were kept at -80°C for further analysis.

iTRAQ Labeling and Strong Cation Exchange Choematography (SCX) Fractionation Total protein (100µg) was taken out of each sample solution and then the protein was digested with Trypsin (protein: trypsin ratio = 30: 1) at 37 °C for 16 hours. After trypsin digestion, peptides were dried by vacuum centrifugation. Peptides were reconstituted in 0.5 M TEAB and processed according to the manufacturer's protocol for 8-plex iTRAQ reagent (Applied Biosystems). Samples were labeled with the iTRAQ tags as follow: 114-, 116- and 118-iTRAQ tags for control replicate Control 1, Control 2 and Control 3; and 115-, 117- and 119-iTRAQ tags for fungus-treated replicate Fungus 1, Fungus 2 and Fungus 3, respectively. The peptides labeled with respective isobaric tags, incubated for 2 h and vacuum centrifuged to dryness. SCX chromatography was performed with a LC-20AB HPLC Pump system (Shimadzu, Japan). The iTRAQ-labeled peptide mixtures were reconstituted with 4 mL buffer A (25 mM NaH2PO4 in 25% ACN, pH 2.7) and loaded onto a 4.6×250 mm Ultremex SCX column containing 5 µm particles (Phenomenex). The peptides were eluted at a flow rate of 1 mL/min with a gradient of buffer A for 10 min, 5-60% buffer B (25 mM NaH2PO4, 1 M KCl in 25% ACN, pH 2.7) for 27 min, 60-100% buffer B for 1 min. The system was then maintained at 100% buffer B for 1 min before equilibrating with buffer A for 10 min prior to the next injection. Elution was monitored by measuring the absorbance at 214 nm, and fractions were collected every 1 min. The eluted peptides were pooled into 20 fractions, desalted with a Strata X C18 column (Phenomenex) and vacuum-dried.

LC-ESI-MS/MS Analysis Based on Q EXACTIVE

The peptides (5 µg) were taken up into 10µL 2% ACN, 0.1% trifluoroacetic acid (TFA) solvent and injected onto a 2 cm C18 trap column (inner diameter 200 µm) connected resolving 10 cm analytical C18 column (inner diameter 75 µm) on a Shimadzu LC-20AD nanoHPLC. Each sample was loaded onto the column at 8 µL /min for 4 min, then the 44 min gradient was run at 300 nl /min starting from 2 to 35% buffer B (98%ACN, 0.1%FA), followed by 2 min linear gradient to 80%, and maintenance at 80% buffer B for 4 min, and finally return to 5% in 1 min.

The peptides were subjected to nanoelectrospray ionization followed by tandem mass spectrometry (MS/MS) in an QEXACTIVE (Thermo Fisher Scientific, San Jose, CA) coupled online to the HPLC. Intact peptides were detected in the Orbitrap at a resolution of 70 000. Peptides were selected for MS/MS using high-energy collision dissociation (HCD) operating mode with a normalized collision energy setting of 27.0; ion fragments were detected in the Orbitrap at a resolution of 17500. A data-dependent procedure that alternated between one MS scan followed by 15 MS/MS scans was applied for the 15 most abundant precursor ions above a threshold ion count of 20000 in the MS survey scan with a following Dynamic Exclusion duration of 15 s. The electrospray voltage applied was 1.6 kV. Automatic gain control (AGC) was used to optimize the spectra generated by the Orbitrap. The AGC target for full MS was 3E6 and 1E5 for MS2. For MS scans, the m/z scan range was 350 to 2000 Da. For MS2 scans, the m/z scan range was 100 to 1800 Da.

Proteomics Data Analysis

Raw data files acquired from the Orbitrap were converted into MGF files using Proteome Discoverer 1.2 (PD 1.2, Thermo), [5600 msconverter] and the MGF file were searched. Proteins identification was performed by using Mascot 2.3.02 (Matrix Science, London, UK) against database containing 15860 sequences.

For protein identification, a mass tolerance of 20 Da (ppm) was permitted for intact peptide masses and 0.05 Da for fragmented ions, with allowance for one missed cleavages in the trypsin digests. Gln->pyro-Glu (N-term Q), Oxidation (M), Deamidated (NQ) as the potential variable modifications, and Carbamidomethyl (C), iTRAQ8plex (N-term), iTRAQ8plex (K) as fixed modifications. The charge states of peptides were set to +2 and +3. Specifically, an automatic decoy database search was performed in Mascot by choosing the decoy checkbox in which a random sequence of database is generated and tested for raw spectra as well as the real database. To reduce the probability of false peptide identification, only peptides with significance scores (≥20) at the 99% confidence interval by a Mascot probability analysis greater than "identity" were counted as identified. And each confident protein identification involves at least one unique peptide.

For protein quantization, it was required that a protein contains at least two unique peptides. The quantitative protein ratios were weighted and normalized by the median ratio in Mascot. Proteins with 1.2-fold change between fungus-treated and control samples and *p*-value of statistical evaluation less than 0.05 were determined as differentially abundant proteins.

MRM validation of differentially expressed proteins from iTRAQ

A spectral library of all proteins in samples MS/MS data was generated on TripleTOF5600 (AB SCIEX, Foster City, CA), searched using ProteinPilot (AB SCIEX, Foster City, CA) and imported into Skyline software³ where a library was built. Unique peptides (7-30 amino acids length) without modifications and missed cleavages were selected for MRMs. We initially monitored four transitions per peptide to ensure specificity with the criteria that at least four y-ions had the same elution profile and were in the same ratios as the spectral library, and to see that predicted retention times were observed. A test pool of the six samples (Fungus: n = 3; Control: n = 3) was digested as described in iTRAQ and was performed preliminary SRM assays used to determine where these proteins were detected.

Samples were digested as described and spiked with 20 fmol of β-galactosidase for data normalization. MRM analyses were performed on QTRAP5500 mass spectrometer (AB SCIEX, Foster City, CA) equipped with Waters nano Acquity Ultra Performance LC system. The Mobile phase consisted of solvent A, 0.1% aqueous formic acid and solvent B, 98% acetonitrile with 0.1% formic acid. Peptides were separated on a Kinetex C18 column (150 × 3.0 mm, 2.6 µm) at 300 nL/min, and eluted with a gradient of 5-8% solvent B for 2 min, 8-30% solvent B for 90 min, and followed by 30-80% solvent B for 3 min. For the 5500 QTRAP mass spectrometer, spray voltage of 2100 V, nebulizer gas of 20 p.s.i. and a dwell time of 10 ms were used. Multiple MRM transitions were monitored using unit resolution in both Q1 and Q3 guadrupoles to maximize specificity. Each MRM transition had a minimum dwell time of 10ms. Data analysis was performed using Skyling³. At least one unique peptide per protein was used for quantification. The top three abundant transitions for each peptide were used for quantification unless interference from the matrix was observed. There are three replicates for all MRM analyses. For variation analysis, t-test was used to compare each peptide for significance. Spearman's correlation was used to analyze the correlation between log ratios of the quantitative data from MRM and log ratios of the quantitative data from iTRAQ for 14 target proteins.

REFERENCES

- 1. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.* **72**, 248-254 (1976).
- Van Hiel, M. B. *et al.* Identification and validation of housekeeping genes in brains of the desert locust *Schistocerca gregaria* under different developmental conditions. *BMC Mol. Biol.* **10**, 56 (2009).
- 3. MacLean, B. *et al.* Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. *Bioinformatics* **26**, 966-968 (2010).