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Derivation of the simplified model

We present the derivation of the simplified model that we use and analyze in the main text.

Our starting point is the vegetation model of Gilad et al. [1] that includes three pattern-forming

feedbacks. Using the characteristics of the fairy circles ecosystem, we explain the assumptions

and approximations that allow us to replace the integrals of the root-augmentation feedback with

simpler algebraic terms and to decouple the aboveground water dynamics from the soil-water

and vegetation dynamics.

The dryland vegetation model of Gilad et al. [1] describes the coupled dynamics of the

areal densities of vegetation biomass (B), soil water (W) and surface water (H), all having the

dimension of mass per unit area. The dynamics is described with a temporal resolution that is

smaller than the typical time scale for changes in the biomass (dictated by the biomass growth

rate, mortality and dispersion rate) but is large enough to allow averaging the intermittent nature

of the precipitation. The spatial scale resolution is larger than the scale of a single plant (in order

to allow the description of a continuous vegetation density) but smaller than the typical patch

size. Restricting our interest to flat terrains, the model reads:

BT = GBB(1−B/K)−MB +DB∇2B (1a)

WT = IH −N(1−RB/K)W −GWW +DW∇2W (1b)

HT = P − IH +DH∇2(H2) , (1c)
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where

GB(X, T ) = Λ

∫
Ω

G(X,X′, T )W (X′, T )dX′ (2a)

GW (X, T ) = Γ

∫
Ω

G(X,X′, T )B(X′, T )dX′ (2b)

G(X,X′, T ) =
1

2πS2
0

exp

[
− |X − X′|2

2S2
0(1 + EB(X, T ))2

]
(2c)

I = A
B(X, T ) +Qf

B(X, T ) +Q
(2d)

The terms GB and GW involve integration over a root kernel (G) that represents the spatial

extent of the root zone in the lateral directions. Applying the model to perennial grasses, e.g.

Stipagrostis Ciliata (common in the fairy circle ecosystem), which form patterns with a typical

length scale of 10m [2] and have a root girth of approximately 0.5m [3], allows us to assume

that the kernel function is much narrower than the biomass and soil-water distributions. Under

this condition, we can approximate the kernel by a Dirac delta function. Formally, this is done

by taking the limit S0 → 0 in Eq. 2c, where S0 represents the lateral root-zone size of a seedling.

Following this approximation, we may replace the integrals of Eqs. (2c) by the algebraic forms:

GB(X, T ) = ΛW (X, T )(1 + EB(X, T ))2; (3a)

GW (X, T ) = ΓB(X, T )(1 + EB(X, T ))2. (3b)

The fairy circle ecosystem consists of sandy soil. This soil type is characterized by a high

rate of surface water infiltration that is comparable to the infiltration rate in vegetated soil. To

account for the absence of a significant infiltration contrast between bare and vegetated soil, we

set f = 1. The infiltration rate then becomes a constant, I = A, independent of the biomass

B, and the equation for the surface water variable H decouples from those for B and W . This

equation has a single stationary uniform solution, H0 = P/I , which is always linearly stable.

Since H is the fastest variable, we can assume that, on the much slower time scales over which

B and W significantly change, it has already equilibrated at H0. Inserting the solution H = H0
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into the equation for W , we obtain the two-variable model:

BT = ΛW (X, T )(1 + EB(X, T ))2B(1−B/K)−MB +DB∇2B (4a)

WT = P −N(1−RB/K)W − ΓB(X, T )(1 + EB(X, T ))2W +DW∇2W. (4b)

In the biomass equation, Λ is the biomass growth rate coefficient, K is the maximal standing

biomass, E is a measure for the root-to-shoot ratio, M is the mortality rate, and DB represents

the seed dispersal or clonal growth rate. In the soil-water equation, P is the precipitation rate, N

is the evaporation rate, R is a dimensionless factor representing a reduction of the evaporation

rate due to shading, Γ is the water-uptake rate coefficient, and DW is the effective soil-water

diffusivity in the lateral (X,Y ) directions, assumed to be a constant, independent of the state

variables, that represents linear diffusion[1]. We refer the reader to an earlier publication[1] for

additional information about the original model. The model considered here (Eqs. (4)) predicts,

in addition to the states shown and discussed in the main paper, the appearance of spotted and

patterned states under low precipitation rates as shown in Fig. 1.
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FIG. 1: Patterns predicted by the model for low precipitation rates.

Sensitivity Analysis

In order to test the sensitivity of the results (presented in the main text) to the set of pa-

rameters, we first write the model in a dimensionless form. Thereby, we reduce the number of

parameters and simplify the analysis.
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parameter +10% −10%

λ 0.8913 1.1269

η 1.0179 0.9664

ν 1.0604 0.9404

ρ 1.0183 0.9819

δw 1.0556 0.9413

TABLE I: Relative change in the existence range of the hybrid states (snaking range), due to varied

parameters compared to those used in the main text. In each case, one parameter is changed by either

+10% or −10%, and the relative existence range is shown.
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FIG. 2: The range of precipitation rates, P , for which stable hybrid states exist, as a function of either

DW (left) or E (right).

Equations (4) describe the dynamics of the aboveground biomass (B) and the soil water (W )

in a dimensional form. Translation of the model equations to a dimensionless form is achieved
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FIG. 3: Bifurication graphs for two sets of parameters. On the left panel, DW was changed to 300

[m2/year], while on the right panel, E was changed to 20 [m2/kg]. Uniform states (bare soil and

uniform vegetation) are shown in black, two periodic states are shown in red and green, and the hybrid

states are shown in blue.

by rescaling the state variables B,W and the space and time coordinates as follows:

b =
B

K
;w =

WΛ

KΓ
; t = MT ;x = X

√
M/DB . (5)

In terms of these dimensionless quantities, the model reads:

∂tb = λwb(1 + ηb)2(1− b)− b+∇2b , (6)

∂tw = p− νw(1− ρb)− λwb(1 + ηb)2 + δw∇2w . (7)

The dimensionless parameters here are related to their dimensional counterparts by the follow-

ing relations:

λ =
KΓ

M
; η = EK; p =

ΛP

KΓM
; ν =

N

M
; ρ = R; δw =

DW

DB

. (8)

We are thus left with only six parameters, for which we use p as the main bifurcation param-

eter, and as such, its value changes throughout our analysis. The basis for the main results is
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the existence of stable hybrid states; therefore, we tested the conditions under which they occur

and their existence range (range of precipitation rate, p). We changed the other five parameters,

one at a time, within ±10% of their value. We found that in all cases, the hybrid states exist,

with their existence range slightly changing. The relative changes in their existence range are

shown in Table I.

As can be seen, the parameter λ has the strongest effect on the snaking range. The parameters

η and δw control the pattern-forming feedback in our model [4]. Therefore, we present a more

thorough analysis of their effect on the snaking range. In Fig. 2, we show the snaking range

as a function of either DW (left panel) or E (right panel). Fig. 3 shows two examples of the

bifurcation diagram for a relatively big change in one of these parameters.
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FIG. 4: Histogram of the FCs size in the regions covered by the satellite images that were analyzed.

In addition to the sensitivity of the snaking range to the parameters the size of the gaps and

the distance between neighboring gaps are also affected by the parameters. The histogram of the

FC sizes, in the regions for which the satellite images were analyzed, is shown in Fig. 4. In Fig.

5 we show the average size of the FCs and the average distance between them as predicted by

our model for constant precipitation rate of P = 102[mm/yr] and for a range of the feedback

control parameters Dw and E. It is shown that there is a range of values of these parameters
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FIG. 5: The average gap size and distance between neighboring gaps vs. the parameters Dw (left panel)

and E (right panel) as predicted by the model for constant P = 102[mm/yr].

that correspond to the FCs size observed in the field. The range of possible values for these

parameters, which have not been measured directly in the field, may be estimated from these

graphs.
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FIG. 6: The response of 2D uniform vegetation to periodic short droughts. No regime shift takes place

even though the system is subjected to the same rainfall regime as the hybrid state in figure 4B. The

rainfall regime represents periodic one-year droughts with P = 81[mm/yr], followed by 15 years of

P = 102[mm/yr]. The simulated domains are 60[m]× 56[m].
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Predicted response of uniform vegetation to a series of droughts

In the main paper, we showed that the response of vegetation to a series of droughts or

spates depends on the initial condition. To complement the information we present in Fig. 6 the

response of a uniform vegetation to a series of droughts.
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