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Animal culture and regeneration 

M. lignano was kept in petri dishes with nutrient-enriched f/2 medium (1) and fed 

ad libitum with diatom algae (Nitzschia curvilineata). Climate chamber conditions 

were set at 20°C, 60% humidity and a 14/10 h day/night cycle. For regeneration, 

worms were cut at the post-pharyngeal level in order to completely remove the 

gonads. The anterior part was kept under normal conditions with diatoms. 100 

worms were collected for further processing at 0h, 3h, 6h, 12h, 24h, 48h and 72h 

after cutting.  

 
Sequencing library preparation, DNA and RNA isolation 

For DNA extractions whole worms (M. lignano) – starved for 3 days (to reduce 

diatom contamination from the gut) – or flies (D. melanogaster) were incubated in 

Proteinase K buffer (10 mM Tris·Cl; 25 mM EDTA; 100 mM NaCl; 0.5% SDS, 

pH=8.0) and digested with 1.5ug/ml of Proteinase (K) overnight at 50°C. DNA 

was extracted with phenol and chloroform, precipitated using 70% EtOH and 

resuspended in TE buffer. For Illumina sequencing DNA was sonicated to 

~180bp size using Covaris and the standard manufacturer’s protocol. DNA-Seq 

libraries were prepared using the Ovation Ultralow Library Systems (Nugen) and 

sequenced on the Illumina GAII or Hiseq 2000 (PE100) platforms.  

 

For PacBio sequencing we used 10µg of DNA per library. To ensure good DNA 

quality we ran a pulse-field gel (Pippin Pulse, Sage Sciences) before each library 

preparation. We sheared the DNA to ~10 Kbp using the g-TUBE (Covaris), 

according to the manufacturer's specifications. The libraries were prepared using 

the Pacbio library preparation kit, RS II, according to the manufacturer’s 

instructions. Ligation was extended to 16 hours. Following ligation, we performed 

the size selection (Blue Pippin, Sage Sciences) in 0.75% dye-free agarose and 



0.5X TBE. The selected size was 6-15 Kbp and the equipment was set to resolve 

in 1-100 Kbp size range, according to the manufacturer’s manual. The libraries 

were sequenced using either the p4c2 or p5c3 chemistry and standard run 

parameters. The movie time in each case was set to the longest time possible.  

 

For RNA-Seq libraries 200-400 worms were resuspended in TRIzol reagent 

(Ambion) for RNA extraction according to manufacturer’s instruction. For 

transcriptome assembly 3 Script seg V2 libraries were constructed according to 

manufacturer’s specifications. One library was prepared from total RNA, one 

from rRNA-depleted RNA (Ribo-Gold Epibio, according to the manufacturer’s 

specifications), and one from polyA-selected RNA (Poly(A)Purist MAG kit, Life 

Technologies, according to the manufacturer’s specifications). Two additional 

sequencing libraries were generated using Encore Complete RNA-Seq DR 

Multiplex System according to the manufacturer’s instructions 

 

RNA-Seq libraries for the regeneration studies were generated using the Encore 

Complete RNA-Seq DR Multiplex System according to manufacturer’s 

instructions. Samples were sequenced on Illumina Hiseq 2000 (PE100).  

 

Transcriptome assembly and annotation 

The transcriptome assembly was done using the Trinity package provided by the 

Broad Institute (2, 3), with the following parameters --SS_lib_type FR --

normalize_reads --trimmomatic. The libraries included in the assembly were: total 

RNA prepared from 100 worms, polyA- selected RNA, ribo-depleted RNA (see 

above). 

 

The transcriptome annotation was performed using Trinotate, the Trinity 

annotation pipeline (2). Transcripts were first blasted against SwissProt and 

Uniref90 and then analyzed with HMMER v3.1b2 (http://hmmer.janelia.org/) 

using the Pfam-A hmm. The results were loaded into a sqlite database and 

consolidated by Trinotate.  



 

Alignment of transcripts to the genome was done using BLASTn with an e-value 

cutoff of 1e-5. The best HSPs were filtered using the LIS algorithm to find the 

best non overlapping set for each transcript.  

 

The set of putative miRNAs was established from the small RNA sequencing 

library by selecting sequences that were 22 or 23 nucleotides in length and 

supported by at least 3 reads. The sequences of this size were shown to be 

miRNAs in M.lignano (4). This set was further refined by keeping only those 

sequences that had a BLAST hit in miRBase. This set was then mapped to the 

ML2 genome and the highest scoring HSPs were selected to determine the 

miRNA locations. 

 

 

Genome Assembly 

The Illumina Assembly (ML1) was built using SGA (github 

https://github.com/jts/sga 9/8/14) using 115x coverage of 101bp paired-end 

Illumina HiSeq data. Only contigs that were greater than 200bp in length were 

kept in the final assembly. This cutoff was chosen because is the average length 

of the fragments sequenced in the experiment. The salient parameters used 

were: sga index -a ropebwt --no-reverse; sga correct -k --discard --learn; sga 

index -a ropebwt; sga filter -x 2 --homopolymer-check --low-complexity-check; 

sga fm-merge -m 55; sga index -a ropebwt; sga rm-dup; sga overlap -m 55; sga 

assemble -m 55 -g 0.05 -r 10 

 

Pacbio data was self-corrected using HGAP, obtained from github 

https://github.com/PacificBiosciences/HBAR-DTK on 11/21/14. Only reads 

greater than 10kb were used in the correction process. After correction, reads 

were assembled using the Celera Assembler v8.2beta generating the ML2 

assembly. The salient Celera parameters used for assembly were: frgMinLen = 



5000; ovlErrorRate = 0.03; utgGraphErrorRate = 0.02; ovlMinLen=1500; 

utgGenomeSize = 700000000; unitigger=bogart 

A sample of 81665 contigs from the Illumina assembly (~10%) were aligned to all 

of the contigs in the Pacbio assembly using Mummer v. 3.23. The subprogram 

'nucmer' was run with the flags --maxmatch -l 100 followed by 'dnadiff' on the 

resulting delta file, The pipeline produced a report file containing the per-base 

identity. 

 

In order to exclude the possibility of contamination of our assembly with other 

species (i.e. diatoms) contigs were blasted using BLASTn against the non-

redundant nucleotide database from NCBI. Only hits passing the e-value cutoff of 

1e-10 were kept. Results were then filtered using the LIS algorithm to find the 

best set of hits for each contig. Database hits were then counted, the most 

common match being to Caenorhabditis remanei.  These are likely M. lignano 

sequences that have orthologous sequences in other worms. 

 

Genome Annotation 

Genome annotation was performed using Maker v2.31.8 (Dec 2014). The Trinity 

assembly of the transcriptome (2) was used as the EST dataset and the 

Uniprot_Sprot database was used for the protein homology search. The initial run 

used the est2genome module to predict gene models directly from the transcript 

and protein evidence. Snap was then used to refine the gene models in a 

bootstrap fashion - Maker was run 2 additional times each time supplying the 

updated hmm generated by Snap. 

Transposon analysis 

RepeatScout version 1.0.5 was run on both the Illumina and Pacbio assemblies 

(5). Only repeats that occur at least 10 times in the genome were kept for further 

analysis. Repeats were annotated using a custom non-redundant library from 



NCBI entries (keywords: retrotransposon, transposase, "reverse transcriptase", 

gypsy, copia) obtained from O. Simakov and colleagues. 

K-mer analysis and peak modeling  

A K-mer is a substring of length K. When counting the occurrences of these 

equal length substrings, the choice of K is a trade off between sensitivity and 

specificity. Shorter K are more robust to sequencing error and heterozygosity 

while longer K have a lower chance of occurring by random chance. We chose a 

K size of 23 nucleotides, which is suitable for a genome the size of 

Macrostomum.K-mers were counted in the Illumina data using Jellyfish 

1.1.10 (Marcais and Kingsford 2011) with the -C parameter. Peak modeling was 

performed by fitting a mixture model composed of 4 Poisson distributions and 

calculating their composite in R. 

 

Differential Expression  

Reads were aligned to the transcriptome using RSEM (Li and Dewey 2011) by 

means of the wrapper script provided by Trinity 

abundance_estimates_to_matrix.pl. Differentially expressed genes (FDR 

<=0.001, with a minimum 4-fold change) were identified using DESeq (6). DESeq 

was run using the wrapper script run_DE_analysis.pl with default parameters. 

Heatmaps were generated using the perl script analyze_diff_expr.pl also 

provided by the Trinity package. The clustering methods were left at their default 

values of --gene_clust complete --gene_dist euclidean. 

 

Gene Ontology Analysis 

Gene Ontology terms were summarized from the output of Maker. Biological 

Process terms were extracted from the gff file and counted to find an overall 

estimation of their abundance. 



Analysis of the transcripts conserved between H. sapiens, M. lignano, D. 
melanogaster, S. mediterranea, or C. elegans  
 
Control script (reciprocalblast_allsteps.py) for running reciprocal BLASTp 
search was obtained from Warren et el. (7). Evalue cutoff was set to 1e-10. The 
trascriptomes/proteomes were obtained from: C. elegans (wormbase) 
ftp://ftp.wormbase.org/pub/wormbase/releases/WS247/species/c_elegans/PRJN
A13758/; D. melanogaster (flybase) 
ftp://ftp.flybase.net/genomes/Drosophila_melanogaster/dmel_r6.02_FB2014_05/f
asta/; 
H. sapiens (uniprot) http://www.uniprot.org/help/human_proteome; S. 
mediterrantea form Kao et al.(8).  
 

BAC library preparation and sequencing 

RxBiosciences (http://www.rxbiosciences.com/) constructed the M. lignano 

bacterial artificial chromosome (BAC) library as previously described (9). We 

generated 60,000 BACs with an insert size of ~20 KB and 60,000 BACs with an 

insert size of ~50Kb. We used a modified P[acman] vector 

(http://pacmanfly.org/images/pacman-bw.jpg), where we replaced the Drosophila 

white gene with mCherry driven by an M. lignano-specific Ef1a promoter and 

terminated by an M. lignano 3’UTR (both sequences were provided to us by Dr. 

Eugene Berezikov, University of Groningen). The library was cloned into the 

BamHI restriction site, disrupting the lacZ gene. The library was prepared from 

DNA extracted from 20,000 M. lignano individuals.  

Individual BACs were grown on 96-well plates as previously described (10). DNA 

was extracted using the NucleoBond BAC 100 kit (Clontech) according to 

manufacturer’s protocol. 

In order to test the completeness of our assembly we pooled individual BACs; 2X 

48, 2X 96, 2X 240, and 1X 480 and we sequenced the separate pools using 

Illumina (PE 100). We removed all the reads mapping to the BAC backbone and 



E. coli genome. The remaining reads were mapped to the ML2 assembly using 

Bowtie 2 (v2.2.3).  

Sequence Complexity Analysis 

Sequence complexity was calculated on a per read basis using a previously 

described algorithm (11). If reads were longer than 76 base pairs they were 

truncated to adjust all the samples to the length of the shortest library. A single 

complexity number was calculated for each read and the histograms built on a 

sample of 1 million reads per organism. C. elegans sequencing data is public 

under the SRA run ID SRR1797354. S. mansoni data was obtained from ddbj 

under the accession ERR582487. Human data is from Illumina’s public 

datasource; resequencing of NA12878.  

 

Tandem Repeat Finder masking for low complexity  
1 million short reads were obtained from each organism described in the 

Sequence Complexity Analysis method section. Tandem Repeat Finder (12) 

was run on each sample with the following parameters: 2 7 7 80 10 50 500 -f -d -

m -ngs -h. The percentage of bases masked was divided by the total bases 

found in the sample to get the ratio of low complexity sequence to high 

complexity sequence. 

 

Estimating CpG content 
CpG histograms were built using a previously described method (13). The whole 

genome was binned into windows of 100 bp and scanned in single nucleotide 

steps. Only windows with a GC content of at least 50% were considered. The 

ratio of observed CpG versus expected CpG, CpG[obs/exp] is defined as (Num 

of CpG/(Num of C × Num of G)) × Total number of nucleotides in the sequence 

(Gardiner-Garden and Frommer 1987). As a control [obs/exp] ratios of all 

remaining dinucleotides were calculated using the same method.  

 

Bisulfite genomic DNA sequencing and analysis 



 

M. lignano genomic DNA was sonicated to 200bp fragments in 10mM Tris-HCl, 

pH 8.0 using Covaris S-series and manufacturer’s protocol. 500ng of the 

fragmented DNA was mixed with 2.5 µl 10x T4 DNA ligase buffer with 10mM 

ATP (NEB), 1 µl 10mM dNTPs (Roche), 1 µl T4 DNA polymerase (NEB), 1 µl T4 

PNK (NEB) and 1 µl Taq DNA polymerase (Roche) in a 25 µl reaction for end-

repair and A-tagging. Mix was incubated at 25ºC for 20min followed by 72ºC for 

20min. 1 µl of 25 µM pre-annealed methylated forked Illumina TruSeq adaptor 

with 1 µl T4 DNA ligase (Roche) was added to the mix and brought to a total 

volume of 30 µl before incubation at 25ºC for 15min. The ligated DNA was 

purified by Agencourt AMPure XP beads and bisulfite converted using Zymo EZ 

methylation gold kit following manufacturer’s instructions. Illumina-ready library 

was generated by PCR with annealing temperature of 65ºC using Expand High 

Fidelity Plus PCR system (Roche) for a minimum of 15 cycles. Reads were 

mapped to the ML2 assembly and analyzed as previously described (14).  

 

Immunofluorescence and labeling of S-phase cells 

The polyclonal Macpiwi1 antibody was produced by PrimmBiotech by rabbit 

immunization with peptide RPAPPPGLSAQAG (amino acid positions 44-56). 

Antibodies were purified from serum using synthetic peptides and the sulfolink 

immobilization kit (Thermo Scientific) according to the manufacturer’s instruction. 

Macpiwi1 staining was performed as previously described (Pfister et al. 2008; De 

Mulder et al. 2009). For double staining of S-phase cells and Macpiwi1, worms 

were soaked in 5mM EdU (Life Technologies) for 30min. EdU-positive cells were 

labeled using the click-iT cell reaction buffer kit (Life Technologies) and Alexa 

Fluor 594 azide (Life Technologies) according to the manufacturer’s instruction, 

after secondary antibody reaction. Nuclei were stained with DAPI (5µg/ml) at 

room temperature for 15min. Specimens were mounted with ProLong Gold 

antifade reagent (Life Technologies) for imaging. Images were captured using a 

Zeiss LSM 710 confocal microscope. 

 



S-phase cell sorting 

At least 10,000 worms (after EDU - secondary antibody staining) were collected 

and relaxed in a mix of f/2 and 7.14% MgCl2 (1:1) at room temperature for 10min. 

Relaxed worms were washed in CMFM (88mM NaCl, 1mM KCl, 2.4mM NaHCO3, 

7.5mM Tris-HCl (pH 7.6)) on ice (3*5min). Worms were trypsinized with 1% 

Trypsin in CMFM at 37°C for 20min with agitation. An equal volume of 

maceration solution (glacial acetic acid: glycerol: H2O 1:1:13, 9% sucrose) was 

added, and samples were incubated at room temperature for 1min. Cells were 

spun down at 5,000g, at 4°C for 10min, resuspended in PBS. Cells were blocked 

with 2% BSA on ice for 5min and allowed to recover in 500µl 2% FBS in PBS for 

10min at 4°C. Hoechst (20µg/ml) was added to cell suspensions, and these were 

incubated on ice for 30min. Cells were sorted using an Aria IIU cell sorter (BD 

biosciences) directly into Proteinase K buffer for DNA extraction. 

 

Homeobox survey 
We used the complete homeobox inventories from amphioxus (Branchiostoma 

floriade, Deuterostomia) and the red flour beetle (Tribolium castaneum, 

Protostomia) as queries for a comprehensive and saturated search of the 

transcriptome of M. lignano. The choice of using these species is due to the 

following: (i) their homeobox sequences are less divergent than other members 

of these groups, (ii) they have not undergone whole genome duplication events 

as this precludes precise orthology assignment, and (iii) to recover the maximum 

diversity of homeoboxes as they have the majority of the families well 

represented. The candidate searches implemented BLASTp searches using as 

queries the inventories described above, both outcomes were merged and 

redundancies were removed. Homeodomains were aligned using MAFFT 

(v7.130b, (15)) and visualized using JALVIEW (v.2.8, (16)) to detect regions of 

ambiguity, remove them, and remain with the homeodomain region. This 

alignment was used to produce (i) a neighbour-joining tree (PHYLIP v.3.696, 

(17)) using the evolutionary model, JTT, and 1000 bootstrap replicates and (ii) a 

maximum likelihood phylogenetic inference tree (PhyML v.3.0, (18)) using the 



sequence evolution model, LG+G (gamma = 0.79), using the prediction of the 

BIC criteria from Modelgenerator (v.851, (19)). The positions within the genome 

assembly of each homeobox gene were noted to detect some instances of 

clustering. 

 

Myc Analysis 

Mycs and Maxs gene candidates were retrieved based on reciprocal best 

BLASTp  for Myc helix-loop-helix domain from the available platyhelminthes’ 

sequences, (chordates (Homo sapiens), poriferans (Amphimedon 

queenslandica), ecdyzosoans (Drosophila melanogaster, Caenorhabditis 

elegans, Priapulus caudatus), cnidarians (Hydra vulgaris, Rhabdopleura sp.) and 

other lophothrochozoans (Lottia gigantea , Capitella telleta, Golfingia vulgaris, 

Celebratulus sp.)). In order to catalogue and infer the history the platyhelminthes 

putative candidates of Mycs and Maxs, we performed phylogenetic analysis 

composed of a distance tree inferred using neighbor-joining based on JTT 

sequence evolution model (1000 bootstrap replicates). Human USF proteins with 

similar to Myc helix-loop-helix domain are used as an outgroup. Transcriptomes 

of 24 lophotrochozoan species were assembled from publicly available data 

using Trinity assembler version 2014-07-17 with parameters --SS_lib_type FR  --

trimmomatic. Accession numbers: SRX871300, SRX871445, SRX872404, 

SRX871533, SRX872327, SRX872365, SRX871508, SRX872321, SRX872403, 

SRX872314, SRX883021, SRX872398, SRX872347, SRX872356, SRX872362, 

SRX872414, SRX872416, SRX879690, SRX872410, SRX874324, SRX872402, 

SRX875881, SRX875739, SRX875742. Publicly available Myc and Max 

sequences: myc_pdu GenBank: AGS55451.1; 166474_cte; GenBank: 

ELT88315.1; diminutive_dme, GenBank: ABW87508.1; 88480_lgi GenBank: 

ESO88258.1; MXL3_cel GenBank: CAA94125.1; MXL1_cel GenBank: 

AAB40926.1, Myc2_hvu GenBank: ADA57607.1; 118760_cte GenBank: 

ELT88674.1; max_hsa GenBank: AAH25685.1; max_hvu GenBank: 

ACX32069.1; 133235_lgi GenBank: ESO83519.1; Max_dme GenBank: 



AAL90428.1; max_aqu NCBI Reference Sequence: XP_011402619.1; myc_aqu 

NCBI Reference Sequence: XP_003390966.1; cmyc_hsa GenBank: 

BAG64849.1; nmyc_hsa GenBank: AAA36370.1; lmyc_Hsa GenBank: 

CAA30249.1; mycl_hvu NCBI Reference Sequence: XP_002170328.3, 

mycAl_hvu NCBI Reference Sequence: XP_012556510.1; myc1_hvu GenBank: 

ACX32068.1; USF2_hsa NCBI Reference Sequence: NP_003358.1; USF1_hsa 

NCBI Reference Sequence: NP_001263302.1; 785741_scma GenBank: 

CCD78575.1; 785751_scma GenBank: CCD78574.1; S000209_sma 

SMU15000209 http://smedgd.stowers.org/cgi-

bin/genePage.pl?ref=SMU15000209; S35429_sma SMU15035429 

http://smedgd.stowers.org/cgi-bin/genePage.pl?ref=SMU15035429; Max_pdu 

GenBank: CCK33027.1; Max_dme GenBank: AAL90428.1 

 

SL RNA analysis 
 
Sequences in EST libraries (20) were aligned to the genome using BLASTn. 

Alignments that were split within the first 100bp were selected (to ensure that the 

leader is derived from a different genomic location). The sequence that was 

shared by the majority of these split EST alignments was selected as a candidate 

leader sequence. Putative SL RNA was identified using BLASTn of identified 

Leader sequence, followed by GTAAGNATCG, a sequence conserved in other 

flatworm SL RNAs (21). SL RNAs from different flatworm species were aligned 

using ClustalW (21).  Phylogenetic tree of sequence relationships was generated 

by ClustalW. 

 

 

Supplementary Figure Legends 

Figure S1 



A. Sequence complexity comparison across five organisms. D. melanogaster has 

an abundance of very low complexity sequence not found in the other species. 

M. lignano has a sizable amount of moderately complex sequence that are not 

found in other species and that do not appear to be expressed. B. Different 

populations of dissociated M. lignano cells. Cells were analyzed according to a 

set of criteria including side scatter, forward scatter, Hoechst incorporation (DNA 

dye) and EdU incorporation (marks the DNA of proliferating S-phase cells). 

Different populations are marked. EdU-positive cells (EdU+) are the presumptive 

stem cells. EdU-negative populations divide into Hoechst 4N (Ho+) (Cells that 

entered S-phase before or after EdU treatment) and Hoechst 2N (Ho-) – enriched 

in differentiated cells. Cells were sorted based on Hoechst and EdU 

incorporation. C. Tandem Repeat Finder was run on five species to assess their 

low complexity sequence composition. M. lignano had far more bases masked by 

Tandem Repeat Finder than the other organisms in the test set. 

Figure S2 

Histogram of the annotated repeats found by RepeatMasker. GA-Rich repeats 

were the most common repeats found. The frequency was calculated based on 

the number of bases annotated as a particular type of repetitive element. 

Figure S3 

A. Distribution of repeat element sizes. Tandem Repeat Finder was run on six 

genomes and the frequency of each element size was binned. M. lignano has a 

larger number of repetitive elements than other genomes in the sample. The top 

panel depicts the frequency of repetitive elements normalized by genome size. 

The bottom panel has the same information log-transformed to highlight the 

longer elements. B. The repeat unit frequency for 10 random samples of 2.6% of 

the genome. This is compared to the 50 largest contigs which also make up 2.6% 

of the genome (Figure 3). The data is normalized by the total number of repeats 

reported in each region. Repeat distribution is similar throughout the genome. 

 



Figure S4 

A. Whole genome distribution of CpG observed/expected dinucleotides in 

M. lignano. The ratio was computed using a sliding window of 100bp. B. CpG 

dinucleotide ratio observed/expected. Depletion of CpGs is an indication of 

genomic methylation. C. Dinucleotide ratio (observed/expected) for all 

dinucleotides in four species, with known and varying whole genome methylation 

rates.  

Figure S5 

A. A summary of the predicted genomic features of M. lignano. B. Distribution of 

the number of exons per gene. The majority of annotated genes are comprised of 

3 exons. C. Size distribution of the annotated exons. D. Size distribution of the 

annotated genes. 

Figure S6 

Pie chart representation of the relative frequency of elements annotated as 

transposons in the M. lignano genome. 

Figure S7 

A. Assembled transcripts length distribution. The number of transcripts is plotted 

(Log2 scale). B. Gene ontology analysis of M. lignano RNA-Seq libraries 

prepared from whole worms.  

Figure S8 

A. Alignment between first 130nt of Macrostomum lignano’s putative SL RNA 

and SL RNAs from other flatworms. The conserved splice junction is indicated by 

an arrowhead. Spliced leader sequences are labeled in blue. The potential 

initiator AUG (last three nucleotides of the spliced leader) is labeled in green. 

S.med - Schmidtea mediterranea. B. Phylogenetic tree of sequence relationships 



of flatworm SL RNAs generated by ClustalW. This is a neighbor-joining tree 

without distance correlations. 

Figure S9 

A. The number of reciprocal blast hits between the M. lignano and S. 

mediterranea translated transcriptomes. Only the hits passing the E-value cutoff 

of ≤1e-10 were counted B. The number of reciprocal blast hits against the 

H. sapiens transcriptome for four different species. Only the hits passing the E-

value cutoff of ≤1e-10 were counted. 

 

Figure S10 

A. A diagram representing transcripts that were found in H. sapiens as well as in 

one, two, three, or all of the other species analyzed. Reciprocal blast found 

10427 H. sapiens genes that were present in at least one of the 4 species 

analyzed. 1747 genes were present in all four species analyzed.  B. Gene 

ontology analysis of the 1949 genes shared with H. sapiens that were found in 

M. lignano, but neither in D. melanogaster nor C. elegans. The selected 

ontologies were: molecular function, biological process, and protein class. 

Figure S11 

Known pluripotency pathways from H. sapiens and M. musculus were adapted 

from the Kyoto Encyclopedia of Genes and Genomes (22, 23) 

(http://www.genome.jp/kegg-bin/show_pathway?hsa04550). Factors that had 

potential homologues in M. lignano are labeled. 

Figure S12 
 
Evolution of the of Myc and Max gene families across different representatives of 

the animal phyla. Mycs and Maxs gene candidates are retrieved based on 

reciprocal best BLASTp from the available transcriptomes.  The distance tree 



was inferred using neighbor-joining based on JTT sequence evolution model 

(1000 bootstrap replicates). Human USF proteins are used as an outgroup. The 

Myc branch is labeled in green, the Max branch is labeled in blue. dme – 

Drosophila melanogaster,  hsa – Homo sapiens, lgi – Lottia gigantea, cte – 

Capitella teleta, hvu – Hydra vulgaris, aqu – Amphimedon queenslandica, cel – 

Caenorhabditis elegans, mli – Macrostomum lignano, mfu – Microdalyellia fusca, 

mosp – Monocelis sp., psi – Prosthiostomum siphunculus, ltr – Leptoplana 

tremellaris, ece – Echinoplana celerrima, meli – Mesostoma lingua , msc – 

Microdalyella schmidtii, mili – Microstomum lineare, nco – Nematoplana 

coelogynoporoides, rsp – Rhabdopleura sp., gvu – Golfingia vulgaris, csp – 

Cerebratulus sp., pca – Priapulus caudatus, sst – Stenostomum sthenum, cle – 

Catenula lemnae, pdu – Platynereis dumerilli, sma – Schmidtea mediterranea, 

scma – Schistosoma mansoni. Transcript ID is next to each phylum name. For 

phylogenetic reference see Egger et al. (24). 

Figure S13 
 
Homeobox gene diversity observed in M. lignano in a comparative context with 

Tribolium castaneum and Branchiostoma floridae homeobox complements. 

Phylogenetic analysis is a distance tree inferred using neighbor-joining with a 

JTT sequence evolution model using the homeodomain sequences (60 

aminoacids) from M. lignano. Gene classes are indicated by different branch 

colors and genes with no associated classes are colored in grey. M. lignano 

genes are colored in red. As one could observe there are some classes that are 

not recovered as monophyletic groups however the majority of the families within 

the classes are shown to be monophyletic. As no branch support values are 

shown in here, this tree should be used only to show the diversity of 

homeodomain sequences. 

Figure S14 



Classification of all M. lignano homeodomain genes using phylogenetic analysis 

with branch support values using Tribolium castaneum and Branchiostoma 

floridae homeodomain complements using the homeodomain sequences (60 

aminoacids) from M. lignano. This phylogenetic analysis is an aggregation of the 

support values of the branches inferred upon neighbor-joining with a JTT 

sequence evolution model (1000 bootstrap replicates) and maximum likelihood 

LG+G (gamma=0.79). Black asterisks denote branch support based on bootstrap 

over 70% and blue asterisks denote branch support based on SH-like aLRT over 

80%. Gene classes are indicated by different branch colors and genes with no 

associated classes have grey branches. M. lignano genes are colored in red. 

Majority of the gene families are well supported allowing classifying these 

homeodomains into bona-fide families.  

 Figure S15 

Schematic representation of the experimental design: 200 worms (per replicate) 

underwent amputation at a level between the brain and the gonads. The heads 

were allowed to regenerate, and regenerating animals were collected at different 

timepoints post amputation (0, 3, 6, 12, 24, 48, 72 hours). RNA-Seq libraries from 

each timepoint were analyzed for differentially expressed genes. At each time 

point cells were immunostained with Macpiwi1 (green) antibody (raised against 

RPAPPPGLSAQAG peptide, PrimmBiotech) and for EdU incorporation (Click-iT, 

EdU imaging kit, Thermofisher) (representing stem cell and dividing cell markers, 

respectively). Nuclei were labeled with DAPI (blue), h - head, rt - regenerating 

posterior segment (tail), asterisks denote eyes. 

Figure S16 

Six synexpression classes of transcripts differentially expressed at different time 

points after tail amputation were generated by DESeq analysis. Two independent 

biological replicates are plotted. Grey lines show transcript abundance at 

different timepoints. 



 
 

 

Supplementary Tables  

Table S1 

Sequence of an abundant 150-mer found in the M. lignano genome 

Table S2 

Sequence of Macrostomum lignano putative spliced leader RNA. The spliced 

leader is labeled in blue. Potential initiator AUG is indicated in bold.  

Table S3 

Homeobox gene localization in Macrostomum lignano genome. Column A) Gene 

family to which the homeobox gene belongs. Column B) Transcript identifier of 

the homeobox gene. Column C) Scaffold where the homeobox gene is located. 

 

Supplementary Datasets  

SI Dataset 1 

Genomic coordinates of the putative DNA-methyltransferase (DNMT) homologs 

found in the M. lignano genome and transcript IDs of the putative Methyl Binding 

Proteins (MBDs) found in the M. lignano transcriptome.  

SI Dataset 2 

The 25 most abundant transcripts annotated as transposons from RNA seq 

libraries prepared from 100 whole worms. IDs and annotations are listed.  

SI Dataset 3 



Analysis of the transcripts conserved between H. sapiens and M. lignano, 

D. melanogaster, S. mediterranea, or C. elegans (one worksheet per 

comparison). Results from reciprocal BLASTp after transcriptome translation. 

Hsa – Homo sapiens, Mlig – Macrostomum lignano, Cel – Caenorhabditis 

elegans, Dmel – Drosophila melanogaster. 

SI Dataset 4 

List of transcripts conserved only between H. sapiens and M. lignano, but not 

between M. lignano and D. melanogaster or C. elegans. Annotations are based 

on BLASTp search of translated transcriptomes.  

SI Dataset 5 

Transcript IDs and annotations of putative homologs of key human and mouse 

pluripotency factors. 

SI Dataset 6 

Differentially expressed transcripts from six different synexpression classes. 

Transcript IDs and annotations, as well as Log2 fold change in expression at  

seven different timepoints in two replicates are shown (one worksheet per class). 
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Table S1. Sequence of an abundant 150-mer found in the M. lignano genome 

	
  

Repeat sequence 
# of bp 
covered 

% of the entire 
genome 

# of contigs 
containing the 

repeat 
TTTTCGAAACGCCTGTGCATGCGC
GAGACTGCTTGGTGTAGTTATTAG
AAGGCAACTGCGCCTCTAGCTTAA
ACCGTGTCTATTTGTCTAAAGAAA
CTGACTGCGTGCAAAATACAAGTG
CACGGAAGCAGAATAACACGCCG

TGAGCGTATTTT 11 Mb 1.57 369 



 
Table S2. Macrostomum lignano putative SL RNA 
 
Putative SL RNA sequence Sequence 

length 
5’GCCGTAAAGACGGTCTCTTACTGCGAAGACTCAATTTATTGCATGCTCAGTAT 
CGACCCAGCTTCATCAAATAAAAGAATGCGAATCGAATATACAGCCGAGCCCGA 
CAACTCGGCACTGTCTGCTCCGTTTATTGTGTACTCAGATGCTGATTTGTTGATT 
TCTAATTCCGATAGTGATAATGTACCCGAATCTGAGAAGCAATTGCTGCCTAATT 
TGTTGGAACAGGGCTGGCTGGTGAGATATTTTCTAAGTAGCACTTTCTAAGTATG 
AACCGTT3’	
  

279 nt 

	
  



Table	
  S3.	
  Homeobox	
  gene	
  localization	
  in	
  Macrostomum	
  lignano	
  genome	
  
	
  
	
  
Gene 
family Transcript ID Scaffold ID 

NK1 c105535_g1_i1 uti_cns_0010298,uti_cns_0015914, uti_cns_0006972 

Barh c69451_g2_i2 uti_cns_0000842, uti_cns_0000521, uti_cns_0000322 

AbdB c45137_g1_i1 uti_cns_0017005, uti_cns_0012343, uti_cns_0011893 
Hox1
A c96574_g2_i6 uti_cns_0019113, uti_cns_0002978 
Hox1
B c96574_g2_i3 uti_cns_0005133, uti_cns_0015616 
Hox1
C c96574_g2_i1 uti_cns_0004142, uti_cns_0019113, uti_cns_0002978 

Hox3 c88646_g1_i2 unitig_9280, uti_cns_0008583, uti_cns_0005254, uti_cns_0004013 
Hox6-
8 c72978_g3_i1 uti_cns_0006754, uti_cns_0005919, uti_cns_0001747 

Mnx c46612_g1_i1 uti_cns_0046004, uti_cns_0046039, uti_cns_0000322, uti_cns_0046038 

Mox c72821_g1_i1 uti_cns_0002595 

Dlx c52228_g2_i1 

uti_cns_0006526, unitig_44276, uti_cns_0020363, uti_cns_0018478, 
unitig_26478, uti_cns_0012561, uti_cns_0019380, uti_cns_0005922, 
unitig_21520, unitig_20458 

NK6 c73067_g2_i1 
uti_cns_0015575, uti_cns_0005742, uti_cns_0047200, uti_cns_0011175, 
uti_cns_0000855 

Nk2.1
A c96574_g2_i5 

uti_cns_0007608, uti_cns_0004779, uti_cns_0002758, uti_cns_0014120, 
uti_cns_0047531, unitig_43096, uti_cns_0015353 

Nk2.1
B c96574_g2_i4 

uti_cns_0007608, uti_cns_0004779, uti_cns_0002758, uti_cns_0014120, 
uti_cns_0015353 

NK2.2
A c5173_g1_i1 

uti_cns_0015282, unitig_1446, uti_cns_0010045, uti_cns_0005451, 
uti_cns_0009925 

NK2.2
B c70639_g2_i1 

unitig_1446, uti_cns_0000473, uti_cns_0015282, uti_cns_0010045, 
uti_cns_0009925, uti_cns_0005451 

NK2.2
C c70639_g1_i1 

unitig_1446, uti_cns_0000473, uti_cns_0015282, uti_cns_0010045, 
uti_cns_0009925, uti_cns_0005451 

Dbx c70882_g1_i1 uti_cns_0008573, uti_cns_0015274, uti_cns_0001045 

Lbx c95603_g6_i1 uti_cns_0002945, uti_cns_0002173, uti_cns_0003087 

Evx c67516_g1_i2 uti_cns_0007714, uti_cns_0006606 

CdxA c90244_g2_i1 uti_cns_0045842, uti_cns_0001195, uti_cns_0015309, uti_cns_0014346 

CdxB c98507_g2_i3 
uti_cns_0014346, uti_cns_0004813, uti_cns_0012706, uti_cns_0045872, 
uti_cns_0045842, uti_cns_0001195, uti_cns_0015309 

Phox c6079_g1_i1 
uti_cns_0001095, uti_cns_0010675, unitig_43241, uti_cns_0000622, 
uti_cns_0000695, uti_cns_0002425 

Hbn c28718_g1_i1 
uti_cns_0016694, uti_cns_0008099, uti_cns_0003228, uti_cns_0046592, 
uti_cns_0000500, uti_cns_0001334 

Prrx c77097_g2_i1 unitig_11652, uti_cns_0049053, uti_cns_0048959, unitig_28355 

Otx c69274_g2_i3 
uti_cns_0014992, uti_cns_0000361, uti_cns_0000324, uti_cns_0010582, 
uti_cns_0013964, uti_cns_0011381, uti_cns_0017607, uti_cns_0003136, 

Pitx c91337_g3_i3 uti_cns_0015271, uti_cns_0007372, uti_cns_0006726 

Isl c67586_g2_i2 

uti_cns_0000848, uti_cns_0046165, uti_cns_0004103, uti_cns_0000491, 
uti_cns_0003421, unitig_42300, unitig_19646, uti_cns_0003919, 
uti_cns_0012499 

Zfhx c110639_g1_i1 uti_cns_0006803, uti_cns_0015968, uti_cns_0011950, unitig_42974 



POU4 c119645_g1_i1 
uti_cns_0010869, uti_cns_0008027, unitig_25277, unitig_6057, 
uti_cns_0048108, uti_cns_0007852 

POU6 c19464_g1_i1 uti_cns_0008028, uti_cns_0007843, uti_cns_0005053, uti_cns_0046235, 

Six3/6 c91070_g2_i1 

uti_cns_0017479, unitig_40733, uti_cns_0045711, unitig_29385, 
uti_cns_0015916, uti_cns_0014557, uti_cns_0013523, uti_cns_0016673, 
uti_cns_0045710, uti_cns_0000288, uti_cns_0000539 

IrxA c23130_g1_i1 
uti_cns_0011437, uti_cns_0000129, uti_cns_0001112, unitig_22191, 
unitig_30688, unitig_26789, unitig_39949 

IrxB c31631_g1_i1 
unitig_22191, uti_cns_0011437, uti_cns_0001112, uti_cns_0000129, 
unitig_30688, uti_cns_0010873, uti_cns_0003580 

IrxC c25448_g1_i1 uti_cns_0018966, uti_cns_0016154, uti_cns_0016905, uti_cns_0008098 

IrxD c40553_g1_i1 

uti_cns_0000129, unitig_22191, uti_cns_0011437, uti_cns_0001112, 
unitig_30688, uti_cns_0018966, unitig_39949, uti_cns_0016154, 
uti_cns_0016905, uti_cns_0008098 

IrxE c52568_g1_i1 uti_cns_0047159, uti_cns_0000491 

MeisA c119444_g1_i1 uti_cns_0005222,uti_cns_0003580, 

MeisB c95914_g6_i2 uti_cns_0005222, uti_cns_0003580 

MeisC c95605_g1_i1 uti_cns_0005222, uti_cns_0003580 
Pknox
A c21802_g1_i1 uti_cns_0007214, uti_cns_0045779 
Pknox
B c87910_g1_i2 uti_cns_0005416, uti_cns_0003530, 
Exd/P
bx c95819_g4_i1 

uti_cns_0001820, uti_cns_0046527, uti_cns_0046098, uti_cns_0000370, 
uti_cns_0004945, uti_cns_0001083 

Cux c98994_g5_i2 uti_cns_0047989, uti_cns_0047990, uti_cns_0048022, uti_cns_0003933 
Onec
ut c82826_g1_i1 uti_cns_0007903, uti_cns_0007101, uti_cns_0046589 

Cers c84636_g1_i2 uti_cns_0006228 

Six4/5 c115999_g1_i1 

unitig_31168, uti_cns_0002637, uti_cns_0045438, uti_cns_0003263, 
unitig_20335, unitig_35453, uti_cns_0013307, uti_cns_0005718, 
uti_cns_0010333 

Pros c37734_g1_i1 uti_cns_0012883, uti_cns_0010764, uti_cns_0009012, 

Pax6 c97812_g1_i1 
uti_cns_0015886, uti_cns_0013927, uti_cns_0013738, uti_cns_0004692, 
uti_cns_0013395 
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Supplementary Figure 8

 
 
Stephanostomum sp.      -ACC----TATACGGTT---CTCT-GCCGTGTA------TATTAGT-C-ATGGT-AAGAA  
Haematolechus sp.       -ACC----TATACGGTT---CTCT-GCCGTGTA------TCAGTG--C-ATGGT-AAGAA  
Fasciola sp.           AACC----TTAACGGTT---CTCTTGCCCTGTA------TATTAGTGC-ATGGTAAAGAA  
S.mansoni            AACC----GTCACGGTT---TTAC--TCTTGTG------ATTTGTTGC-ATGGT-AAGAA  

Echinococcus sp.       CACCG--TTAATCGGTC---CTTA--CCTTGCA------ATTTTGT---ATGGT-GAGTA  
M.lignano                -GCCG--TAAAGACGGT---CTCTTACTGCGAAGACTCAATTTATTGC-ATGCT-CAGTA  
S.med SL1               -GCCG--TTAGACGGTC---TTATCGAAATCTATAT---AAATCTTAT-ATGGT-ACGGA  
S.med SL2              -GCCG--TTAGACGGTC---TTATCGAAATCTATAT---AAAAATTAT-ATGGT-GAGGA  
Stylochus sp.          TGCCGTATTTGACGGTCTCAAAAATTTCGTGTTTATTGCAATAATTGCAATGGT-AAGCA  
Notoplana sp.          TGCCGTATTTGACGGTCTCAAAAATTTCGTGTTTATTGCAATAATTGCAATGGT-AAGCA  
                     .**     :  . *      :                 : :       *** *  .* * 
 
Stephanostomum sp.    TCGAA-----TTCGAC------CTATGGTCGAATAA-ATTCTTTGGCTAG-CCTCT----  
Haematolechus sp.         TCGAG-----TTCGACTCACATCGTTGGTCGAATAAGATTATTTGGCTAG-CCTCCACTC  
Fasciola sp.           TCG-------TTGGAC------CATCGGTCCAAACCCATTATTTGGCTAG-CCTCCATTC  
S.mansoni            CCG--------TCGAC------CAAGAATCGAAGTT--TTCTTTGGCAGC-CCTAACACA  
Echinococcus sp.       TCGATGCAGCTCAGGCTG-TGCCTACGGAGCTGACCCAGTATTTGGCTGGTCCTT-----  
M.lignano             TCGACCCAGCTTCATCAAAT-AAAAGAATGCGAATCGAATATACAGCCGAGCCCGACAAC  
S.med SL1            CCG--------TTATC------CAACATTAGTTGGTTAATTTTTGACAGTCACTTGAATC  
S.med SL2            CCG--------TTTGC------CAGCATTAGTTGGCTAATTTTTGACAGTAGCTTGCAT-  
Stylochus sp.          TCAAAT-------GAT------CCAGTGTGATCGTCGAGTCTTTG--ACAGGCCG-----  
Notoplana sp.          TCAAA--------GAT------CCA-TGTGATCGTCGAGTCTTTGACACAGGCCG-----  
                     *.                   .     :          * *: .       *        
 
Stephanostomum sp.     ---TCGGGGGCTAA------ 96 
Haematolechus sp.      TGGTCGGGGGCTA------- 108 
Fasciola sp.           TG--CAGAGGCTAAGAATCC 110 
S.mansoni           ----CGGGG----------- 91 
Echinococcus sp.        ----CGAGGGCC-------- 105 
M.lignano             TCGGCACTGTCTGCTCCGC- 130 
S.med SL1               --ACAAGTGACTAT------ 107 
S.med SL2             --GCAAGTGACTAT------ 106 
Stylochus sp.           ----CGAGGCCTATAT---- 111 
Notoplana sp.           ----CAAGGCCTATTT---- 111 
                        ..  *            
 

Stephanostomum sp.     
Haematolechus sp.
Fasciola sp.
Echinococcus sp.
M. lignano
S. mansoni
S. mediterranea SL1
S. mediterranea SL2
Stylochus sp.
Notoplana sp.

A

B
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Transcriptome Reciprocal BLAST hits 
against Homo sapiens 

M. lignano 5347

C. elegans 4680

D. melanogaster 5775

S. mediterranea 5410

A B

621721,014 44,718

Schmidtea 
mediterranea

Macrostomum 
lignano
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