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1 Signal flow
The silicon retina [1] is a detector of dynamic contrast: it continuously measures
at every pixel location changes in luminosity contrast and encodes them into
output firing rate of the its corresponding neurons. It is frameless and asyn-
chronous: it does not sample frames, but outputs digital event asynchronously
in time, depending on the local events of changing contrast, and it uses for this
the AER bus, a de facto standard for the communication infrastructure of neu-
romorphic devices. A moving object on a static background induces high firing
rates for retina neurons affected by the moving contours of the object, and very
low rates (noise) for neurons stimulated by the static background. There are
two neurons associated to each pixel, activated by on-off and off-on luminosity
transitions respectively. In our experiments we lump together the two, and only
use information on the transition event. The silicon retina is positioned in front
of an LCD screen that we used to display visual objects. The refresh rate of the
LCD screen is 50Hz. For the purpose of mapping retina’s output to the input of
the neurons in the recurrent network, the 16k retina pixels have been grouped
into a grid of 14x14 macro-pixels, each containing 81 retina pixels; the spike
trains generated by all pixels in one macro-pixel converge to 40 synapses on the
dendritic tree of a single excitatory neuron on the chip). Retina pixels can be
spontaneously active and emit bursts at few hundreds Hertz. Grouping pixels
in macro-pixels, besides being necessary to establish a correspondence between
retina and neural chips, serves the purpose of averaging out such high-frequency
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sparse retina noise (see Fig. 1). The visual object displayed on the screen ex-
cites groups of retina pixels slightly smaller than a macro-pixel (see Fig. 1), to
allow for small alignment mismatch between retina and LCD screen.
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Figure 1: A flickering input displayed on the LCD screen in front of the retina. B
Retina pixel activity accumulated over half a second. Colors encode mean firing rates
(Hz). Noisy activity from non-stimulated pixels as well as non-homogeneous activity
of stimulated pixels are visible. C macro-pixels activity obtained by grouping together
the activity of single pixels. It represents the input to the excitatory neurons of the
network. D Activity induced in the excitatory population of the network.

In order to match the displayed stimuli to the sensitivity of the retina to
dynamic contrast, we made them artificially ‘dynamic’. Every single screen
pixel can be black or white and it is stochastically updated at every LCD frame
with a fixed tunable probability of being white: quickly flickering pixels will
elicit stronger retina response; tuning such probability allows a good trade-
off between a bad retina signal/noise ratio (slow flickering) and fast flickering
saturating the retina response, and also loading excessively the AER bus.

2 Theory-inspired tools to control the neuromor-
phic system

The parameter space of the system is large, and theory should be used to identify
regions in such space where the system is able to generate the desired behavior.
However, it is often the case that the logically simple route, of tuning biases
to precisely match the parameters entering the theoretical model to the corre-
sponding quantities in the circuital embodiment, leads to unsatisfying results or
is exceedingly complex. This is so for the many reasons for which the hypothe-
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ses underlying the theoretical model do not hold for the silicon network (such
as the diffusion approximation). Furthermore, at the lower level, it is clear that
the real dynamics of the circuit implementing an element of the model, such
as the membrane potential and its dynamics, can only crudely approximate the
corresponding equations in the model. It is therefore appealing to use theory as
an inspiration to devise a strategy that carries over to the chip, where it is self-
consistently applied; in the next section such considerations are made concrete.
Achieving such a dynamic ‘system identification’ of the silicon network, predic-
tive of its response to varying stimuli and needed to control it, is important to
bring the neuromorphic system to the level of ‘neurophysiology on silicon’ we
aim at.

2.1 Single neuron transfer function
The first step we take is to characterize the non-linear response of the single
silicon neuron, which we do by measuring its ‘transfer function’, i.e. the output
firing rate of the neuron as a function of its input νout = φ(νin). Assuming that
the neuron’s input is noisy (which is the case because the input from the retina
is noisy, because of the quenched noise in the connectivity and because of the
circuital mismatches), the output firing of the neuron will not only depend on the
average input but also on its fluctuation, such that noise-driven firing is possible
even when the average input is below threshold. The measured transfer function
is shown in Fig. 2. The dependence of the transfer function on the input mean
and variance is in qualitative agreement with the theoretical predictions from
the diffusion approximation, and it could be controlled so as to ensure a good
sensitivity for the relevant dynamic range of the retina activity, and to have
neurons’ output firing rates compatible with a sensible spike-driven dynamics
of plastic synapses. Neural parameters (see Caption of Fig. 2) were chosen by
fitting the theoretical expression for φ, given the independently measured values
of the synaptic efficacies. The absolute refractory period of the neurons have
been tuned to 1.57 ± 0.14ms while the value of the constant leakage current
has been set to 10.5 ± 2.8 in units of θ − H, where θ is the spiking threshold
and H is the reset potential. All the synaptic efficacies and their distribution
across the chips have been measured using a protocol described in [2] based
on neuronal response to known input stimuli. The dispersion in the values of
synaptic efficacies was found to be roughly 50% of their average, due to mismatch
in the synaptic circuits. The mapping from macro-pixels to the 40 synapses per
neuron was also effective in averaging out such mismatch effects. Synapses from
the retina to the excitatory population have efficacy JExcRet

pot = 0.075 ± 0.038.
Recurrent depressed synapses within the excitatory population are set to have
efficacy JExcExc

dep = 0, while the efficacy of potentiated recurrent synapses is
JExcExc
pot = 0.135 ± 0.071. Same efficacy for the excitatory synapses connecting

the Retina to the inhibitory neurons. Inhibitory connections have a synaptic
efficacy JInhExc

pot = 0.108± 0.053. All the values are given in the form of mean ±
standard deviation.

Figure 2 shows the single-neuron transfer function 〈φ(νin)〉 averaged over 20
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neurons. The stimuli for this measure were poisson synthetic spikes trains via
the PCI-AER board.
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Figure 2: Single neuron transfer function. Single-neuron transfer function
〈φ(νin)〉 averaged over 20 neurons randomly distributed over the two different de-
vices. The input signal is provided by the computer and it consists of a Poisson spike
train of mean νin. Error bars represent the SD of the distributions.

2.2 Feedback gain of the network
The input-output response function of the network will depend on the one
of single neurons, and on the massive feedback implemented by the recurrent
synapses; since the latter change as learning proceeds, so will the network re-
sponse function, and it is intuitive that the more learning increases the self-
excitability of the network, the more its response function will be non-linear.
In the scenario of autonomous learning we focus on, the intertwined dynamics
of neurons and plastic synapses can therefore be compactly seen as a dynamic
shaping of the network response function as a result of the flow of stimuli.

For fixed strength of the synaptic couplings, in the mean field approximation
(i.e. assuming that all neurons in a homogeneous population share the same
statistical properties – mean and variance – of their input) the average firing
rate of the stationary states of the system are the solution of the self-consistency
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Figure 3: Effective Transfer Function. Panel A shows the expected structure
of the connectivity at the end of a successful learning trajectory, the thickness of
the arrows stands for the strength of the connection. Panel B reports the modified
architecture for the measure of the effective transfer function. The population Ext is a
replica of the happy population and is simulated on the external PC. Panel C reports
the transfer function for increasing level of potentiation in the synapses connecting Ext
to happy, thus emulating an increasing level of self-excitation for happy. On the x-axis
we plot the mean input frequency νin exciting the happy population, on the y-axis the
average frequency νout at which the happy relaxes. The intersections between the
measured curves and the line νin = νout are the predicted fixed points of the network
dynamics.

equations [3]: ~ν = ~φ(~ν, ~νstim) (where the elements of ~ν are the average firing
rates of all the interacting populations, and νstimi is the firing rate encoding
the visual stimulus and affecting population i). The solution(s) of the mean
field equations identify global, simultaneously stable, state(s) of equilibrium
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of the network, in which the firing rates of the different neural populations
fluctuate (because of finite-size effects) around the found solutions; external
stimuli (or fluctuation) can provoke transitions between such states, which are
then stimulus-dependent attractors of the dynamics (i.e. each one of them is
the end-point of the dynamics, up to fluctuations, for initial conditions close
enough to it).

In general the network will include several interacting populations, and get-
ting insight into the dependence of the mean field solutions on the relevant
parameters is in general difficult; one convenient approach is to devise an effec-
tive, low-dimensional representation of the mean field vector equation, as was
done in [4].

In this approach (assuming for example that we seek a 1-dimensional mean
field representation) the mean-field solutions for a multi-population network are
found with the firing rate of one population i of interest held fixed at νini , and the
stationary states for other populations are found, driving in turn the population
of interest to a new average firing rate νouti ; the procedure is iterated sweeping
values of νini , and the result is a one-dimensional νout = νout(νin, νstim): the
Effective Transfer Function, ETF representation of the transfer function for the
population of interest, taking into account its interaction with all the others.
The method predicts for the firing rate of the stationary states the same values
that would be obtained by directing solving the vector mean field equation, while
it offers an approximate description of the (mean field) relaxation dynamics to
the stable stationary states, the quality of which depends on the typical time
scales of the dynamics for the different neural populations.

Consistently with our approach discussed above, we do not strive to obtain
a good quantitative match between mean-field calculations and the chip be-
haviour, since it would be subject to several unwarranted assumptions. Rather,
we introduced in [5] a procedure to directly implement on chip an estimate of
the ETF, which is an on-chip embodiment of the iterative mean field procedure
just described.

Panel A of Fig. 3 shows the pattern of connectivity expected in the network
at the end of learning: through learning the initial homogeneous excitatory pop-
ulation of neurons is expected to split into three sub-populations, one reacting
to the input visual stimulus "happy", one selective to "sad" and one not react-
ing to any inputs, we named it the background ("bkg") sub-population. Since
we know a-priori the shape of the visual stimuli and the topology of the connec-
tivity from the retina to the excitatory neurons, we can approximately predict
the number of neurons that will be part of every sub-population. We note here
that this knowledge does not guarantee a successful learning trajectory leading
to a robust associative memory. To tune the synaptic parameters such that a
successful learning would be possible, we measured, before learning, the ETF
for the "happy" sub-population using the architecture depicted in Fig. 3, panel
B. During the measurement the synaptic plasticity is disabled and we impose
by hand which portion of the synapses is potentiated. To measure the ETF
for the "happy" sub-population we cut all the excitatory-to-excitatory recur-
rent synapses (note the scissors in the figure) by configuring them as ‘AER’
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synapses accepting input from an external virtual replica of "happy" itself. All
the other synaptic connections are left unmodified. The virtual replica is de-
fined on the PC controlling the PCI-AER board [6]; for each virtual neuron, the
excitatory AER synapses to the neurons of the "happy" sub-population on chip
duplicate the original recurrent synapses.

Synthetic spike trains with a prescribed firing rate are input from the vir-
tual neurons to the chip through the Sequencer of the PCI-AER board, thus
provoking the whole network on chip to settle to a new equilibrium state. A
range of input firing rates (νin) on the population in focus is covered; for each of
them the firing rate (νout) to which the population in focus relaxes as a result
of the interaction with the other populations is recorded, thus constructing the
estimated ETF.

Fig. 3, panel C, illustrates the result: The ETF is plotted for one excitatory
sub-population, for different values of the average strength of the feedback ex-
citatory synapses (i.e. for different fraction of potentiated synapses); the firing
rates of stationary states are given by the intersection between the ETF and
the νin = νout dotted line: either one stable solution or two stable solutions.
It is seen that, as expected from the theory, the non-linearity of the ETF mea-
sured on chip increases as self-excitation increases, up to the point where there
is an abrupt transition between one to two stable stationary states (a bifur-
cation in the corresponding deterministic dynamical system). The sequence of
ETF curves reported in figure can be seen as a qualitative anticipation of the
expected shaping of the network transfer function during learning, as it induces
stimulus-selective synaptic strengthening.

3 synaptic model
The synaptic circuit was designed after [7], as described in [2]. The instanta-
neous state of the synapses is defined by an internal continuous variable X(t),
which is subject to change upon the arrival of a pre-synaptic spike, depending
on the current value of the post-synaptic membrane potential V : X undergoes
an upward (downward) jump J+ (J−) if V is found to be above (below) a thresh-
old θv; between subsequent pre-synaptic spikes X(t) drifts towards an upper or
lower bound (chosen to be 1 and 0 respectively) depending on its value being
above or below a threshold θx. The synaptic efficacy is determined at any time
by the condition X(t) > θx → J = Jpot - X(t) < θx → J = Jdep. Changes in
the synaptic efficacies then occur whenever X(t) crosses the threshold θx.

X(t)→ X(t) + J+ if Vpost > θv (1)
X(t)→ X(t)− J− if Vpost ≤ θv (2)

J+, J− are positive constants. A drift terms drives X(t) toward 0 or 1,
depending whether X(t) is above or below θx:
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dX(t)

dt
= αup if X(t) > θx (3)

dX(t)

dt
= −αdw if X(t) ≤ θx (4)

References
[1] Lichtsteiner, P., Posch, C., Delbruck, T. A 128x128, 120 dB 15 micro s

Latency Asynchronous Temporal Contrast Vision Sensor. IEEE Journal of
Solid State Circuits (43):566-576 (2008).

[2] Giulioni, M., Pannunzi, M., Badoni, D., Dante, V., Del Giudice, P. Classi-
fication of correlated patterns with a configurable analog VLSI neural net-
work of spiking neurons and self-regulating plastic synapses. Neural Com-
put. 21(11):3106-3129, (2009).

[3] Renart, A., Brunel, N., Wang, X-J. Mean-Field Theory of Irregularly Spik-
ing Neuronal Populations and Working Memory in Recurrent Networks, in
Computational neuroscience: A comprehensive approach 431-490 (2004).

[4] Mascaro, M., Amit, D.J. Effective neural response function for collective
population states, Network: Computation in Neural Systems 10(4):351-373
(1999).

[5] Giulioni, M. et al. Robust working memory in an asynchronously spiking
neural network realized in neuromorphic VLSI. Frontiers in Neuroscience,
5 doi:10.3389/fnins.2011.00149 (2012).

[6] Dante, V., Del Giudice, P., Whatley, A.M., PCI-AER - Hardware and
Software for Interfacing to Address-Event Based Neuromorphic Systems,
The Neuromorphic Engineer 2:5-6 (2005).

[7] Fusi, S., Annunziato, M., Badoni, D., Salamon, A., Amit, D. J. Spike-driven
synaptic plasticity: theory, simulation, VLSI implementation. Neural Com-
put. 12(10):2227-2258 (2000).

8


