#### Appendix

# Characterisation of the Cullin-3 mutation that causes a severe form of familial hypertension and hyperkalaemia

Frances-Rose Schumacher<sup>1\*</sup>, Keith Siew<sup>2\*</sup>, Jinwei Zhang<sup>1</sup>, Clare Johnson<sup>1</sup>, Nicola Wood<sup>1</sup>, Sarah E Cleary<sup>2</sup>, Raya S Al Maskari<sup>2</sup>, James T Ferryman<sup>2</sup>, Iris Hardege<sup>2</sup>, Yasmin<sup>2</sup>, Nichola L Figg<sup>3</sup>, Radoslav Enchev<sup>4</sup>, Axel Knebel<sup>1</sup>, Kevin M O'Shaughnessy<sup>2</sup> and Thimo Kurz<sup>1</sup>

 <sup>1</sup> MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD15EH, Scotland, UK.
<sup>2</sup> Divisions of Experimental Medicine and Immunotherapeutics and <sup>3</sup> Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge CB2 2QQ, UK.

<sup>4</sup> Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, CH-8093 Zürich, Switzerland

Content:

Appendix Figure S1 Appendix Figure S2 Appendix Figure S3 Appendix Figure S4 Appendix Figure S5 Appendix Figure S6 Appendix Table S1

#### Appendix Figure S1.

**A.** Residues encoded for by exon-9 mRNA of Cullin3 are conserved in Cullin1. A Clustal-Omega alignment of full length Cullin1 and Cullin3 was performed, the region shown equates to that encoded by exon-9 mRNA in Cullin3 and highlights the similarity between these two proteins at this region. **B.** Structural model of CUL3<sup>WT</sup> (upper) and CUL3<sup>Δ403-459</sup> (lower) made based on the structure of full length Cullin1 (1LDK) using Chimera (see methods). The NTD is coloured mauve, the CTD is coloured cyan and the region deleted in CUL3<sup>Δ403-459</sup> is coloured grey in the CUL3<sup>WT</sup> model.

#### Appendix Figure S2.

In vitro ubiquitylation assays as described in Figure 1-3.

**A.** The entire coomassie SDS PAGE (uncropped) are shown in this figure, along with additional reactions to support those in the main document. **B.** Entire coomassie stained SDS PAGE of Figure 1E in main text. As described in Figure 1H, cell lines over-expressing either FLAG-CUL3<sup>WT</sup> or FLAG-CUL3<sup>Δ403-459</sup> were immunoprecipatated with M2 (anti-FLAG) resin. Input: Cellular extract IP: Immunoprecipated protein sample. Unbound: Protein remaining in extract following IP.

**C.** Coomassie SDS PAGE of reactions immunoblotted for and shown in Figure 2A.

**D.** Entire coomassie stained gel of Figure 2B.

**E.** Full commassie SDS PAGE of reactions immunoblotted for and shown in Figure 3A.

#### Appendix Figure S3.

The knockout strategy of exon 9 of endogenous Cullin3. The endogenous allele is represented and the target allele with the puromycin cassette (PuroR) removed by Flp recombinase. The black rectangles represent exons and the flippase-recognition target (FRT) sites are indicated.

#### Appendix Figure S4.

**A.** Illustrative side-by-side size comparisons of male and female  $CUL3^{WT/\Delta403-}$ <sup>459</sup> and  $CUL3^{WT}$  littermates. Scale bar = 2cm.

**B.** CUL3<sup>WT/ $\Delta 403.459$ </sup> exhibit features of growth retardation when compared with CUL3WT mice. The CUL3WT/ $\Delta 403.459$  have lower body weight (male: \* P=0.0128 // female: \*\*\* P=3.3x10<sup>-5</sup>) and length [measured nose-to-anus] (male: \*\*\* P=0.0002 // female: \*\*\* P=0.0009), although with no changes in proportionality as measured by tail-to-body ratio (male: P=0.1654 // female P=0.5817). Data are mean ± SEM (male n-values: CUL3<sup>WT</sup> = 8, CUL3<sup>WT/ $\Delta 403.459$ </sup> = 11 for body length; CUL3<sup>WT</sup> = 8, CUL3<sup>WT/ $\Delta 403.459$ </sup> = 6 for body weight // female n-values: CUL3<sup>WT</sup> = 16, CUL3<sup>WT/ $\Delta 403.459$ </sup> = 21 for body length; CUL3<sup>WT</sup> = 14, CUL3<sup>WT/ $\Delta 403.459$ </sup> = 12 for body weight). Two-tail unpaired student t-test; data are mean±SEM.

#### Appendix Figure S5.

**A and B.** Western blots showing expression of KLHL3 (**A**) or, CUL3 (**B**) in the human thoracic aorta. No obvious sex or age differences were observed. Human kidney were used as positive controls.

**C.** Western blot of HEK-293 cell lysates over expressing KLHL2-GFP or KLHL3-FLAG. The anti-KLHL3 antibody shows an intense band at the predicted molecular weight of FLAG modified KLHL3, confirming its ability to detect KLHL3.

**D.** Dual channel multiplex western blot of HEK-293 cell lysates over expressing KLHL2-GFP showing a band at the predicted molecular weight for GFP modified KLHL2 with an anti-GFP antibody (red). The anti-KLHL3 antibody (green) detects a non-specific higher weight band that does not overlap with KLHL2-GFP, therefore confirming specificity for KLHL3 with no cross-reactivity for KLHL2.

#### Appendix Figure S6.

**A.** CUL3<sup>WT/ $\Delta$ 403-459</sup> thoracic aorta have increased phosphorylation of MYPT1 isoforms. Ratiometric expression of quantified MYPT1 phospho-T696 isoforms (normalized against  $\beta$ -actin) were calculated for CUL3<sup>WT/ $\Delta$ 403-459</sup> vs CUL3<sup>WT</sup> on each western blot. The mean of the ratios and bounds of the 95% confidence interval are >1, confirming significantly increased phosphorylation (where ratio = 1 represents no change in phosphorylation). Results are from three separate blots containing independent biological replicates of aortic lysates from both genotypes (total n-values across three blots: CUL3<sup>WT</sup> = 19 / CUL3<sup>WT/ $\Delta$ 403-459</sup> = 21). Statistical significance was determined by the ratio t-test (see methods for more information); \* P = 0.02.

**B.** A representative western blot of thoracic aorta MYPT1 phospho-Thr696 isoforms and  $\beta$ -actin expression from CUL3<sup>WT/ $\Delta$ 403-459</sup> and CUL3<sup>WT</sup> mice run on the same gel.

#### Appendix Table S1.

The full table of P-values for Fig EV3.

Appendix Figure S1.

A. CUL3 403 CUL1 437 DEEAELEDTLNQVMVVFKYIEDKDVFERYYKQHLARRLLTNKSVSDDSEKNMISKLK 459 PEEAELEDTLNQVMVVFKYIEDKDVFQKFYAKMLAKRLVHQNSASDDAEASMISKLK 493

Β.









### Appendix Figure S4











Appendix Figure S6

Β.



Α.

## Appendix Table S1

P-values for Fig EV3

| Plasma                                                   | Cr     | К                    | Mg     | Na                   | Са                    | Р         |
|----------------------------------------------------------|--------|----------------------|--------|----------------------|-----------------------|-----------|
| NNa CUL3 <sup>WT</sup> vs<br>CUL3 <sup>WT/Δ403-459</sup> | 0.4326 | 4.1x10 <sup>-7</sup> | 0.0110 | 0.4459               | 0.0015                | 0.0129    |
| LNa CUL3 <sup>WT</sup> vs<br>CUL3 <sup>WT/Δ403-459</sup> | 0.0550 | 0.0078               | 0.3749 | 0.8120               | 0.8195                | 0.9470    |
| CUL3 <sup>WT/Δ403-459</sup><br>NNa vs. LNa               | 0.9714 | 0.0004               | 0.0755 | 0.0194               | 0.4859                | 0.9757    |
| CUL3 <sup>w⊤</sup><br>NNa vs. LNa                        | 0.0072 | 0.6643               | 0.4043 | 0.0478               | 0.0083                | 0.0493    |
| Urine                                                    | Cr     | К                    | Mg     | Na                   | Са                    | Р         |
| NNa CUL3 <sup>WT</sup> vs<br>CUL3 <sup>WT/Δ403-459</sup> | 0.0424 | 0.3852               | 0.2191 | 0.8236               | 0.0633                | 0.4370    |
| LNa CUL3 <sup>WT</sup> vs<br>CUL3 <sup>WT/Δ403-459</sup> | 0.3864 | 0.4400               | 0.4714 | 0.8700               | 0.5574                | 0.2602    |
| CUL3 <sup>WT/Δ403-459</sup><br>NNa vs. LNa               | 0.5435 | 0.4127               | 0.5515 | 0.0001               | 0.0671                | 0.0031    |
| CUL3 <sup>w⊤</sup><br>NNa vs. LNa                        | 0.2503 | 0.6864               | 0.0126 | 2.5x10 <sup>-6</sup> | 0.1545                | 0.0395    |
| Blood                                                    | Urea   | Glucose              | Hct    | Hb                   | Total CO <sub>2</sub> | Anion Gap |
| CUL3 <sup>WT</sup> vs<br>CUL3 <sup>WT/Δ403-459</sup>     | 0.8914 | 0.8757               | 0.8757 | 0.9045               | 3.7x10 <sup>-5</sup>  | 0.1022    |