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Supplementary information

Evaluating the impact of AM profile information score on data analysis and molecular
identification

Considering the computational burden in applications where large experimental data sets
are compared to large sets of reference profiles, we seek means for unbiased filtering of the
experimental data before analysis. The most computation intensive task is calculating the
cross correlation values for each detected molecule against the entire reference set. Thus,
filtering the data based on the intrinsic properties of each experimental AM profile before
cross correlation may dramatically increase the efficiency and speed of analysis.

Assuming that the more "informative" an AM profile is, the more unique and easy to identify
it is, we wanted to estimate the influence of the number of peaks and valleys and their
modulations on the analysis of AM profiles. We consider two parameters: space, which
represents the overall number of peaks and valleys in an AM profile (each peak-valley pair is
counted as one) and contrast, which is the sum of peak to valley depths along the molecule
profile, in units of the noise standard deviation (STD, as determined from the noise levels in
our experimental data). To estimate the space contribution we generated a data set
containing profiles with varying number of peaks. The data was based on an experimental
AM profile containing a single peak which was multiplied in-silico to create a data set
containing profiles of increasing numbers of peaks and valleys (Figure S1. A.). As expected,
there is a linear dependency between the number of peaks and the information score, which
was calculated using the analysis program (Figure S1. B.) (1-4). The cross correlation value
on the other hand is insensitive to the number of features in the profiles. Cross correlation
values scale only with the degree of similarity between the reference and the data.
Consequently, although a molecule displaying many peaks and valleys is most likely more
unique, it will yield the same cross-correlation value as a molecule displaying only two peaks
if both molecules are compared to their corresponding reference profiles.
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Figure S1. A. Representative images from the data set we used to examine the impact of the number
of peaks and valleys in AM profiles on the information score. The upper image contains 1 peak and
the lower contains 12. B. A plot demonstrating the dependency between the information score (Y
axis) and the number of peaks (X axis).

To evaluate the contrast contribution we generated a data set of AM profiles, each
containing two peaks with increasing intensities. The first profile in the set was the
experimental noise, representing a signal to noise (SNR) ratio of 1. In the following profiles
SNR was increased gradually by adding one noise STD unit to the peak intensity for each
subsequent profile. Next, we used the analysis software to calculate the information score
for each contrast level and study the relation between image contrast and information
values (Figure S2. A.). In addition, cross-correlation was calculated with a theoretical profile
corresponding to the generated data and the cross-correlation value was plotted against the
number of noise STD units added to the peak intensities (Figure. S2. B.). We find that the
information score increases gradually with increasing contrast. However, for the cross
correlation tests we see a strong increase in correlation that reaches saturation at contrast
values of about 7 STDs above noise level.
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Figure S2. A. A plot demonstrating the dependency of the information score on the image contrast
(displayed in units of noise STD above the noise level) B. A plot demonstrating the dependency
between the cross correlation score (Y axis) and the number of STD levels of the peak in the profile
above the noise level (X axis).

From these analyses we conclude that the number of modulations in the intensity profile of
a molecule (the space component) has a strong impact on the information content
(representing the uniqueness of the profile). The contrast value, on the other hand, has a
rather weak impact on the information score but a strong impact on the cross correlation
score at low SNR values. This impact saturates above a level where additional contrast does
not contribute any further to the fit (signal levels of above of 7 noise STDs in our case).

We also wanted to check the influence of DNA length on the information score in our
experimental data, as reducing length results in elimination of peaks and valleys and thus
reduce information. Typical AM profiles, generated from labelled A genomes were gradually
truncated (reducing a 5 kbp long tail at a time). Information analysis showed that for these
molecules the threshold length for the information criteria of I1S=80 was ~35-40 kbp (Figure,
S3). It is important to emphasize that these results are typical for A genomes and other
sequences might have different label distributions and thus different length thresholds.
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Figure S3. A. Typical AM profile of labelled A molecule was truncated into fragments of 48.5 (full
length), 40, 35, 30, and 25 kbp. Fragment plots are presented with corresponding lengths to their left.
B. Information scores from 5 truncated A genomes were calculated for each fragment (48-25 kbp) and
the average score was scatter plotted against its corresponding length (blue markers, error bars
represents standard errors values).

Effect of false labelling on cross correlation values

False or missing peaks along the AM profile may be the result of absence/excess of
fluorescent labels, or due to problems in the imaging procedure. To estimate the effects of
false peaks on the goodness of fit to the theoretical data we generated an artificial data set
containing profiles with 2-12 peaks. In this data set the two extreme peaks were kept
constant and peaks from the middle of the profile were reduced one at a time resulting in a
profile with a constant length and varying number of modulations (Figure S4.A). We used a
profile containing 6 peaks as the reference and calculated its cross correlation with all other
profiles (2-12 peaks) in order to simulate both false positive and false negative labelling
events (Figure S4. B.). The cross correlation score decreases rapidly with both additional



peaks (false positive) and missing peaks (false negative), with false negatives having a slightly
larger effect on the correlation. These results emphasize the ability of the method to
distinguish the correct patterns from mislabelled patterns based on CC analysis.
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Figure S4. A. Representative images from the data set we used to examine the impact of false
labelling on CC. The upper image contains 2 peaks, the middle contains 6 (this profile served as
reference to which all profiles were compared) and the bottom contains 12 peaks. B. A plot
demonstrating the relation between the CC score (Y axis) and the number of peaks (X axis). The X axis
values are the number of additional / missing peaks relative to the 6 peak reference.

Calculation of the information content value for a given theoretical AM profile

Based on our observations above, we developed an intuitive method to estimate the
information contents (IC) for a given DNA sequence and labelling method. First we generate
a theoretical AM profile from the known sequence, considering the distribution of labelling
sites (depending on the labelling method), the point spread function of our microscope and
the experimental stretching factor of the molecules(1-3). Next, we calculate the noise STD
(normalized to percentage of the mean signal) from our experimental data.

Using these, we count the number of distinct features along the AM profile (a feature is
defined as distinct if the intensity difference between a peak and a valley is larger than 3
STDs). The number of peak and valley pairs along the profile composes the spatial
modulation component of the information score. The modulation depth/contrast
component is the sum of STD units in all peak to valley differences, where we have set the
saturation value at 7, based on our observations above. We used this IC score calculation in
order to assess the effect of the information content on data analysis and to compare



between our new labelling method and intercalation based approaches (see results). In
principle, this intuitive approach to calculate information content yields results that are
similar in nature to the previously reported information score (IS) calculated based on the
self-information of a random variable (5, 6). The latter is calculated automatically by our
analysis software and both calculation methods were used during data analysis.

Data filtering

During data analysis we wished to filter out "bad" molecules from our experimental data.
We first filtered out molecules that where shorter than 75% of the expected length. This
filtering step was aimed to filter out fragmented molecules and can be skipped when
studying samples of unknown content.

In addition, we only used molecules with IS higher than 80 and a cross correlation score
higher than 0.85 (Figure S5.), when compared to any of the reference sequences (simply put,
if the molecule is compared to the multi sequence reference library, the best score must be
higher than 0.85).

It is important to emphasize, that the IS for experimental data is determined by the analysis
software and may vary according to the imaging parameters, stretching factor and quality of

labelling.
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Figure S5. A histogram representing the distribution of CC scores of AM generated from labelled A
genomes fitted to their best fit genome in the theoretical reference library. The grey area of the
histogram highlights the molecules that had CC scores lower than the threshold value. 35 out of 63
molecules (~56%) had a CC score higher than our threshold value of 0.85.

Imaging parameters

To allow sensitive detection of the intensity modulations along the molecules it was crucial
to take advantage of the full dynamic range of the camera. For this experiment we used the
Hamamatsu Orca Flash 4 sCMOS rather than the Andor EMCCD due to its higher dynamic
range. This is important due to the fact that intensity along a molecule may range between
single molecule fluorescence generated by an isolated label and intense fluorescence from a
dense cluster of molecules. Imaging conditions such as excitation intensity and camera
integration time were optimized to prevent saturation of the fluorescence signal but still



collect signal from the sparsely labelled dark regions along the DNA. The 532nm laser
radiation density was ~9.3 mW/cm”and images were recorded at a frame rate of 250 ms
with 2X2 binning (equivalent to a 1024 x 1024 array with 13 pum pixels). Analysis was
performed on molecules under uniform excitation (<15% variation) in order to account for
non-uniformities in the excitation field.

Estimating the efficiency of the M.Taql AdoYnTAMRA labelling reaction

To estimate the efficiency of the labelling reaction and to find out the amount of enzyme
needed for full labelling of all its recognition sites, we used a protection assay. In this assay a
fixed amount of DNA is modified with varying amounts of enzyme (reduced by half between
different reactions). After modification all samples are incubated with the restriction enzyme
R.Tagl, which has the same recognition sequence as the modifying enzyme but does not
digest modified sites. Afterwards, all the samples are loaded and run on an agarose gel. In
the case of full labelling only one band, of non-restricted DNA is expected, but if the
modification is partial, several lower bands should be seen. We performed this assay with A
DNA, M.Tagl and AdoYnTAMRA cofactor starting with an amount of 1 equivalent of enzyme
(one enzyme molecule per each M.Taql site) and found that even at 1/64 equivalents of
enzyme to labelling sites, DNA is fully protected against restriction. We conclude that the
labelling reaction approaches 100% efficiency at higher M.Tagl concentrations (Figure S6). In
order to ensure full modification of all sites our experiments were performed at an excess of
~6 equivalents of M.Tagl (100-fold excess).
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Figure S6.A protection assay was performed on A DNA using M.Taql and AdoYnTAMRA. After
modification, samples were challenged with the restriction enzyme R.Taql and run on an agarose gel.
The DNA is stained with GelRed while the TAMRA fluorophor of the cofactor is also visible as diffuse
fluorescence in all lanes above the DNA. In lane 1.one equivalent of enzyme was used and its amount
was reduced by half in each of the following 9 lanes. It is clearly seen that the entire DNA in samples
1-7 is fully protected, while samples 8-10 exhibit reduced protection. This assay shows that even
when ~2% of 1 equivalent is used the efficiency of the labelling reaction approaches 100%.

T7 genomes labelled with M.Taql exhibit a unique barcode

To verify that the AM profiles generated from T7 genomes labelled by M.Taqgl are indeed
unique and strain dependent we performed similar analysis as we did with the A data
(Figurer 3.A.). We compared AM profiles of 29 labelled T7 genomes to the theoretical profile
calculated from their known sequence. We also compared it to the theoretical AM profiles
of the A and GUmbie phages, which served as control (due to their length similarity). We
found that when compared to its true theoretical AM profile the CC values are significantly
higher than when compared to the false references (P-value <0.0001, Figure S7).
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Figure S7. AM profiles were generated from T7 genomes labelled with M.Tagl (29 molecules). Cross
correlation was calculated between the AM profiles and theoretical profiles of A, T7, and GUmbie
phage genomes. The CC score was significantly higher when the T7 genomes were compared to the
theoretical AM profile of T7 (P-value <0.0001 paired t-test).

Cross correlation analysis between AM profiles from A DNA labelled with M.Taql and all 20
theoretical sequences of phages in the reference library.

Cross correlation analysis was performed between AM plots of A DNA labelled with M.Taq|l
and all 20 phage sequences in the reference library (as shown in detail in Figure 3.A &B for
only 3 sequences). The average CC score for false fits of A data to the other 19 phage
genomes was ~0.8 with a standard error of ~0.01. We defined the CC threshold for a reliable
fit to be the average CC plus 5 standard error units. The CC score of the data fitted to A was
higher by more than 8 standard error values than the averaged CC value of all other 19
phages and also showed statistical significance (Figure S8).
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Figure S8. AM profiles were generated from A genomes labelled with M.Taql (14 randomly chosen
molecules). Cross correlation was calculated between the AM profiles and theoretical profiles of all
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the phage genomes in our reference library (table S1). The average CC score was higher when the A
genomes were compared to the theoretical A profile than the averaged CC scores when aligned to the
other phages (P-value ranging between 0.00013 and 0.000002 paired t-test). Dashed line represent to
threshold value of 0.85 for a good comparison.



Correlation between nucleotide identity and CC value

In order to check the degree of nucleotide identity between all the reference sequences in
our library and the A sequence we used BLASTn from NCBI, which is optimized for sequences
that are similar but not identical and can tolerate composition differences between
compared sequences (7). The average identity score for the false pairs was 385 while A
compared to itself results in a score of ~88,000. The BLASTn scores were plotted against the
corresponding CC scores in order to assess the correlation between these measures (Figure
S9).
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Figure S9. Nucleotide identity scores were calculated between all the phage sequences in our library
and the A sequence using BLASTn. These scores were co-plotted against the average CC scores of A
AM profiles and the various reference sequences (calculated in Figure S7). The nucleotide identity
scores are presented on a logarithmic scale. The black markers represent A AMs compared to all other
19 sequences. The red marker represents A when compared to itself, which exhibits distinct
differences from the comparison of all other sequences in both measures.

Plots of AM profiles generated from A molecules labelled with M.Taql

We plot 5 representative AM profiles obtained from the A data. CC analysis is able to correctly
classify these molecules despite the noticeable variation in the AM profile details.



Figure $S10. AM profiles of A molecules labelled with M.Taql are co-plotted to exhibit their similarity.

Cross correlation analysis of AM profiles from A DNA labelled using an Intercalation based
method

The analysis presented in Figure 3 in the main text was performed also on intercalation
based data in order to directly compare between the two labelling methods. Using the
intercalation data, we calculated CC values between experimental A AM plots and the
theoretical plots of A, T7 and Gumbie phages. This analysis shows that the average CC
difference between true and false fits is smaller to that presented in Figure 3. Furthermore,
due to the high noise in the intercalation based measurements, the error bars for the
calculated CC averages are much larger and result in difficulty to significantly distinguish
between true and false fits (Figure S11). It is important to note that due to the noisy data
generated by intercalation, previous published work used time averaging in order to obtain
smoother AM profiles. Here, for the sake of comparison, we used AM profiles generated
from a single image, identical to the analysis of the M.Taql data.
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Figure S11. AM profiles were generated from A genomes labelled by an intercalation based method
(1) which highlights their GC rich regions (13 molecules) (1, 3, 4). Cross correlation was calculated
between the AM profiles and theoretical profiles of A, T7, and GUmbie phage genomes. The CC score
was higher when the A genomes were compared to the theoretical AM profile of A. However the
values show high variability when compared to T7 and Gumbie. A statistical paired t-test between the
true and false fits yielded low significance for T7 (P-value >0.015) and no significance when compared
to GUmbie (p-value>0.06).

Preliminary data for E. coli AM profiles

In order to demonstrate the generality of the M.Tagl AM approach we have performed a
similar experiment with E. coli genomic DNA. The DNA was extracted from bacteria, labelled
and imaged exactly as the T7 and A DNA. The experiment resulted in genomic fragments
with an average length of ~100 kbp and distinct AM profiles (Figure S12). These fragments
are about 2 times longer than the phage genomes we tested and thus should exhibit higher
information contents and display accurate assignments to the reference sequence. This will

be tested thoroughly in a follow-up project.

Figure S12. An image of a field of view of the nanochannels containing stretched and labelled
fragments of E.coli genomes. The scale bar at the bottom left corner represents a distance of 10 um.



List of phages used as a reference library

We used a reference library containing 20 different phages both for our information analysis
and for the strain typing analysis, the phages names and their length in kbp are given in
table S1:

Phage's name | Phage's length (kbp)
Mycobacterium phage Stinger 69.6
Mycobacterium phage Babsiella 48.4
Mycobacterium phage SkiPole 53.1
Enterococcus phage phiEf11 42.8
Mycobacterium phage DS6A 60.6
Enterobacteria phage A 48.5
Mycobacterium phage Alma 532
Mycobacterium phage Bruns 53
Serratia phage phiMAM1 157.8
Enterobacteria phage T7 399
Mycobacterium phage GUmbie 574
Mycobacterium phage BarrelRoll 59.7
Paenibacillus phage Davies 48.5
Salmonella phage Maynard 45.6
Bacillus phage Slash 352
Pectobacterium phage PM1 55.1
Mycobacterium phage DeadP 56.5
Yersinia phage Yep-phi 38.6
Mycobacterium phage Acadian 69.9
Escherichia phage KBNP1711 76.2
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