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Text S1  STEP-BY-STEP EXAMPLE OF DEPENDENCY LOGO GENERATION

In the following we explain by means of a toy example how dependency logos are generated from a set of binding sites. We
assume a set of 500 aligned binding sites corresponding to a motif of length 6. These binding sites are represented by the subset
of sequences displayed below. We instantly see that the second and third position are completely conserved with a T and an A,
respectively. In addition, we might observe that position 1 is either a C or a T, and that position 5 is either G or T.
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Each of these sequence also has an associated value, e.g., probe intensities in a gcPBM experiment, peak statistics for ChIP-seq
data, or scores according to a motif model, illustrated by the number on the right of each sequence.
First, we might want to plot a traditional sequence logo of this set of binding sites. The corresponding sequence logo looks like

this:
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We find our observations regarding position 1, 2, 3, and 5 confirmed, whereas positions 4 and 6 are substantially less conserved.

To get a better impression of the dependency structure of these binding sites, we generate a dependency logo of these sequences
in the following.

We start with the computation of the dependencies between binding site positions using mutual information (termed M; ; in
Methods) and use these to determine that position with the strongest dependencies to other positions (measured by D(i), see
Methods).

For this toy data set, the position with the strongest dependencies to other positions is position 5, which shows the strongest
dependency (i.e. Mj5 ;) to position j =4 (and vice versa).
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Hence, we group all binding sites in the toy data set according to the nucleotides at positions 5 and 4. For this specific data set,
this yields only 3 non-empty groups: one for G at position 5 and C at position 4, one for T at position 5 and A at position 4, and
one for G at position 5 and G at position 4:

Group 1 Group 2 Group 3

G at position 5, C at position 4: T at position 5, A at position 4: G at position 5, G at position 4:
TTACGC 5 CTAATC 9 CTAGGA 6

TTACGG 6 TTAATG 8 TTAGGG 4

CTACGG 6 TTAATT 12 TTAGGA 4

CTACGA 7 TTAATA 7 CTAGGG 2

TTACGT 6 TTAATC 9 TTAGGC 3

CTACGC 5 CTAATA 10 CTAGGT 3

TTACGA 8 CTAATG 10 CTAGGC 4

CTACGT 5 CTAATT 11 TTAGGT 2

We do not find further strong dependencies between any two positions within these sub-groups. Hence, these groups form our
final partitioning for this dependency logo. Otherwise, we could have repeated this procedure recursively within each (or a subset)
of these groups.

In the plot, each of these groups will be displayed as one row that represents a set of binding sites with common nucleotides at
a subset of binding site positions, which we have selected based on the strength of their dependencies to other positions.

Next, we need to determine the ordering of these groups in the dependency logo plot. We order the groups by the average of the
associated values of the binding sites within the groups. In the toy example, the sequences of group 2 have the largest associated
values, followed by group 1 and, finally, group 3. Hence, we obtain the final ordering as

CTAATC 9
TTAATG 8
TTAATT 12
TTAATA 7
TTAATC 9
CTAATA 10
CTAATG 10
CTAATT 11
TTACGC
TTACGG
CTACGG
CTACGA
TTACGT
CTACGC
TTACGA
CTACGT
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In the following dependency logo, we find exactly these groups as rows of colored boxes.
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The first row represents the previous group 2 (T at 5 and A at 4) as can be perceived from the red and green boxes at these
positions. In complete analogy, we discover group 1 as orange and blue boxes and group 3 as two orange boxes at positions 5 and
4, respectively.

Since positions 2 and 3 are conserved across all binding sites, these are shown as red and green boxes, respectively, in the
rows of all three groups. Notably, position 1, which showed similar conservation as position 5 in the sequence logo, appears to
be largely independent of the groups, i.e., position 1 is T or C with similar probability in each of the groups. Accordingly, the
boxes at position 1 are colored in violet (mixture of blue and red representing C and T) in all three groups. In contrast, we now
can visually perceive the dependency between positions 4 and 5, where, for instance, position 4 is always A if position 5 is T. We
additionally highlight the dependency between positions 4 and 5 by an arc between those two positions in the upper part of the
dependency logo.

Finally, all four nucleotides appear with similar probability and independent of the groups at position 6. Hence, this position
has only a low saturation in all three groups, in analogy to the nucleotide stack of height almost O in the sequence logo.
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Figure S1. Annotated dependency logo explaining the different properties of dependency logos and supporting their interpretation.
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Text S2 DEPENDENCY LOGOS

In Figure [S2] we illustrate five examples, where the sequence logo is identical but the actual motif models differ. The figure
demonstrates that dependency logos are capable of visualizing no dependencies, neighboring and non-neighboring dependencies,
and differing probabilities.

Nevertheless, it might be hard to distinguish between dependencies and heterogeneities. One illustrative example is given in
Figure [S3] If the number of positions that depend on each other is large and the number of highly conserved positions is low,
one might think of heterogeneities. Figure [S3D depicts 5 positions that depend on each other and 3 that are highly conserved.
Alternatively, we can model this motif using a mixture of 3 highly conserved components TACCGATC, TACCGCGC, and
TACGAGAT. However, the transition between perceived dependencies to perceived heterogeneities is smooth leading to cases
where it is hard to decide whether the dependency logo shows heterogeneities or dependencies.
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Figure S2. Dependency logos provide insights into the structure of dependencies.
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Figure S3. Smooth transition from perceived dependencies to perceived heterogeneities.
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Text S3 PERFORMANCE ASSESSMENT
Text S3.1 gcPBM data

We assess the performance of classifiers using the different foreground models by means of the squared Pearson correlation (R?)
between prediction scores and PBM intensities as proposed by (12)). We then compute arithmetic mean and standard error of the
R? values over all 10 cross validation iterations for each transcription factor. Since we use the identical partitioning, mean values
are directly comparable to (12).

Text S3.2 ENCODE ChIP-seq data

We assess the prediction performance of different approaches using different motif models on the ENCODE data sets for different
cell types. We train each of the approaches on the ChIP-seq data set measured for the cell type with the largest number of peaks
and test its prediction accuracy on the ChIP-seq data sets for the remaining cell types. This scenario resembles likely practical
applications, e.g., combining computational predictions with cell type-specific DNase I hypersensitivity experiments. We test each
of the approaches on the ChIP-seq data sets for the remaining cell type(s) using the identical sequences of length 1000 bp around
the peak center for all approaches considered to obtain comparable results, but obtain highly similar results using sequences of
length 100 bp (data not shown). For the assessment, we need a single prediction score for each input sequence. We use the ZOOPS
score (cf. (15))), but we also test the maximum score and obtain similar results (data not shown).

We additionally test Dimont using the different motif models in a 10-fold cross validation experiment using only the ChIP-seq
data set with the largest number of peaks. This scenario allows for a more rigorous assessment of prediction performance and
avoids an over-estimation of prediction performance due to overfitting effects with increasing model complexity, since ChIP-
seq experiments for different cell types but the same transcription factors may produce substantially overlapping peak regions

(Table[ST).

The performance measures considered for the ENCODE data are

AUC-ROC and AUC-PR We evaluate all approaches for the classification problem of distinguishing the top 500 ChIP-seq
regions of length 1000 bp from 5000 negative regions of the same length, which are sampled uniformly from the human
genome (hgl9). As performance measure, we use the area under the ROC curve (AUC-ROC) and the area under the
precision-recall curve (AUC-PR) (72)).

AUC-ROC and AUC-PR (shuffled) We evaluate all approaches for the classification problem of distinguishing the top 500
ChIP-seq regions of length 1000 bp from di-nucleotide shuffled versions of the same sequences. As performance measure,
we use the area under the ROC curve (AUC-ROC) and the area under the precision-recall curve (AUC-PR) (72).

wAUC-ROC and wAUC-PR We evaluate all approaches for the weighted classification problem distinguishing highly occupied
from less occupied peak regions using all ChIP-seq regions in the corresponding test set, where each region is assigned
a weight (cf. section “Learning model parameters”) based on the corresponding ChIP-seq peak statistics. As performance
measures we use weighted AUC-ROC and weighted AUC-PR (73).

Pearson and Spearman correlation We evaluate all approaches for the regression problem of reconstructing the ChIP-seq peak
statistics by predictions scores using Pearson correlation and Spearman correlation between prediction scores and peak
statistics.

Text S4 PROOF OF CONCEPT - SLIM ON ARTIFICIAL DATA

As a proof of concept, we evaluate the performance of a sparse local inhomogeneous mixture model using artificial data. Assessing
the feature selection ability of Slim models, we compare the performance of binary classifiers comprising two inhomogeneous
Markov models, Bayesian trees and sparse local inhomogeneous mixture models, respectively, in a 100-fold simulation. In each
iteration, we generate training and test data from known statistical models. As generating models, we use two maximum entropy
models (22) that share some dependencies. In more detail, we use a maximum entropy model with constraints m2sx for the
foreground class. For the background class, we also use a maximum entropy model but sample constraints with probability of
50% from the constraints m2sx. Given two maximum entropy models, we sample training and test data sets of same size and
class ratio of 1:1. Evaluating the influence of the size of the training data set on classifier performance, we subsample the training
data set obtaining three training data sets with size 100, 1,000, and 10,000 sequences. Subsequently, we train each classifier on
one training data set and assess each classifier in terms of AUC-ROC using the test data set.

We summarize the results of the 100-fold simulation by mean and standard error of AUC-ROC as visualized in Figure [S4] We
find that the performance increased with increasing size of the data sets for all classifiers indicating that the size of the training
data set has a decisive influence on the estimation of model parameters and the identification of relevant features.

Comparing the classifiers among each other, we observe that the performance is increasing with increasing order for classifiers
comprising two inhomogeneous Markov models. Since the data of the foreground and background class only differ in some
dependencies, the classifier based on two inhomogeneous Markov models of order 0 is not able to separate the classes. In contrast
the classifier based on two inhomogeneous Markov models of order 1 can at least capture dependencies between neighboring
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Figure S4. Mean AUC-ROC for discriminatively trained binary classifiers in a 100-fold simulation. Each classifier utilizes the same model type for foreground
and background class varying from inhomogeneous Markov models (iMM) of order 0 and 1, Bayesian trees (BT) to sparse local inhomogeneous mixture (Slim)
models. We also include the performance of a classifier comprising the generating models of the data sets as a reference.

positions and, hence, can moderately separate the classes. However, we find that this classifier can be outperformed by Bayesian
trees.

Considering classifiers comprising two Bayesian trees, we find that the feature selection criteria influences the performance as
expected. We find that using explaining away residue (EAR) yields slightly better performance compared to mutual information
(MI), which might be explained by the discriminative character of this feature selection criterion [33).

Finally, comparing the results of the classifier using Bayesian trees and EAR with the Slim model, we find that the Slim model
performs equally for small and medium sized training data sets, while it outperforms the Bayesian tree on the largest data set.

Investigating the significance of the performance differences for different models, we utilize the standard error measured in
the simulation study. For the largest data set, we find that the difference between iMM(0) and iMM(1), iMM(1) and BT(MI),
BT(MI) and BT(EAR), and BT(EAR) and Slim are larger than twice the standard error. Hence, the observed difference between
the classifiers based on these models are significant. For this reason, we conclude that feature selection significantly improves the
performance and that Slim models are able to compete with Bayesian trees.

In addition, if different subclasses of the sequences exist within one data set or the sequences are not aligned, feature selection
before numerical parameter estimation is likely to fail. Hence, the utilization of Bayesian trees in mixture models and for de-
novo motif discovery using discriminative learning principles is limited. In contrast, the Slim model is able to adjust the feature
weights during numerical parameter estimation, allowing for feature selection in mixture models and for de-novo motif discovery.
We investigate the behavior of the Slim model for real data sets in the main text.
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Text S5 DEPENDENCY LOGOS FOR MYC, MAD AND MAX USING DATA OF MORDELET et al.
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Figure S5. Dependency logo for the Myc, Mad and Max data sets. We plot dependency logos for the top 1000 sites according to the prediction scores of the
LSlim model and for the remaining sites.
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Text S6 DE-NOVO MOTIF DISCOVERY APPROACH

We compare the prediction accuracy of the Dimont framework using baseline models, namely PWMs and WAMs, against several
other state of the art approaches, namely MEME (37, 56)), DiChIPMunk (14), and TFFMs (13). MEME is widely used for ChIP-
seq data (74, [75] [76l [77, [78) and is the standard of factorbook (79). Hence, it can still be seen as de facto standard for motif
discovery. DiChIPMunk extends ChIPMunk (80), which is one of the best approaches for motif discovery from ChIP data (81J), to
a dinucleotide model. Transcription factor flexible models (TFFMs) use a hidden Markov model approach to represent variable-
length motifs including dinucleotide dependencies, and will be included in a future version of JASPAR (13| 82)) as an alternative
to PWMs.

Text S6.1 List of ChIP-seq data sets

The following list contains the file names of all ChIP-seq data sets for human transcription factors from ENCODE that we used in
the ChIP-seq analysis section. All files can be downloaded from http://hgdownload.cse.ucsc.edu/goldenPath/
hgl9/encodeDCC/wgEncodeAwgTfbsUniform/ and refer to the human genome (hgl9).

wgEncode AwgTfbsBroadGm12878CtcfUniPk.narrowPeak

wgEncode AwgTfbsBroadGm12878Ezh239875UniPk.narrowPeak
wgEncode AwgTfbsBroadH 1 hescCtcfUniPk.narrowPeak

wgEncode AwgTfbsBroadH1hescEzh239875UniPk.narrowPeak
wgEncodeAwgTfbsBroadH 1hescRbbp5a300109aUniPk.narrowPeak
wgEncode AwgTfbsBroadK562Chd1a301218aUniPk.narrowPeak
wgEncode AwgTfbsBroadK562CtcfUniPk.narrowPeak

wgEncode AwgTfbsBroadK562Ezh239875UniPk.narrowPeak

wgEncode AwgTfbsBroadK562Hdac2a300705aUniPk.narrowPeak
wgEncode AwgTfbsBroadK562P300UniPk.narrowPeak

wgEncode AwgTfbsBroadK562Rbbp5a300109aUniPk.narrowPeak
wgEncode AwgTfbsHaibGm12878 Atf2sc81188V0422111UniPk.narrowPeak
wgEncode AwgTfbsHaibGm12878 Atf3Pcr1xUniPk.narrowPeak

wgEncode AwgTfbsHaibGm12878Bcl11aPcr1xUniPk.narrowPeak
wgEncode AwgTfbsHaibGm12878Bcl3V0416101UniPk.narrowPeak
wgEncode AwgTfbsHaibGm12878Bclaf101388V0416101UniPk.narrowPeak
wgEncode AwgTfbsHaibGm12878Cebpbsc150V0422111UniPk.narrowPeak
wgEncode AwgTfbsHaibGm12878Egr1Pcr2xUniPk.narrowPeak
wgEncodeAwgTfbsHaibGm12878Elf1sc631V0416101UniPk.narrowPeak
wgEncodeAwgTfbsHaibGm12878Ets1Pcr1xUniPk.narrowPeak

wgEncode AwgTfbsHaibGm12878GabpPcr2xUniPk.narrowPeak
wgEncodeAwgTfbsHaibGm12878Mef2aPcr1xUniPk.narrowPeak
wgEncode AwgTfbsHaibGm12878NrsfPcr1xUniPk.narrowPeak

wgEncode AwgTfbsHaibGm12878P300Pcr1xUniPk.narrowPeak
wgEncodeAwgTfbsHaibGm12878Pmlsc71910V0422111UniPk.narrowPeak
wgEncode AwgTfbsHaibGm12878PulPcr1xUniPk.narrowPeak
wgEncode AwgTfbsHaibGm12878Rad21V0416101UniPk.narrowPeak
wgEncodeAwgTfbsHaibGm12878RxraPcr1xUniPk.narrowPeak

wgEncode AwgTfbsHaibGm12878Six5Pcr1xUniPk.narrowPeak
wgEncode AwgTfbsHaibGm12878Sp1Pcr1xUniPk.narrowPeak

wgEncode AwgTfbsHaibGm12878SrfPcr2xUniPk.narrowPeak

wgEncode AwgTfbsHaibGm12878Stat5asc74442V0422111UniPk.narrowPeak
wgEncode AwgTfbsHaibGm12878Taf1Pcr1xUniPk.narrowPeak
wgEncodeAwgTfbsHaibGm12878Tcf12Pcr1xUniPk.narrowPeak

wgEncode AwgTfbsHaibGm12878Usf1Pcr2xUniPk.narrowPeak
wgEncode AwgTfbsHaibGm12878Yy1sc281Pcr1xUniPk.narrowPeak
wgEncodeAwgTfbsHaibGm12878Zbtb33Pcr1xUniPk.narrowPeak
wgEncodeAwgTfbsHaibH1hescAtf2sc81188V(0422111UniPk.narrowPeak
wgEncode AwgTfbsHaibH1hescAtf3V0416102UniPk.narrowPeak
wgEncodeAwgTfbsHaibH 1hescBcll 1aPcr1xUniPk.narrowPeak
wgEncodeAwgTfbsHaibH1hescEgr1 V0416102UniPk.narrowPeak
wgEncodeAwgTfbsHaibH1hescFosl1sc183V0416102UniPk.narrowPeak
wgEncodeAwgTfbsHaibH 1hescGabpPcr1xUniPk.narrowPeak
wgEncodeAwgTfbsHaibH 1hescHdac2sc6296V0416102UniPk.narrowPeak


http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/
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wgEncodeAwgTfbsHaibH1hescJundV0416102UniPk.narrowPeak
wgEncodeAwgTfbsHaibH1hescNrsfV0416102UniPk.narrowPeak
wgEncodeAwgTfbsHaibH1hescP300V0416102UniPk.narrowPeak
wgEncodeAwgTfbsHaibH1hescRad21V(0416102UniPk.narrowPeak
wgEncodeAwgTfbsHaibH1hescRxraV0416102UniPk.narrowPeak
wgEncodeAwgTfbsHaibH1hescSin3ak20Pcr1xUniPk.narrowPeak
wgEncodeAwgTfbsHaibH1hescSix5Pcr1xUniPk.narrowPeak
wgEncodeAwgTfbsHaibH1hescSp1Pcr1xUniPk.narrowPeak
wgEncodeAwgTfbsHaibH1hescSp2V0422111UniPk.narrowPeak
wgEncode AwgTfbsHaibH 1hescSrfPcr1xUniPk.narrowPeak
wgEncodeAwgTfbsHaibH1hescTaf1V0416102UniPk.narrowPeak
wgEncodeAwgTfbsHaibH1hescTaf7sc101167V0416102UniPk.narrowPeak
wgEncode AwgTfbsHaibH 1hescTcf12Pcr1xUniPk.narrowPeak
wgEncodeAwgTfbsHaibH1hescTead4sc101184V0422111UniPk.narrowPeak
wgEncodeAwgTfbsHaibH1hescUsf1Pcr1xUniPk.narrowPeak
wgEncodeAwgTfbsHaibH 1hescYy1sc281V0416102UniPk.narrowPeak
wgEncodeAwgTfbsHaibK562Atf3V0416101UniPk.narrowPeak
wgEncodeAwgTfbsHaibK562Bcl3Pcr1xUniPk.narrowPeak

wgEncode AwgTtbsHaibK562Bclaf101388Pcr1xUniPk.narrowPeak
wgEncode AwgTfbsHaibK562Cebpbsc150V0422111UniPk.narrowPeak
wgEncodeAwgTfbsHaibK562Egr1V0416101UniPk.narrowPeak
wgEncode AwgTtbsHaibK562EIf1sc631V0416102UniPk.narrowPeak
wgEncode AwgTfbsHaibK562Ets1V0416101UniPk.narrowPeak
wgEncodeAwgTfbsHaibK562Fosl1sc183V0416101UniPk.narrowPeak
wgEncode AwgTtbsHaibK562GabpV0416101UniPk.narrowPeak
wgEncodeAwgTfbsHaibK562MaxV0416102UniPk.narrowPeak
wgEncodeAwgTfbsHaibK562Mef2aV0416101UniPk.narrowPeak
wgEncode AwgTtbsHaibK562NrsfV(0416102UniPk.narrowPeak
wgEncode AwgTfbsHaibK562Pmlsc71910V0422111UniPk.narrowPeak
wgEncodeAwgTfbsHaibK562PulPcrlxUniPk.narrowPeak

wgEncode AwgTtbsHaibK562Sin3ak20V0416101UniPk.narrowPeak
wgEncode AwgTfbsHaibK562Six5Pcr1xUniPk.narrowPeak
wgEncodeAwgTfbsHaibK562Sp1Pcr1xUniPk.narrowPeak

wgEncode AwgT{bsHaibK562Sp2sc643V0416102UniPk.narrowPeak
wgEncode AwgTfbsHaibK562SrfV0416101UniPk.narrowPeak
wgEncodeAwgTfbsHaibK562Stat5asc74442V0422111UniPk.narrowPeak
wgEncodeAwgTfbsHaibK562Taf1 V0416101 UniPk.narrowPeak
wgEncodeAwgTfbsHaibK562Taf7sc101167V0416101UniPk.narrowPeak
wgEncodeAwgTfbsHaibK562Tead4sc101184V0422111UniPk.narrowPeak
wgEncodeAwgTfbsHaibK562Usf1V0416101UniPk.narrowPeak
wgEncodeAwgTfbsHaibK562Yy1V0416101UniPk.narrowPeak
wgEncodeAwgTfbsHaibK562Zbtb33Pcr1xUniPk.narrowPeak
wgEncodeAwgTfbsSydhGm12878Bhlhe40clggmusUniPk.narrowPeak
wgEncodeAwgTfbsSydhGm12878Brcala300IggmusUniPk.narrowPeak
wgEncodeAwgTfbsSydhGm12878CfosUniPk.narrowPeak
wgEncodeAwgTfbsSydhGm12878Chd1a301218alggmusUniPk.narrowPeak
wgEncodeAwgTfbsSydhGm12878Chd2ab683011ggmusUniPk.narrowPeak
wgEncodeAwgTfbsSydhGm12878Corestsc301891ggmusUniPk.narrowPeak
wgEncodeAwgTfbsSydhGm12878E2f4IggmusUniPk.narrowPeak
wgEncodeAwgTfbsSydhGm12878Elk1127711ggmusUniPk.narrowPeak
wgEncodeAwgTfbsSydhGm12878JundUniPk.narrowPeak

wgEncode AwgTfbsSydhGm12878MaxIggmusUniPk.narrowPeak
wgEncodeAwgTfbsSydhGm12878Mazab85725IggmusUniPk.narrowPeak
wgEncodeAwgTfbsSydhGm12878MxillggmusUniPk.narrowPeak
wgEncodeAwgTfbsSydhGm12878Nfe2sc22827UniPk.narrowPeak
wgEncode AwgTfbsSydhGm12878NfyalggmusUniPk.narrowPeak
wgEncodeAwgTfbsSydhGm12878NfyblggmusUniPk.narrowPeak
wgEncode AwgTfbsSydhGm12878Nrf11ggmusUniPk.narrowPeak
wgEncodeAwgTfbsSydhGm12878Rfx52004011941ggmusUniPk.narrowPeak
wgEncodeAwgTfbsSydhGm12878Sin3anb6001263IggmusUniPk.narrowPeak
wgEncode AwgT{bsSydhGm12878Smc3ab92631ggmusUniPk.narrowPeak



wgEncode AwgTfbsSydhGm12878Stat1 UniPk.narrowPeak

wgEncode AwgTfbsSydhGm12878Tblr1ab24550IggmusUniPk.narrowPeak
wgEncodeAwgTfbsSydhGm12878TbplggmusUniPk.narrowPeak
wgEncode AwgTfbsSydhGm12878Tr4UniPk.narrowPeak

wgEncode AwgTfbsSydhGm12878Usf2IggmusUniPk.narrowPeak
wgEncode AwgTfbsSydhGm12878Znf143166181apUniPk.narrowPeak
wgEncodeAwgTfbsSydhH1hescBach1sc14700IggrabUniPk.narrowPeak
wgEncodeAwgTfbsSydhH1hescBrcallggrabUniPk.narrowPeak
wgEncodeAwgTfbsSydhH1hescCebpblggrabUniPk.narrowPeak
wgEncodeAwgTfbsSydhH 1hescChd1a301218alggrabUniPk.narrowPeak
wgEncode AwgTfbsSydhH1hescChd2IggrabUniPk.narrowPeak
wgEncode AwgTfbsSydhH1hescCjunlggrabUniPk.narrowPeak
wgEncode AwgTfbsSydhH 1hescCmyclggrabUniPk.narrowPeak
wgEncode AwgTfbsSydhH1hescGtf2f1IggrabUniPk.narrowPeak
wgEncode AwgTfbsSydhH1hescMaxUcdUniPk.narrowPeak

wgEncode AwgTfbsSydhH 1hescMxillggrabUniPk.narrowPeak
wgEncode AwgTfbsSydhH1hescNrfllggrabUniPk.narrowPeak
wgEncode AwgTfbsSydhH1hescRfx5200401194IggrabUniPk.narrowPeak
wgEncode AwgTfbsSydhH 1hescTbplggrabUniPk.narrowPeak
wgEncode AwgTfbsSydhH1hescUsf2IggrabUniPk.narrowPeak
wgEncodeAwgTfbsSydhH1hescZnf143IggrabUniPk.narrowPeak
wgEncode AwgTfbsSydhK562Bach1sc14700IggrabUniPk.narrowPeak
wgEncode AwgTfbsSydhK562Bhlhe40nb100IggrabUniPk.narrowPeak
wgEncode AwgTfbsSydhK562CfosUniPk.narrowPeak

wgEncode AwgTfbsSydhK562Chd2ab68301IggrabUniPk.narrowPeak
wgEncode AwgTfbsSydhK562Cjunlfna30UniPk.narrowPeak
wgEncode AwgTfbsSydhK562CmyclggrabUniPk.narrowPeak
wgEncode AwgTfbsSydhK562Corestab24166IggrabUniPk.narrowPeak
wgEncode AwgTfbsSydhK562E2f4UcdUniPk.narrowPeak
wgEncodeAwgTfbsSydhK562Elk1127711ggrabUniPk.narrowPeak
wgEncode AwgTfbsSydhK562Gtf2f1ab28179IggrabUniPk.narrowPeak
wgEncode AwgTfbsSydhK562JundlggrabUniPk.narrowPeak
wgEncodeAwgTfbsSydhK562Mazab857251ggrabUniPk.narrowPeak
wgEncode AwgTfbsSydhK562Mxilaf4185IggrabUniPk.narrowPeak
wgEncode AwgTfbsSydhK562Nfe2UniPk.narrowPeak

wgEncode AwgTfbsSydhK562NfyaUniPk.narrowPeak

wgEncode AwgTfbsSydhK562NfybUniPk.narrowPeak

wgEncode AwgTfbsSydhK562Nrf11ggrabUniPk.narrowPeak
wgEncode AwgTfbsSydhK562Rfx51ggrabUniPk.narrowPeak
wgEncode AwgTfbsSydhK562Smc3ab92631ggrabUniPk.narrowPeak
wgEncode AwgTfbsSydhK562Stat11fng30UniPk.narrowPeak
wgEncode AwgTfbsSydhK562Tblr1ab245501ggrabUniPk.narrowPeak
wgEncode AwgTfbsSydhK562TbplggmusUniPk.narrowPeak
wgEncode AwgTfbsSydhK562Tr4UcdUniPk.narrowPeak

wgEncode AwgTfbsSydhK562Usf2IggrabUniPk.narrowPeak
wgEncode AwgTfbsSydhK5627Znf1431ggrabUniPk.narrowPeak
wgEncode AwgTfbsUtaGm12878CmycUniPk.narrowPeak
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Text S6.2 Overlap between ChIP-seq data sets

For the evaluation of different de-novo motif discovery tools, we train these tools on ChIP-seq data from one cell type and assess
their performance on ChIP-seq data from another cell type but the same transcription factor. Although the data sets are based on
different cell types, there might be an overlap of the ChIP-seq regions. However, it is hard to quantify this overlap as ChIP-seq
regions of different cell types or experiments might overlap only to a certain degree, i.e. certain number of base pairs.

In Table[ST] we report overlap if two ChIP-seq regions (peak start to peak end as given in narrowPeak files) share at least 1 bp.
This is very stringent, but avoids missing any overlapping ChIP-seq regions. The percentage of ChIP-seq regions in the test data
set that are also in the training data set varies between 2.83% and 95.1% with a mean of approximately 50%.

Table S1. Statistics for each ENCODE data set used. For each transcription factor, the sizes of the cell type specific data sets, the intersection and the percentage
of the test data set that is contained in the training data set is computed.

[ TF [ training [ test [ training size | testsize [ intersection | % testin train |
Atf2 Gm12878 Hlhesc 23467 5998 1969 32.83
Atf3 K562 Gm12878 16011 1677 1226 73.11
Atf3 K562 Hlhesc 16011 4808 3241 67.41
Bachl Hlhesc K562 11457 3806 1921 50.47
Bcellla Gm12878 Hlhesc 17876 2518 90 3.57
Bcl3 Gm12878 K562 15455 1603 337 21.02
Bclaf Gm12878 K562 6114 4444 1434 32.27
Bhlhe40 K562 Gm12878 22497 13986 5553 39.70
Brcal Hlhesc Gm12878 2025 551 524 95.10
Cebpb K562 Gm12878 22240 5786 820 14.17
Cebpb K562 Hlhesc 22240 15557 5615 36.09
Cfos K562 Gm12878 7646 2239 1948 87.00
Chdla K562 Gm12878 9350 6668 1709 25.63
Chdla K562 Hlhesc 9350 2191 814 37.15
Chd2 Gm12878 Hlhesc 15597 6849 3952 57.70
Chd2 Gm12878 K562 15597 7797 4377 56.14
Cjun K562 Hlhesc 8827 2148 653 30.40
Cmyc K562 Gm12878 24153 3690 2928 79.35
Cmyc K562 Hlhesc 24153 4551 3076 67.59
Corest K562 Gm12878 6371 1397 158 11.31
Ctcf Hlhesc Gm12878 66551 44982 39204 87.15
Ctef Hlhesc K562 66551 51992 42014 80.81
E2f4 K562 Gm12878 8181 3440 2265 65.84
Egrl K562 Gm12878 36997 16331 11099 67.96
Egrl K562 Hlhesc 36997 8743 5403 61.80
Elf1 K562 Gm12878 27780 23008 13412 58.29
Elk Gm12878 K562 5584 2961 1914 64.64
Etsl K562 Gm12878 10726 4120 2627 63.76
Ezh Hlhesc Gm12878 6370 2472 611 24.72
Ezh Hlhesc K562 6370 1685 281 16.68
Fosl1 K562 Hlhesc 11174 1113 349 31.36
Gabp K562 Gm12878 14393 6566 5175 78.82
Gabp K562 Hlhesc 14393 5653 2803 49.58
Gtf2f1 K562 Hlhesc 3621 3548 1195 33.68
Hdac2 Hlhesc K562 5644 5247 426 8.12
Jund K562 Gm12878 40052 2472 445 18.00
Jund K562 Hlhesc 40052 8447 3843 45.50
Max K562 Gm12878 46171 12542 8545 68.13
Max K562 Hlhesc 46171 11129 5750 51.67
Maz K562 Gm12878 33323 18952 11831 62.43
Mef2a Gm12878 K562 17605 5631 1335 23.71
Mxil Gm12878 Hlhesc 17735 6351 3532 55.61
Mxil Gm12878 K562 17735 6711 4163 62.03
Nfe2 K562 Gm12878 2637 772 240 31.09
Nfya K562 Gm12878 4286 1841 1538 83.54
Nfyb Gm12878 K562 13295 10096 7270 72.01
Nrfl Gm12878 Hlhesc 5683 4513 3447 76.38
Nrfl Gm12878 K562 5683 4211 3342 79.36
Nrsf K562 Gm12878 15849 6906 4512 65.33
Nrsf K562 Hlhesc 15849 13286 5975 44.97
P300 Hlhesc Gm12878 8934 5168 733 14.18
P300 Hlhesc K562 8934 2674 162 6.06
Pml Gm12878 K562 16678 15895 6876 43.26
Pul Gm12878 K562 42938 28677 13902 48.48
Rad21 Hlhesc Gm12878 75680 40019 33859 84.61
Rbbp5 Hlhesc K562 16151 14258 6688 46.91
Rfx5 Gm12878 Hlhesc 4341 1695 731 43.13
Rfx5 Gm12878 K562 4341 2201 907 41.21
Rxra Gm12878 Hlhesc 1704 1306 95 7.27
Sin3a K562 Gm12878 12700 10392 5245 50.47
Sin3a K562 Hlhesc 12700 8977 3697 41.18
Six5 Gm12878 Hlhesc 4839 3425 2560 74.74
Six5 Gm12878 K562 4839 4194 3353 79.95
Smc3 Gm12878 K562 30517 23598 18883 80.02
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Spl Gm12878 Hlhesc 18248 15110 5524 | 36.56
Spl Gm12878 K562 18248 7206 4510 | 62.59
Sp2 K562 Hlhesc 3124 2469 2005 | 81.21
Srf Gm12878 Hlhesc 8544 5105 2112 | 41.37
Srf Gm12878 K562 8544 4717 2464 | 52.24
Statl K562 Gm12878 2203 1769 50 | 2.83

Stat5 K562 Gm12878 9811 7423 656 | 8.84

Taf1 Hlhesc Gm12878 20547 14278 8850 | 61.98
Taf1l Hlhesc K562 20547 15246 10654 | 69.88
Taf7 Hlhesc K562 10475 3422 1963 57.36
Thlrl Gm12878 K562 13702 5086 1177 | 23.14
Tbp K562 Gm12878 17558 14893 5952 | 39.97
Tbp K562 Hlhesc 17558 17194 8694 | 50.56
Tcf12 Gm12878 Hlhesc 20437 7833 1604 | 20.48
Tead4 K562 Hlhesc 31030 19857 3108 15.65
Tr4 Gm12878 K562 1263 587 416 | 70.87
Usfl Hlhesc Gm12878 26042 9778 5928 | 60.63
Usfl Hlhesc K562 26042 18521 9634 | 52.02
Usf2 Gm12878 Hlhesc 9022 6952 3136 | 45.11
Usf2 Gm12878 K562 9022 3083 1903 | 61.73
Yyl Gm12878 Hlhesc 30994 18328 9798 | 53.46
Yyl Gm12878 K562 30994 12677 9788 | 77.21
Zbtb33 K562 Gm12878 3285 2144 1171 54.62
Znf143 Hlhesc Gm12878 30687 20024 14791 73.87
Znf143 Hlhesc K562 30687 29069 18178 | 62.53

Text S6.3 Parameter settings

We assess the prediction performance of MEME, TFFMs, DiChIPMunk, and Dimont using different motif models on the
ENCODE data sets for different cell types. We train each of the approaches on the ChIP-seq data set measured for the cell
type with the largest number of peaks and test its prediction accuracy on the ChIP-seq data sets for the remaining cell types.
This scenario resembles likely practical applications, e.g., combining computational predictions with cell type-specific DNase |
hypersensitivity experiments. We train each of the approaches according to the suggestions of the corresponding publications.
We test each of the approaches on the ChIP-seq data sets for the remaining cell type(s) using the identical sequences of length
1000 bp around the peak center for all approaches considered to obtain comparable results, but obtain highly similar results using
sequences of length 100 bp (data not shown).

We extract for each approach the most suitable sub-sequences in the peak region as noted in the original publications. More
specifically, we extract sequences for

MEME and TFFM using 50 bp on each flank of the peak summit as suggested by (13); for training MEME, we use only the top
500 peaks of each data set according to the peak statistic;

DiChIPMunk according to the peak boundaries given in the narrowPeak file and annotate these using a triangular “prior” with
its maximum at the peak summit (cf. (14)));

Dimont using 500 bp on each flank of the peak center as suggested by (15).
We train each of the approaches as follows:

MEME is trained using DNA alphabet and default parameters on the top 500 peaks as is the standard procedure of several
publications;

DiChIPMunk is trained for a motif length between 10 and 25 bp, a ZOOPS factor of 1.0, using peak data and the remaining
parameters set to their defaults (14);

TFFMs are initialized by the MEME result on the sequences of the top peaks and trained using “first order” and “detailed”
models on the complete data sets (13));

Dimont is trained as described previously (15) with minor modifications to the initialization strategy and shift heuristic.

While the original version of Dimont used single 7-mers for initialization (15), we augment the initialization set to all 20-mers
for that the central 7-mer has a Hamming distance of at most 3 to the original 7-mer. We modify the length adaption heuristic of
Dimont to a shift heuristic that preserves the motif length and allows shifts of the motif model of at most 5 positions in either
direction. We shift positions out of the model if these neither have a Kullback-Leibler divergence to the background distribution
of nucleotides greater than 0.2 nor a mutual information above 0.2 to any of the other motif positions. If such positions exists at
both flanks of the model, we shift the motif model such that the conserved part lies in the model center.

We start MEME using the command line
meme -p 3 —-dna <sequences.fa>
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We start DiChIPMunk using the command line
java —-Xms512M -Xmx4G autosome.ru.di.ChIPMunk 10 25 yes 1.0
p:<sequences.fa> 200 20 1 8

We learn first order TFFMs using custom python code checked against the web-application at http://cisreg.cmmt.
ubc.ca/TFFM/:

import sys

sys.path.append ("./TFFM-master")

import tffm_module

from constants import TFFM_KIND

tffm_first_order = tffm module.tffm from_meme ("meme_out/meme.txt", TFFM_KIND.FIRST_ORDER)

tffm first_order.train(sys.argv[1l])
tffm first_order.write("tffm first_order.xml")

and in complete analogy (using TFFM_KIND.DETAILED) for detailed TFFMs.

Text S6.4 Binding site prediction

For the assessment, we need a single prediction score for each input sequence. Following the suggestions of the original
publications, we use the maximum score of a sliding window of the motif width in case of MEME, TFFMs, and DiChIPMunk
(cf. (13} 14)) and the ZOOPS score in case of Dimont (cf. (15); We also test the maximum score in case of Dimont and obtain
similar results (data not shown).

We only use the first motif model (according to internal ranking) returned by MEME and Dimont, because DiChIPMunk and
TFFMs return only a single model.

For predictions, we test in case of MEME for each performance measure the maximum score of the “scoring matrix” and
the “probability matrix” and chose that matrix yielding the better performance. In the same manner, we test both scoring
matrices returned by DiChIPMunk and we test the “first order” and the “detailed” TFFM and decide for the better option for
each performance measure.

We make predictions using the weight matrices of MEME and the di-nucleotide models of DiChIPMunk using custom Java
code.

We make predictions for TFFMS using custom python code:

import sys

sys.path.append("./TFFM-master")

import tffm_module

from constants import TFFM_KIND

tffm_first_order = tffm_module.tffm_from_xml (sys.argv[2], TFFM_KIND.FIRST_ORDER)

for hit in tffm_first_order.scan_sequences (sys.argv[l],only_best=True) :
if hit:
print hit

and in complete analogy (using TFFM_KIND.DETAILED) for detailed TFFMs.

Text S6.5 Comparison to other tools

In Figure [S6JA, we plot the AUC-ROC values, which is a widely accepted measure for ChIP-seq prediction accuracy (6, [13] [15]
83|, 184), achieved by DiChIPMunk, TFFMs and the Dimont framework relative to the performance achieved by MEME. Here,
each of the approaches is trained on the data set for one cell type and predictions are made on the data set(s) for the remaining
cell types of the Tierl data sets of the ENCODE project. We find that for approximately half of the data sets, DiChIPMunk and
TFFMs yield a better classification performance than MEME, while for the other half the performance observed in worse than
that of MEME. In contrast, Dimont using PWMs or WAMs scores worse than MEME only for a small fraction of data sets,
whereas it yields a considerably larger AUC-ROC than MEME for more than half of the data sets. Dimont also performs better
than DiChIPMunk and TFFMs for approximately four thirds of the data set, although to a varying degree. This picture is widely


http://cisreg.cmmt.ubc.ca/TFFM/
http://cisreg.cmmt.ubc.ca/TFFM/
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consistent for AUC-PR, weighted AUC-ROC and AUC-PR, and Pearson and Spearman correlation (cf. Figures and . Itis
important to note that this does nor mean that MEME or the other tools fail to infer informative motifs from these ChIP-seq data
sets (cf. Figures [ST0] and [STI)), since for most data sets, all of the tools considered yield for instance AUC-ROC values greater
than 0.5, which would be the performance of a random guesser.

Notably, the performance of all approaches substantially drops for AUC-ROC and AUC-PR using di-nucleotide shuffled
versions of the top 500 sequences (Figures [S§| and [ST2). One explanation for this observation is that Dimont using WAMs,
DiChIPMunk and TFFMs consider dependencies between adjacent di-nucleotides in their models, which complicates the
classification task if the negative sequences preserve an identical di-nucleotide composition. In part, this may also apply to Dimont
using PWMs, since discriminative learning principles work substantially better than generative ones if the model assumption is
wrong, and may to some extent accomodate the lack of di-nucleotide features. To further investigate this issue, we re-train the
Dimont models on training data that additionally contain di-nucleotide shuffled version of the training data as negative examples.
We find (Figures and that in this case, Dimont using PWMs and WAMs yields a substantially better classification
performance and largely restores the tendencies observed for the other performance measures in Figures and
This underlines that discriminative learning principles like the weighted MSP principle employed by Dimont profit from a careful
selection of negative examples in training and, hence, negative data should be selected application-specific. However, for the
following studies comparing different models within the Dimont framework, we use the same training data for all performance
measures to keep models and classifiers consistent between different performance measures and within individual iterations of
cross-validation experiments.

The comparison across cell types might be biased by overlaps of the ChIP regions of different cell types and, hence, might be
skewed by overfitting effects. To investigate this issue, we compute the overlap between the cell-type specific ChIP-regions for
each transcription factor (Table[ST)) and find considerable overlaps for several transcription factors.

Summarizing the results of this benchmark, Dimont yields at least the prediction performance achieved by alternative
approaches using dependency models for the majority of ChIP-seq data sets and may, hence, serve as a solid framework for
evaluating different dependency models including Slim and LSlim models in the following sections.
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Figure S6. Comparison of the Dimont framework using PWM and WAM models to MEME (baseline), DiChIPMunk, and TFFMs. As performance measure, we

use AUC-ROC and AUC-PR for the sequences under the top 500 peaks vs. randomly sampled genomic sequences, and wAUC-ROC using all sequences under

peaks. We compute relative values by subtracting for each data set the corresponding value of MEME from those of the other approaches. Vertical lines separate

the data sets of different transcription factors.
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Figure S7. Comparison of the Dimont framework using PWM and WAM models to MEME (baseline), DiChIPMunk, and TFFMs. As performance measure, we

use WAUC-PR, Pearson and Spearman correlation using all sequences under peaks. We compute relative values by subtracting for each data set the corresponding

value of MEME from those of the other approaches.
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Figure S9. Comparison of the Dimont framework using PWM and WAM models to MEME (baseline), DiChIPMunk, and TFFMs. As performance measure,

we use AUC-ROC and AUC-PR for the sequences under the top 500 peaks vs. di-nucleotide shuffled versions of the same sequences. In contrast to Figure@
we trained Dimont using di-nucleotide shuffled versions of the training sequences as additional negative data, while MEME, DiChIPMunk and TFFMs do not

consider negative data in their training methods and, hence, remain unchanged. We compute relative values by subtracting for each data set the corresponding

value of MEME from those of the other approaches.



20 Supplemental material

A AUC-ROC

20y¥-0nNv

¥'0

[ 9SOUTH TPy

{ 8/82TWO 1813
(- 9sauTH qdgad
~ 8.8ZTW9 qdgad

& 9SayTH ¢y

data set
.

O MEME
o TFFM

@ DiChIPMunk

0T 80 90

B AUC-PR

dd-onv

0

8/82TWO ¥ic3

8/82TW9 Ovaulug
2953 TdS
9SaUTH TdS

8/8¢TWO TZpey
295X X4y

OSBYTH BIXy
9SaYTH 2V

data set

C wAUC-ROC

O MEME
0 TFFM

B DiChIPMunk

r
SL'0

T
0.0

T
S9'0

T
09°0

20d-ONvm

S50

050

Sv'0

8L82TWO ZAIN

2sayTH daes
8/82TWo dqeo

PUS
9S3YTH 2pyd
295 Tyoeg

A
TAA

JS3YTH ©TTIPg
8/82TWY Grels
9SAUTH XeiN
8L82TWO Xe
299X eZjdN
8.82TWO 0v3ulUg

8L82TWO Tgpey
8/82TWO 158100
OSAYTH Zhy
8.82TWO TIEIS
295X el

data set

ChIPMunk, and TFFMs. As performance measure, we use

and WAM models to MEME, Di

AUC-ROC and AUC-PR for the sequences under the top 500 peaks vs. randomly sampled genomic sequences, and wAUC-ROC using all sequences under peaks.

In contrast to Figure@ we present absolute values of the performance measures.

Figure S10. Comparison of the Dimont framework using PWM



Supplemental material 21

A wAUC-PR

T
or'o

"d-onvm

295X VAL
8.82TWO ZAN

8.8ZTW9 £V
8/82TWS SO}
295 gdaay
2953 G
9SAUTH GXIS
295 9AIN
9S3UTH JSIN
8.82TWD JSIN
2953 THN
9SaYTH THUN
2sayTH daes
8/8ZTW9 dqeo
9S3UTH BTPUYD
8/8ZTWO BTPYD

8.8CTWO Ze
8/82TWO Ovaylug

9S8UTH BTTIE
2953 54y
3S3UTH 5X1
9S3UTH XelN
8/82TWO XeN

29SM 4l

data set

B Pearson correlation

O MEME
o TFFM
B DiChIPMunk
u PWM
B WAM

4

Uoe[d1109 UoSIedd

8/82TWO Z3IN

9SSUTH TIS04
8/82TWS SO
8/82TWS pic3
2963 9AIN

295X aisn
9S8YTH JSIN

OS3YTH eTTPg
8/8CTWO Opayug
295X goWS
8/8¢TWY GleIS
ISAUTH CTPL
9s8YTH JAW:
8/8¢TWO JAWD

8/8¢TWO 153100
OSSYTH 2hv

8/8¢TWO EYTIUZ
C9SM Lyl

data set

C Spearman correlation

O MEME
o TFFM

B DiChIPMunk
| PWM
| WAM

14 20

uone|aLI09 ueweads

299X 3910

8.8ZTWO ZAIN
296y sdgay

9SAUTH TIZHO
8/82TWO T3
8/82TWO TRAIG
88CTWO EENWAZ
9SBYTH BIxy
299M 4IS

JSAYTH JS

8182TWD 0payIug
9S9YTH gds

8.82TWS 1163
9SAUTH XelN
882TWO XeW
8/82TWS TS13
295% THN
3SaUTH THN
299 |wd

295 gows
9S8UTH ZTOL
9s3yTH qdgad
8/82TW9 qdgad
29931 TP
2955 Xjy
9S3UTH Xy
882TWD GleIs

8182TWO TZpey
295X €199
8.8CTWO 1s8100

T9SM el

data set

M we present absolute values of the performance measures.

igure

1l sequences under peaks. In contrast to F

Figure S11. Comparison of the Dimont framework using PWM and WAM models to MEME, DiChIPMunk, and TFFMs. As performance measure, we use
ion using a

wAUC-PR, Pearson and Spearman correlat
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Figure S12. Comparison of the Dimont framework using PWM and WAM models to MEME, DiChIPMunk, and TFFMs. As performance measure, we use

AUC-ROC and AUC-PR for the sequences under the top 500 peaks vs. di-nucleotide shuffled versions of the same sequences. In contrast to Figure@ we present

absolute values of the performance measures.
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Figure S13. Comparison of the Dimont framework using PWM and WAM models to MEME, DiChIPMunk, and TFFMs. As performance measure, we use AUC-
ROC and AUC-PR for the sequences under the top 500 peaks vs. di-nucleotide shuffled versions of the same sequences. In contrast to Figurem we trained

Dimont using di-nucleotide shuffled versions of the training sequences as additional negative data, while MEME, DiChIPMunk and TFFMs do not consider

negative data in their training methods and, hence, remain unchanged. In contrast to Figure[S9] we present absolute values of the performance measures.
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Text S6.6 Comparison of models

We compare the performance of WAM, Slim, and LSlim(5) models to that of PWM models on the data sets of the Tierl data sets
of the ENCODE project, i.e., on the same data sets that we also use for the comparison to other tools in[Text S6.5] We present the
results of this comparison in Figures [S14]and [ST5]

First, we focus on wAUC-PR as performance measure depicted in Figures [ST5A, since wAUC-PR measures the ability of
classifying highly occupied peaks from less occupied ones but also the ability of predicting peak abundances from sequence
data. We find that for the majority of data sets, all of the dependency models (WAM, Slim, or LSlim) yield an improved
prediction performance compared to the PWM assuming position independence. WAM, Slim and LSlim models each yield
the maximum performance for approximately one third of the data sets, where the exact proportions vary slightly for other
performance measures.

The absolute improvements of wAUC-PR vary substantially between data sets. For some data sets we find no considerable
improvement over the PWM model (e.g., Bachl, Chdla, EIfl, Elk, Tcf12), whereas for other data sets we find a considerable
improvement (e.g., Atf3, Brcal, E2F4, Fosll, Gtf2f1, Nfya, Nfyb, Nfe2, Nrsf). Notably, for some of the data sets (e.g., Brcal,
E2f4, Nfyb, Six5), we see an improvement for the performance measures taking peak statistics[] into account (WAUC-ROC,
wAUC-PR, correlation) but less for the classification-related performance measures (AUC-ROC, AUC-PR), which might be an
indication that the dependencies discovered are less relevant for binding sites under the peaks with the largest peak statistic.

Second, we compare the models in a cross validation as depicted in Figures and [ST8] Finally in Table [S2] we directly
compare the models by analyzing how often a model is significantly better or worse than any other model. Both aspects are
discussed in the main manuscript.

Table S2. Overview of significant improvements. For each combination of models, we count for how many of the 63 data sets one model (rows) achieves a
significantly better performance (difference greater 2-fold standard error in a 10-fold cross validation) than the other model (columns).

A wAUC-PR B AUC-PR
better than better than
PWM WAM LSlim(5) Slim PWM WAM LSlim(5) Slim
PWM 0 4 1 0 PWM 0 13 4 4
WAM 25 0 2 3 WAM 19 0 2 5
LSim(3) 36 21 0 7 LSTim(5) 26 22 0 3
STim 30 2 0 0 STim 22 21 1 0
C wAUC-ROC D AUC-ROC
better than better than
PWM WAM LSlim(5) Slim PWM WAM LSlim(5) Slim
PWM 0 2 1 0 PWM 0 11 2 0
WAM 32 0 1 4 WAM 22 0 1 1
LSTim(5) 1 5 0 T LSTim(5) 27 23 0 T
Slim 31 15 0 0 Slim 25 20 1 0
E Pearson correlation F Spearman correlation
better than better than
PWM WAM LSlim(5) Slim PWM WAM LSlim(5) Slim
PWM 0 4 1 1 PWM 0 1 0 0
WAM 29 0 3 6 WAM 26 0 1 3
LSIim(5) 39 5 0 3 LSIim() 38 5 0 T
Slim 35 15 0 0 Slim 31 14 0 0
G AUC-ROC (shuffled) H AUC-PR (shuffled)
better than better than
PWM WAM LSlim(5) Slim PWM WAM LSlim(5) Slim
PWM 0 2 2 5 PWM 0 3 2 3
WAM 33 0 7 23 WAM 16 0 6 16
LSTim(5) 26 8 0 2 LSTim(5) 18 11 0 6
Slim 17 6 1 0 Slim 11 8 0 0

!“Peak statistics” refers to the peak-specific score reported by most peak callers, which is typically related to the abundance of reads under a ChIP-seq peak.
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Figure S14. Comparison of models across cell types. We compare WAM, Slim, and LSlim models to the baseline PWM model, where each model has been

trained on data for one cell type and predictions are made for another cell type.
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Figure S15. Comparison of models across cell types (2). We compare WAM, Slim, and LSlim models to the baseline PWM model, where each model has been

trained on data for one cell type and predictions are made for another cell type.
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Figure S16. Comparison of models across cell types. We compare WAM, Slim, and LSlim models to the baseline PWM model, where each model has been

are made for another cell type.
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Figure S17. Comparison of models in a cross validation experiment. We compare WAM, Slim, and LSlim models to the baseline PWM model in a 10-fold cross

validation experiment using ENCODE Chip-seq data sets for 63 transcription factors.
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Figure S18. Comparison of models in a cross validation experiment (2). We compare WAM, Slim, and LSlim models to the baseline PWM model in a 10-fold

cross validation experiment using ENCODE Chip-seq data sets for 63 transcription factors
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Text S6.7 Further examples of dependency logos
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Figure S19. Dependency logos of binding sites predicted by the Slim model for different ChIP-seq data sets.
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Figure S20. Dependency logos of binding sites predicted by the Slim model for different ChIP-seq data sets.
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Figure S21. Dependency logos of binding sites predicted by the Slim model for different ChIP-seq data sets.
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Figure S22. Dependency logos representing the two components of a mixture model and boxplots of the ChIP-seq peak statistics for the sequences containing
the representative motifs of both components for A) Nfe2, B) Mxil and C) Nrsf. (Kolmogorov-Smirnov test, corrected p-values, ***: p < 1075; **: p<0.001;

*: p<0.01).
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Text S6.8 Global picture of dependency structures

With the goal of obtaining a broader picture of the wealth of dependency structures present in the ENCODE ChIP-seq data
sets, we aim at simple, numerical measures that describe neighboring and non-neighboring dependencies and heterogeneities
in the predicted binding sites. For neighboring and non-neighboring dependencies, we consider for each position that position
yielding the maximum mutual information and test this value for significance (av=10"20, Chi-squared distribution, accounting
for the size of data sets). If the mutual information is significant, we count this dependency as neighboring if the maximum is
achieved by a position neighboring the current one and as non-neighboring otherwise. For assessing heterogeneity, we partition
the predicted binding sites by the nucleotides at that position j with the greatest D(j) and compute the average, pairwise Kullback-
Leibler divergence (85) between the PWMs learned on each of the partitions. We compute these measures for each of 10 cross-
validation iterations on each of the ChIP-seq data sets to assess their technical variance due to different partitionings and different
initializations of the algorithm (Table [S3).

We find that the number of neighboring (Figure [S23]A) and non-neighboring dependencies(Figure [S23B) and heterogeneit
(Figures ) vary between different transcription factors to a greater extent than between the different replicates (p< 1071
for each measure, Kruskal-Wallis test). Among those factors yielding an exceptionally large number of neighboring dependencies
are Nrsf, Ctcf, Mef2a, Cjun, Jund, and YY1, whereas we observe a large number of non-neighboring dependencies for other
factors including Rfx5, Ets1, Ezh, and Bcl3. Finally, Sp2, Bcll 1a, Rfx5, Cjun, Atf2 and Atf3, Bcl3, Tblrl, and Stat5 are among
the factors with the greatest heterogeneities.

To investigate if we also find general tendencies for different families of transcription factors, we group transcription factors by
their family, omitting groups with less than 3 members. Indeed, we find different tendencies for the three measures considered.
Zinc finger transcription factors appear to exhibit a greater number of neighboring dependencies than the other families, which is
consistent with the known dependence between the positions bound by a single finger but less between different fingers. Leucine
zippers appear to show less non-neighboring dependencies than the other families, especially helix-loop-helix factors, which
might be explained by independence of the two halves of the zipper and rather strict binding within each zipper. In contrast,
leucine zippers show the greatest heterogeneity of all families, which might be due to the flexibility of the spacer between the two
halves of the zipper as we observed for c-Jun. Helix-loop-helix factors show the least heterogeneity, which might be due to the
clear pattern of the typical E-box motif.

Notably, none of the observed differences between transcription factor families is statistically significant (Kolmogorov-Smirnov
test). Hence, we cannot select appropriate models or dependency structures captured by these models a-priorily considering a
transcription factor’s family alone. Fortunately, the Slim model proposed in this paper does not require such a pre-selection but
adapts to the different dependency structures without user intervention. Dependency logos assist the user to dissect the detected
dependency structure in an intuitive, visual way.



data set family neighboring non-neighboring heterog.
Atf2 leucine zipper 14.0 4.0 0.533
Atf3 leucine zipper 11.0 8.0 0.505
Bachl leucine zipper 11.5 2.0 0.286
Bellla zinc finger 11.0 55 0.564
Bcl3 ankyrin repeat 8.5 10.5 0.601
Bclaf unknown 11.0 2.5 0.304
Bhlhe40 helix-loop-helix 15.0 1.0 0.213
Brcal unknown 6.0 0.0 0.276
Cebpb leucine zipper 14.0 3.0 0.274
Cfos leucine zipper 12.0 1.5 0.251
Chdla chromo domain-like 7.0 10.0 0.309
Chd2 chromo domain-like 10.5 8.5 0.424
Cjun leucine zipper 15.5 1.0 0.547
Cmyc helix-loop-helix 13.0 4.0 0.289
Corest indirect 14.0 2.0 0.248
Ctcf zinc finger 17.0 2.5 0.285
E2f4 winged helix 11.0 4.5 0.334
Egrl zinc finger 7.0 9.5 0.292
EIf1 winged helix 12.5 3.0 0.242
Elk winged helix 11.5 0.0 0.289
Etsl winged helix 8.0 9.0 0.160
Ezh polycomb 9.0 7.0 0.333
Fosl1 leucine zipper 11.0 3.0 0.269
Gabp winged helix 12.0 3.0 0.276
Gtf2f1 winged helix 11.0 2.5 0.283
Hdac2 arginase/deacetylase 10.0 7.0 0.341
Jund leucine zipper 13.0 4.0 0.372
Max helix-loop-helix 13.5 5.0 0.283
Maz unknown 10.0 7.5 0.213
Mef2a SRF-like 17.0 1.5 0.295
Mxil helix-loop-helix 9.0 9.0 0.301
Nfe2 leucine zipper 9.0 5.0 0.418
Nfya unknown 12.0 0.0 0.270
Nfyb histone-fold 10.5 5.0 0.264
Nrfl unknown 12.0 0.0 0.265
Nrsf zinc finger 18.0 2.0 0.143
P300 TAZ 11.0 6.0 0.289
Pml TRIM 8.5 9.5 0.337
Pul winged helix 13.0 4.0 0.155
Rad21 winged helix 16.0 4.0 0.281
Rbbp5 unknown 19.0 1.0 0.394
Rfx5 winged helix 8.5 7.0 0.562
Rxra glucocorticoid receptor-like 0.0 0.0 0.271
Sin3a PAH2 9.5 5.5 0.441
Six5 homeodomain-like 8.0 2.0 0.265
Smc3 smc hinge 16.0 2.0 0.246
Spl zinc finger 12.5 6.0 0.261
Sp2 zinc finger 8.0 5.0 0.436
Srf SRF-like 9.5 7.5 0.253
Statl p53-like 8.0 0.0 0.314
Stat5 p53-like 12.0 6.0 0.423
Tafl TBP-binding fragment 11.0 6.5 0.174
Taf7 unknown 9.0 5.0 0.303
Tblrl F box-like 11.5 7.0 0.474
Tbp TBP-like 9.0 10.0 0.355
Tcf12 helix-loop-helix 13.0 1.0 0.322
Tead4 TEA/ATTS 14.0 0.0 0.293
Trd glucocorticoid receptor-like 5.0 0.0 0.291
Usf1 helix-loop-helix 14.0 3.0 0.281
Usf2 helix-loop-helix 12.0 1.0 0.226
Yyl zinc finger 17.0 1.0 0.154
Zbtb33 helix-loop-helix 2.0 3.0 0.297
Znf143 zinc finger 15.0 3.0 0.256
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Table S3. For each ChIP-seq data set of human transcription factors from ENCODE, we list transcription factor, its family, and median values of the dependency
statistics for neighboring and non-neighboring dependencies and heterogeneities.
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dependencies (A) and heterogeneity measures (average Kullback-Leibler divergence, B) over the 10 cross validation runs. Boxes are colored according to

Figure S23. Dependency structure is highly factor-dependent. For each of the ChIP-seq data sets, we show a box plot of the number of significant non-neighboring
transcription factor families.





