Supplemental Information

Cooperation between SMYD3 and PC4 drives a distinct transcriptional program in cancer cells

Jin-Man Kim, Kyunghwan Kim, Thomas Schmidt, Vasu Punj, Haley Tucker, Judd C. Rice, Tobias S. Ulmer and Woojin An

Supplementary Figure Legends

Figure S1. Effects of SMYD3 knockdown on proliferation and invasion of bladder and colon cancer cells.

(A) Whole cell extracts were prepared from colon normal (CDC-18Co) and cancer (HCT116, CaCO2, and HT29) cells, bladder normal (UROtsa) and cancer (J82, T24 and RT4) cells, breast normal (MCF-10-2A) and cancer (MCF7 and MDA-MB-231) cells, and prostate normal (MLC) and cancer (LNCaP and DU145) cells. Equal amounts of extracts were analyzed by immunoblotting with anti-SMYD3 and anti-Actin antibodies. (**B**) HCT116, CaCO2, J82 and T24 cancer cells were transfected with lentiviruses expressing control shRNA (Control sh) or SMYD3-specific shRNA (SMYD3 sh), and knockdown efficiency was determined by immunoblotting. (**C**) HCT116, CaCO2, J82 and T24 cancer cells were transfected with control shRNA or SMYD3 shRNA, and their proliferation rates were determined by MTT colorimetric assays over a period of 4 days. Results represent the means of three independent experiments \pm SD. (**D**) Control or SMYD3-depleted HCT116, CaCO2, J82 and T24 cancer cells were detached and seeded onto the upper chamber coated with Matrigel, and then allowed to invade toward 10% FBS in the lower chamber. The graph depicts the average number of invaded cells per four fields. Results represent the means \pm SD of three independent experiments.

Figure S2. Validation of microarray data.

Microarray data were validated by qRT-PCR of seventeen genes whose expression was decreased upon SMYD3 knockdown and which are related to cell growth and invasion, and two unaffected genes. Primer sequences are listed in Table S3. The values are expressed as fold changes from the mRNA levels in control cells after normalization with *ACTB*. Data represent the means \pm SD of three independent experiments.

Figure S3. Target gene occupancy of SMYD3 and H3K4me3.

(A) SMYD3-depleted HCT116 colon cancer cells were infected with lentiviruses expressing RNAi-resistant FLAG-SMYD3 wild-type (wt) or enzymatic dead mutant (F183A), and whole cell extracts were analyzed by immunoblotting with the indicated antibodies. (B) ChIP-qPCR experiments were performed as in Figure 1D, but using primers specific for the *MFGE8* gene. The vertical red bar represents the putative SMYD3 binding site.

Figure S4. Effects of SMYD3 knockdown on target gene expression.

Expression levels of the genes down-regulated (*FNBP1*, *MFGE8*, *PDLIM7*, and *WNT3A*) or unaffected (*KRT81* and *GAPDH*) were analyzed by qRT-PCR on total RNA isolated from SMYD3-depleted CaCO2, J82 and T24 cancer cells.

Figure S5. Effects of SMYD3 knockdown on H3K4me3.

(A) Potential SMYD3 binding sites in target gene promoters are indicated in red. The nucleotides in blue indicate primer sequences used for ChIP-qPCR. (B) Diagram depicting the positions of the PCR amplicons used for ChIP assays. The numbers represent the start and end positions of amplicons relative to the transcription start site (TSS). The putative SMYD3 binding sites are shown as vertical red bars. (C and D) ChIP experiments determining SMYD3 localization (C) and H3K4me3 enrichment (D) at the four SMYD3 target genes (*FNBP1*, *MFGE8*, *PDLIM7*,

WNT3A) and two control genes (*KRT81* and *GAPDH*) in SMYD3-depleted HCT116, CaCO2, J82 and T24 cancer cells using primers depicted in (**B**).

Figure S6. Interaction of SMYD3 N-terminal deletion mutants with PC4.

GST alone or GST-PC4, immobilized on glutathione Sepharose beads, was incubated with Histagged SMYD3 deletion mutants. After washing with washing buffer, the bound SMYD3 proteins were immunoblotted with His antibody. Of the input proteins, 5% were examined by immunoblotting.

Figure S7. Circular dichroism spectra of SMYD3 and PC4.

Spectra of SMYD3 (black) and PC4 (red) are shown. In addition, the spectra of the SMYD3-PC4 complex is depicted in green, which matches the sum of the individual SMYD3 and PC4 spectra, shown in blue. Spectra were recorded at protein concentrations of 5 μ M in 5 mM K₂HPO₄/KH₂PO₄, pH 7.4, 25 mM KCl at 25 °C using a JASCO J-810 spectropolarimeter. The observed ellipticity in millidegrees, θ , was converted into the mean residue ellipticity, θ_{MRW} .

Figure S8. Interdependent localization of SMYD3 and PC4 at target genes.

(A) SMYD3-depleted HCT116 colon cancer cells were infected with lentiviruses expressing FLAG-tagged SMYD3 wild-type (wt) or K78/D82/R85 mutant (mt) lacking interaction with PC4, and cell lysates were prepared and analyzed by immunoblotting with anti-SMYD3, anti-FLAG, anti-PC4, and anti-Actin antibodies, as indicated. (B) ChIP-qPCR experiments were performed as in Figure 3C, but using primers specific for the *MFGE8* gene. (C) Exogenous expression of FLAG-tagged PC4 wild-type (wt) or SMYD interaction-deficient Q65/R75 mutant (mt) in PC4-depleted HCT116 colon cancer cells was confirmed by immunoblotting. (D) ChIP-qPCR assays were done with PC4-depleted HCT116 cells complemented with PC4 wild-type (wt) or mutant (mt) as in (B). The vertical red bar in (B) and (D) represents the putative SMYD3 binding site.

Figure S9. RT-PCR and ChIP of the PC4 target gene SMUG1.

(A) SMYD3-depleted HCT116 cells were transfected with SMYD3 wild-type (wt) or K78/D82/R85 mutant (mt), and the expression of the known PC4 target gene *SMUG1* was determined by qRT-PCR. (B) SMYD3-depleted HCT116 cells were complemented with SMYD3 wild-type (wt) or K78/D82/R85 mutant (mt) as in (A), and the levels of SMYD3, PC4 and H3K4me3 along the *SMUG1* gene were determined by ChIP-qPCR. (C) Wild type (wt) or Q65/R75-mutated (mt) PC4 was expressed in PC4-depleted HCT116 cells, and *SMUG1* gene expression was determined by qRT-PCR. (D) ChIP signals for SMYD3, PC4 and H3K4me3 along the *SMUG1* gene were determined as indicated.

Figure S10. dCas9-based activation of SMYD3 target genes.

qRT-PCR experiments were performed as in Figure 5C, but using sgRNAs specific for the *MFGE8* gene.

Figure S11. dCas9-based accumulation of SMYD3 and H3K4me3 at target genes.

ChIP-qPCR experiments were performed as in Figure 6, but using sgRNAs and primers specific for the *MFGE8* gene.

Supplementary Table S2. sgRNA target sites and oligo primer sequences.

Name	Target site	Forward (5'-3')	Reverse (5'-3')
FNBP1-	CCCGGGGGGAGGG	ACACCCCCGGGGGGAGGGG	AAAACGCCCGGCCCCTC
G1	GGCCGGGC	GCCGGGCG	CCCCGGGG
FNBP1-	CCGCCCCTCCCC	ACACCCCGCCCCTCCCCCG	AAAACGGAGAGCGGGGG
G2	CGCTCTCC	CTCTCCG	AGGGGCGGG
FNBP1-	CCGAGCTCTGGG	ACACCCCGAGCTCTGGGTG	AAAACCTCACTCACCCAG
G3	TGAGTGAG	AGTGAGG	AGCTCGGG
FNBP1-	CTCGCGGCCTGG	ACACCCTCGCGGCCTGGGG	AAAACCCTCCTCCCAGG
G4	GGAGGAGG	AGGAGGG	CCGCGAGG
MFGE8-	AACCAATTCCCT	ACACCAACCAATTCCCTCC	AAAACCGGCTGGGAGGGA
G1	CCCAGCCG	CAGCCGG	ATTGGTTG
MFGE8-	GCCAGCTTGGGC	ACACCGCCAGCTTGGGCG	AAAACTGCGCTCCGCCCA
G2	GGAGCGCA	GAGCGCAG	AGCTGGCG
MFGE8-	TAAGGGAAGGGC	ACACCTAAGGGAAGGGCC	AAAACACTCCCCGGCCCT
G3	CGGGGAGT	GGGGAGTG	TCCCTTAG
MFGE8-	GGAAGAGGGCTG	ACACCGGAAGAGGGCTGC	AAAACTCAGCAGGCAGCC
G4	CCTGCTGA	CTGCTGAG	CTCTTCCG

Primers	Forward (5'-3')	Reverse (5'-3')
ACTB	TCACCGAGCGCGGCT	TAATGTCACGCACGATTTCCC
ARAF	GAATGAGATGCAGGTGCTCA	CCACATGCAGGTGATGGTAG
GRINA	CGGGAGAATGTCTGGACCTA	CTGCATGGAGAAGATGACGA
MAP2K3	AGCTACCTGGAGCTGATGGA	AGCTTATGGTGTGGGTGAGC
MAPK3	ACAGTCTCTGCCCTCCAAGA	CTCATCCGTCGGGTCATAGT
P4HB	CATCGTGAACTGGCTGAAGA	CTCCACGTCCTTGAAGAAGC
PLCG2	AACCAACCAGCAAAACCAAG	TTTGTCCCTTTGGGTAGACG
DERL1	GCTTTCGACTTGGAGACCAG	TGTTAGCCAGAACGCAGTTG
FNBP1	TGGAGGAAAGGAGGATTGTG	CGCTTCATTGGCTGAGTGTA
FTL	AGGCCCTTTTGGATCTTCAT	CAGGTGGTCACCCATCTTCT
GAL	AAGGAAAAACGAGGCTGGAC	GGACCTGTCAAAGCTTCCTG
MFGE8	ACCTGTTTGAGACCCCTGTG	GGTTCCAGCTGAAGAGATGC
PDLIM7	CAGCTTCTGCCTACCTCACC	AAAGAGGGAAGGCAGTGTCA
SLC9A1	TCTTCACCGTCTTTGTGCAG	AAGGTGGTCCAGGAACTGTG
SNCA	TGTGCCCAGTCATGACATTT	CCACAAAATCCACAGCACAC
TOB1	ACAGCCCCCTTAACCTCAGT	GCCCGTGCATTTTAACTTGT
VGF	AGCCTCCTCCTCTCAGCTCT	GAAAAGCTCTCCCTCGTCCT
WNT3A	CAAGATTGGCATCCAGGAGT	ATGAGCGTGTCACTGCAAAG
KRT81	TAGGCACCCCAACTCAAGTC	AAGTGGGGGGATCACACAGAG
GAPDH	GGCCTCCAAGGAGTAAGACC	AGGGGAGATTCAGTGTGGTG
SMUG1	AGCTGGGGGGAAGGATGTAGT	GCCAACATGGTGAAACACTG

Supplementary Table S3. Primer sequences for qRT-PCR.

Supplementary Table S4. Primer sequences for qPCR.

Primers	Forward (5'-3')	Reverse (5'-3')
PDLIM7-TSS	GAAAGTCTAGTGGGCGTGGT	AGTGCCCTTTGTGGTCCTC
WNT3A-TSS	CACAGACCAGGAGCGAGAG	GTGTCGGTGTGTCTGAGGAC
KRT81-TSS	GCCAGGCTCTACTCCTCCTT	GGGGAGTCAGCATGTTTCAT
FNBP1-A	GCTGTCCCTTCCTCTTCCTC	TTTGGAAACGGTACATGCAA
FNBP1-B	GGGGAAAGGGCTAGTGATTC	CAGCGCTCATTTTATCAGCA
FNBP1-C	TACTGCGAGCAGACAGTGGT	CAAAATGGCCCGAGGAAG
FNBP1-D	CGAGCTCTGGGTGAGTGAG	TCGCCTCCGAAGGACAAG
FNBP1-E	CAAAGGGTGTGGAGGAGAAA	TATTGCCCTCAGGATTTTGG
FNBP1-F	GTGGCTCAGGCCTATATTGC	TCCAGATATTCCCCAAGCTG
MFGE8-A	CCACCATGCCTGGTTACTTT	GAAAGGGAGCTTCCTCAACC
MFGE8-B	GCACCCAGCCAAAACACTAT	CTGTTTGCCGAAAGGGAATA
MFGE8-C	CCCAACAGACTCAAGACTCG	CCTCTGGGACCGGAATAAAT
MFGE8-D	GGCTGGACAGTTCATTGGAT	GTCAGGAGACTCCCATCAGC
MFGE8-E	CCAAGCCTCTGTCTGTGTCA	GGGCCTCAGGAGCTTAAAGT
MFGE8-F	CCCACTCCCATCTCACACTT	TGGGAGGGATCTGAAGAATG
SMUG1-A	GGCTTCATGAGGTGGATGAT	GGTGCAGTAGGAGCTTCAGG
SMUG1-B	GGCTCTGGGACTTAGCAGTG	TCTCCCGCTCTGCTGTCTAT
SMUG1-C	ACAGGCTGTGGCTTTTCACT	GCTAAGGACAGTGGGAGTCG
SMUG1-D	CACCATGCCCAGCTAATTTT	GACTTCGAGACCAGCCTGAC
SMUG1-E	ATGTCAAAGGTGGGCTCAAG	GGGGAAGTGGGAGAGAAAAG
SMUG1-F	ACGGGACCTACTTGTGTTGG	CCCAACCTGTCCACATATCC

Supplementary Table S5. GSEA of 9 gene sets significantly enriched in the SMYD3-knock down condition (normalized (NOM) p<0.01 and false discovery rate (FDR) q<0.05).

NAME	SIZE	ES	NES	NOM p-val	FDR q-val
BENPORATH PROLIFERATION	78	0.423409	4.035999	0	0
POOLA INVASIVE BREAST CANCER UP	83	0.252012	2.556257	0	3.18E-04
ROSTY CERVICAL CANCER PROLIFERATION CLUSTER	84	0.544624	5.226195	0	0
CHIANG LIVER CANCER SUBCLASS PROLIFERATION UP	85	0.397859	4.045592	0	0
PUIFFE INVASION INHIBITED BY ASCITES DN	65	0.326433	2.170377	0.005865	0.015505
PEART HDAC PROLIFERATION CLUSTER DN	40	0.352734	1.989805	0.013921	0.020701
PEART HDAC PROLIFERATION CLUSTER UP	56	0.305071	1.880649	0.012019	0.029155
PUIFFE INVASION INHIBITED BY ASCITES UP	35	0.296035	1.724907	0.010392	0.03608
WANG TUMOR INVASIVENESS UP	147	0.195778	1.674531	0.014035	0.04197

Name	Number of genes	p-value
Cell death and Survival	77	5.98E-06 - 1.27E-02
Cellular Growth and Proliferation	72	4.45E-04 - 1.23E-02
Cellular Function and Maintenance	71	1.03E-04 - 1.37E-02
Cellular Assembly and Organization	54	1.50E-04 - 1.41E-02
Cellular Development	51	4.45E-04 - 1.23E-02
Molecular Transport	50	2.79E-04 - 1.41E-02
Small Molecule Biochemistry	41	3.54E-05 - 1.41E-02
Cell-To-Cell Signaling and Interaction	31	4.45E-04 - 1.41E-02
Cellular Compromise	26	1.03E-04 - 1.41E-02
Carbohydrate Metabolism	23	9.58E-05 - 1.23E-02
Post-Translational Modification	14	3.54E-05 - 1.23E-02
Protein Trafficking	10	2.79E-04 - 1.23E-02
Amino Acid Metabolism	5	3.54E-05 - 1.23E-02

Supplementary Table S6. Molecular and cellular function analysis of IPA in SMYD3 knockdown repressed genes.

Name	Number of genes	p-value
Cell death and Survival	31	2.12E-06 - 2.18E-02
Cell Cycle	21	3.00E-05 - 2.24E-02
Cellular Growth and Proliferation	20	3.44E-05 - 2.24E-02
DNA Replication, Recombination, and Repair	15	4.49E-05 - 2.18E-02
Cellular Development	31	1.13E-04 - 2.30E-02
RNA Post-Transcriptional Modification	7	1.99E-04 - 1.69E-02
Cellular Compromise	5	1.01E-03 - 1.35E-02
Cell Morphology	20	1.87E-03 - 1.68E-02
Cellular Function and Maintenance	12	2.99E-03 - 2.02E-02
Cellular Movement	13	3.10E-03 - 2.27E-02
Immune Cell Trafficking	8	3.10E-03 - 1.58E-02
Inflammatory Response	8	3.10E-03 - 1.58E-02
Amino Acid Metabolism	1	3.40E-03 - 3.40E-03
Carbohydrate Metabolism	4	3.40E-03 - 1.69E-02

Supplementary Table S7. Molecular and cellular function analysis of IPA in SMYD3 knockdown activated genes.

Α

-300 gtgatcccagggcctgccgcgttccaaggcaagcgctagtactgcgagca gatccgggtcccgccgtccctcacacctcccgcgtccttccggaccc +1 cggccgcggctgctgctgctcctcgggccattttgctgtggagcggcgggga

FNBP1

MFGE8

- -200 cctgaacttttccccgcccaacagactcaagactcgtgacccggccgttgg cacgacgcgggacgccggtgtggcagtggcggaagaggcagatatcgcgg gageccegcceceagtecgcetetggceagettgggeggagegeaeggee +1 agtgggaggtgctgagccgcctgatttattccggtcccagaggagaaggc
- KRT81 cctctgccttccccttcccctccccaatgcctgcagatgaaggaatgccct -250 gctggcaagacactttgaagatgaaacatgctgactccccccaa
- -350 gcctcccttctctcccctcgccaggctctactcctcctt
- -250 gcacgtcctcagacacccgacacccgcagcagcagcggggggccaacgc
- agetecaggagggcgcetgeggategeggeeeegggeeggeegeetge ccatctggcgcaccccagcgcgccgcgcacacctggggggcccgcacacca

PDLIM7

agaacactggcggccgatcccaacgaggctccctggagcccgacgcagag

cagcgccctggccgggccaagcaggtatcgacgaccgcgcggggcgtctt

gggctgcaccaggcgggcgcccggggcctgctgaggaccacaaagggcac

+1 tgggggtcgtggtccaggctgtgcttcctcccgctggccctggccctgc

WNT3A

- caccgtgagcgcagggcgcgcggggctggaaacccaggacgcgggcccggg
- -450 aagagacggagctcgccacagaccaggagcgagaggggactgcgggtcc -95 --260

В

Figure S7

λ[nm]

17

Figure S11

