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Marinka Žitnik1, Edward A. Nam2,#, Christopher Dinh3, Adam Kuspa2,3,
Gad Shaulsky2 & Blaž Zupan1,2,∗
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1 An overview

We propose an algorithm for gene prioritization that is able to collectively consider a large
array of diverse data sets. Gene prioritization assumes that we are given a small set of
seed genes and we are looking for other genes that would give a similar phenotype when
mutated. A distinguishing feature of Collage, our gene prioritization algorithm, is its
ability to carry out the search for candidate genes by incorporating large number of data
sets that might be rather distantly related to the problem. For example, classification of
diseases on its own does not directly provide information about genes, but may be useful if
jointly considered with information on drug targets. Genes that are targeted with “similar”
drugs may share a function. Humans are capable of inferring new associations that span
different kinds of information, and our aim was to construct an algorithm that mimics this
behavior.

Collage starts with a collection of data sets, each represented in a matrix. We begin our
tutorial with an example of a matrix that associates genes and functions (Section 2). We
proceed by explaining basic linear algebra operations, such as matrix multiplication, that
are necessary for understanding the prioritization algorithm (Section 3). An essential part
of the algorithm is matrix tri-factorization (Section 4) - an operation that considers a large
input data matrix and compresses it to three smaller matrices. The product of the three
matrices is a good approximation of the original matrix. In this way, the algorithm infers
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essential patterns that govern the data. Most importantly, we have devised the method such
that some small matrices (factors) are shared between the compressions of a set of input
matrices (Section 5). Collage can handle large collections of diverse data sets from sources
that may include tables, ontologies, networks and more, as long as they can be represented
with matrices (Section 6). For the joint consideration, Collage organizes the matrices in a
fusion graph (Section 7) and applies collective matrix tri-factorization (Section 8) to obtain
a compact model of the data.

Collage profiles the genes with feature vectors that relate genes to any of the data sources
included in the data fusion graph. Gene profiles are constructed by chaining of matrices
(Section 9 and Section 10). Intuitively, matrix chaining may correspond to associative
reasoning by which we, humans, can find relations between seemingly unrelated concepts.
Genes with similar profiles assembled from the data fusion graph are assumed to have
similar functions or to cause similar phenotypes when mutated. As the final step of our
method, Collage ranks the genes according to their profile-based similarity with the seed
genes (Section 11).

2 Matrix representation of a data set

Suppose we are given information about the functional annotation of a few genes. One
way of representing these data is a matrix in which the rows correspond to genes and the
columns represent gene functions. Collage would represent this hypothetical data set on
five genes and six gene functions in a matrix as is done in Figure 1. In this example, the
highlighted value 1 indicates that fooB is involved in phagocytosis and the highlighted
value 0 indicates no known association of the gene fgD with the function ’regulation of
phagocytosis’.
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Figure 1 A matrix of gene annotations.
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The following concept is key to understanding our system. Collage considers this matrix
as an edge in a special type of graph, which we call a data fusion graph (this name will
make more sense when we add other data sets). In example in Figure 2, the edge describes
relationships between two object types – genes and gene functions. Hence, the graph
includes two nodes, one for each type of object, and an edge with an associated data
matrix. The directionality of the edge indicates, which objects are in rows and which
are in columns. In our example the edge points from “Genes” to “Gene Ontology terms”
because the rows represent genes (i.e. zbljA and fooB) and the columns represent biological
processes (i.e. rRNA binding and cell morphogenesis).
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Figure 2 The simplest data fusion graph consists of a single data matrix.

3 A brief introduction to linear algebra operations

Matrix multiplication and transposition are two fundamental mathematical operations. Let
us consider the two matrices in Figure 3, A is a 2 x 3 matrix and B is a 3 x 3 matrix. If
we multiply them, we will get matrix P, which is a 2 x 3 matrix. To populate the upper
left element in matrix P, we have to multiply the elements in the first row of matrix A by
the elements of the first column of matrix B in the order they appear and add them up: 3
x 1 + 2 x 1 + 1 x 0 = 5. The middle upper element in P is the sum of the products of the
elements in the first row of matrix A by the elements of the second column of matrix B
in the order they appear: 3 x (-1) + 2 x 0 + 1 x 2 = -1. The right upper element in P is
the sum of the products of the elements in the first row of matrix A by the elements of the
third column of matrix B in the order they appear: 3 x 4 + 2 x 3 + 1 x 5 = 23. Likewise,
the bottom row of matrix P will be populated by multiplying the elements in the second
row of matrix A by the respective elements in the three columns of matrix B.
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Figure 3 Matrix multiplication.

A more formal way to describe what we did is the following. Matrix multiplication takes
two matrices as its input, an n × k matrix A and a k × m matrix B and outputs their
product, which is an n × m matrix P. Matrices A and B can be multiplied only if they
match in their inner dimension, k. In that case the resulting matrix P = AB has the same
number of rows as A and the same number of columns as B. The element in the ith row
and the jth column of P is computed as the dot product of the ith row in A and the jth
column in B, Pij =

∑k
c=1AicBcj .

Matrix multiplication is associative. If three matrices A, B and D are respectively n× k,
k × s and s ×m matrices, we obtain their product ABD by grouping them in any of the
two ways without changing their order, ABD = (AB)D = A(BD).

Matrix transposition is a relatively simple operation that flips a matrix on its side. Trans-
position takes an n × m matrix A and outputs the transposed matrix AT , which has di-
mension m×n and whose elements are defined as AT

ij = Aji. One can see in the example
in Figure 4 that the element in the second row and third colum of matrix A, namely
A23 = 0, becomes the element in the third row and second column of the transposed
matrix (AT

32 = A23):
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Figure 4 Matrix transposition.

4 Tri-factorization of a data matrix

The fundamental building block of Collage is matrix tri-factorization. Matrix tri-factorization
assumes that there is some redundancy in the data, and that a large matrix can be ade-
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quately represented as the product of three smaller matrices. From a biological perspec-
tive, we say that if two genes have similar properties (i.e. their respective rows in the
data matrix are similar), then information about the first gene function might give us some
insight into the function of the second gene.

The example in Figure 5 illustrates tri-factorization of the 5 × 6 gene-by-function data
matrix we discussed above, converting it into three matrices: a 5 × 2 Gene recipe matrix,
a 2× 2 Backbone matrix and a 6× 2 Function recipe matrix.
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Figure 5 Tri-factorization of gene annotation data matrix.

We call the 2×2 Collage-inferred matrix (in blue) a backbone matrix, as it is a compressed
version of the original matrix. In the backbone matrix, the rows correspond to “meta-
genes”, and the columns to “meta functions”. Our backbone matrix models the interplay
between meta genes and meta functions. To decompress the backbone matrix back to the
original space, tri-factorization provides two other matrices (in grey) that we refer to as
recipe matrices, as they provide a map from the compressed to the decompressed space.
The product of the three matrices provides a good approximation of the original data set
as is denoted by ≈ sign in Figure 6.
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Figure 6 Reconstruction of gene annotation data matrix.

Figure 6 shows the original matrix on the left and its reconstruction as inferred by matrix
tri-factorization on the right. In the reconstructed matrix we see that known gene anno-
tations (elements in green that scored ’1’ in the original matrix) have substantially higher
scores than the rest of the matrix elements, as should be expected of a well-performing fac-
torization algorithm. This observation suggests that we did not lose a lot of information in
the process. More importantly, many of the elements that contained ’0’ before have higher
values now - a direct result of the inference process we performed. For example, our anal-
ysis suggests that zbljA might be a promising candidate gene for cell morphogenesis in our
hypothetical example.

For the more mathematically oriented reader: matrix factorization is all about latent com-
ponents, that is, patterns hidden in the original matrix but revealed in its compressed ver-
sion. In our example we have two gene latent components represented by the columns of
the gene recipe matrix and also two gene function latent components given in the columns
of the gene function recipe matrix. Latent components should be understood as abstract
groups of genes and groups of gene functions. Unlike our example, each object type
can have a different number of latent components, that is, a different number of columns
for its recipe matrix. The number of latent components is commonly referred to as the
factorization rank and is a parameter of the Collage algorithm. Recipe matrices encode
memberships of genes and gene functions, respectively, to latent components.

In the latent space, the gene-by-function backbone matrix thus relates latent components
of genes and functions, elements that we have earlier referred to as meta-genes and meta-
functions. For example, the backbone matrix cell of 3.05 (first row, second column in the
blue matrix) indicates a high degree of similarity between the first gene latent component
and the second gene function latent component.
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The attentive reader may have noticed that gene function recipe matrix had to be trans-
posed prior to the multiplication. Why this is so should become clear in the next section,
but let us finish with a hint: latent factors can be reused when collectively factorizing a
system of multiple matrices.

5 Collective tri-factorization of two data matrices

So far we have dealt with a single data matrix, the gene-by-function matrix. Data fusion,
our core data integration algorithm, can simultaneously handle a much larger number of
data matrices. For simplicity, let us consider the collective factorization of two data matri-
ces, but the principle can be extended to a larger number. Suppose we have obtained ad-
ditional information on the phenotypes of mutant strains in which the specific genes were
inactivated and the phenotypes were recorded. We gathered these data in a matrix where
the rows correspond to genes and the columns represent the mutant phenotypes as onto-
logical concepts from Phenotype Ontology. As can be seen from the graphic below, fooB−

exhibits decreased pinocytosis and hgE− has abolished culmination. We now have two
matrices, our original 5 x 6 gene-by-function matrix and a new 5 x 4 gene-by-phenotype
matrix as shown in Figure 7.
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Figure 7 Matrices of gene functions and mutant phenotypes.

Since we now consider three types of objects we add an additional “Phenotypes” node
to our data fusion graph and a directed edge from “Genes” to “Phenotypes” to obtain the
graph shown in Figure 8.
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Figure 8 Data fusion graph shows the organization of two data matrices.

We now simultaneously decompose both data matrices as we did in Section 4 and we
represent each data matrix as the product of three smaller matrices. In this case, the two
data matrices share a common object type – the genes. We can therefore reuse the gene
recipe matrix in both decompositions. This sharing of a recipe matrix is the cornerstone of
our data fusion approach because it provides a mechanism to relate the information stored
in heterogeneous data sets. Collage infers a gene recipe matrix (shown in grey in Figure 9)
that is part of the tri-factorization of gene-by-function data matrix.
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Figure 9 Collective factorization of gene function data matrix.
Highlighted is gene recipe matrix that gets shared among related data sets.
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Importantly, the gene recipe matrix from Figure 9 is also part of tri-factorization of gene-
by-phenotype matrix as can be seen from Figure 10.
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Figure 10 Factorization of mutant phenotype data matrix reuses the gene
recipe matrix obtained by collective factorization of two data matrices.

Note that the decomposition of the gene-by-function matrix into the respective recipe and
backbone matrices is not the same as in Section 4. This is because this decomposition
was aimed at reconstructing both input matrices at the same time, whereas the task in the
previous Section was concerned only with one data matrix. Using the two data matri-
ces provided additional infomration that was utilized by Collage to improve its predictive
ability.

As in Section 4 we can multiply the latent matrices and get a reconstructed gene-by-
function data matrix (Figure 11)
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Figure 11 Reconstruction of gene function data matrix.

and a reconstructed gene-by-phenotype matrix (Figure 12).
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Figure 12 Reconstruction of mutant phenotype data matrix.

Importantly, since tri-factorization of the gene-by-function matrix was able to integrate
additional information from the mutant phenotypes, it increased the confidence of zbljA,
suggesting that it has a previously unknown function in cell morphogenesis. Its score
was raised from 0.56 (first row, second column of reconstructed gene-by-function matrix)
when only the gene-by-function data set was considered, to 0.67 when the factorization
considered the gene-by-phenotype data as well.

Throughout this document we overlay Collage-inferred factorized matrices on the data
fusion graph. In Figure 13 we place the backbone matrices on the edges, and the recipe
matrices next to the nodes of the corresponding object types.
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Figure 13 Data fusion graph with overlaid latent matrices inferred by Collage.

6 Data matrices for tables, ontologies and networks

We often have access to data that were generated by different technologies that captured
relationships between objects from various aspects and at different levels of granularity.
These data sets could be represented as ontologies, feature-based data tables, networks
and associations, among others. However, almost all can be viewed as matrices describing
dyadic relationships, that is, relationships between two object types. For example, gene-
gene interactions might be given as a gene-by-gene matrix in Figure 14.
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Figure 14 Gene-gene interaction data.
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Shades of gray in Figure 14 denote the strength of the interactions. Note that some cells
are white (empty), indicating no interaction has been observed for the corresponding gene
pair, or the interaction has not been tested yet.

Participation of genes in biochemical and metabolic pathways can be arranged in a gene-
by-pathway matrix (Figure 15). In this case, pathway participation is a binary relation, so
this matrix is black-and-white, with no shades.
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Figure 15 Molecular pathway data.

Finally, Figure 16 shows gene expressions measured at different time-points encoded in a
gene-by-timepoint expression matrix.

G
en

es

Experiments

T1 T2 T3 T4 T5 T6 T7
Timepoints

N
or

m
al

iz
ed

 c
ou

nt
s

V1

V2

V3

V4

V5

T1 T2 T3 T4 T5 T6 T7

Figure 16 Gene expression measurements.

The data sets mentioned so far directly relate genes to some other type of objects. How-
ever, in biomedicine there is an abundance of circumstantial data sets that are only indi-
rectly related to genes, but may still be useful for prioritization. For Collage, there is no
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need to transform such data sets to a gene data space, thus avoiding the need for tedious
and sometimes complicated data processing. An example of such data are annotations of
Medical Subject Headings (MeSH) terms in published literature (Figure 17),
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Figure 17 Annotations of research articles with terms from the Medical Subject
Headings data base.

relatedness between Gene Ontology terms as given by the structure of ontological directed
acyclic graph (Figure 18),

Gene Ontology terms

G
en

e 
O

nt
ol

og
y 

te
rm

s

Response to 
bacterium

Response to
other organisms

Response to
external biotic

stimulus

Response to
external
stimulus

Response to
biotic

stimulus

Part of Gene Ontology graph

Defense
response

Defense 
response to

other organism

Response
to stress

Defense 
response to
bacterium

Re
sp

on
se

 to
 

ot
he

r o
rg

an
ism

s

Defense
response

Re
sp

on
se

to
 s

tre
ss

Response 
to bacterium

Figure 18 The connectivity of Gene Ontology graph.

and associations between metabolic pathways and Gene Ontology terms through the Kyoto
Encyclopedia of Genes and Genomes (KEGG) orthology groups and Reactome database
(Figure 19).
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Figure 19 Relationships between metabolic pathways and gene functions.

With such an abundance of data sets, there is a need to organize the data in a structure
that would help us comprehend the complexity of the problem domain and for Collage to
provide information about their relatedness. We do so by constructing a data fusion graph.

7 Data fusion graph

As seen in Section 6, there are many potentially beneficial data sets that could contribute
to improving the prediction strength of our test case. So far, in this tutorial, we modeled at
most two data sets represented by gene-by-function and gene-by-phenotype matrices. We
now continue with a more general data setup and include new data sets to demonstrate the
full scope of Collage. For our test case, we assemble a data fusion graph consisting of 13
data sets and describing 8 types of objects and present it in Figure 20.
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Figure 20 Data fusion graph with 13 data sets describing relationships between
8 types of objects.

The edges (data sets) shown in grey represent the data sets discussed in Section 6 and the
edges in orange denote the data sets considered in Section 5. Additionally, we added data
matrices of gene occurrences in the biomedical literature (“Genes” → “PubMed identi-
fiers”), associations between research articles and Gene Ontology terms (“Pubmed iden-
tifiers” → “Gene Ontology terms”), metabolic links (“Genes” → “Reactome pathways”,
“Metabolic pathways” → “Reactome pathways”), cross-references of ontological terms
and Reactome pathways (“Reactome pathways”→ “Gene Ontology terms”) and similar-
ities between mutant phenotypes as defined by the topology of the Phenotype Ontology
directed acyclic graph (“Phenotypes”→ “Phenotypes”).

Figure 21 shows the entire data fusion graph of our system with data matrices placed along
the edges. Note that although the data were made up for this example, the fusion graph
is rather complex and may come close to what we would use to solve a real biomedical
problem. This particular data configuration is related to our bacterial response gene study
in Dictyostelium.

Let us consider, for a moment, a few details of our data fusion graph. The “PubMed
identifiers” node is associated with three edges. The data matrices on the two outgoing
edges have the same number of rows (six rows) as they both relate research articles to
other object types. On the other side, these research articles are given in the columns of
the data matrix that is placed on the incoming edge from “Genes”. As expected, the gene-
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by-PubMed matrix also has six columns. Similar observations on the number of rows and
columns apply to all nodes of the data fusion graph.
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Figure 21 Fusion graph with overlaid data matrices.

8 Collective matrix tri-factorization

We now apply collective matrix tri-factorization, implemented in Collage, to simultane-
ously tri-factorize the data matrices in our system. Inferred matrices that approximate the
original data sets are shown in Figure 22, where blue matrices denote the backbone ma-
trices, i.e. compressed versions of the input data matrices, and the recipe matrices contain
latent profiles of objects of different types.

There are two matrices in our system above (Figure 21), the phenotype-by-phenotype
matrix and the gene-by-gene matrix of genetic interactions, for which the corresponding
backbone matrices seem to be missing in the latent data representation shown in Figure 22.
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These two matrices are “special” because they relate objects of the same type. Their pur-
pose in Collage is to constrain the inference of phenotype and gene recipe matrices. Say,
if we know that two genes interact somehow, then we would like their inferred rows in
the gene recipe matrix to be more similar than if we have no knowledge about their inter-
action. On the contrary, if we know that two genes do not interact, we might reward the
inference which would construct their recipe rows such that it shows less similarity. In our
example, zbljA and fooB do not interact (very low interaction score of 1e−4, see first row
and second column of the gene-by-gene matrix in Figure 21) and this piece of evidence
rewards Collage’s to infer recipe rows that are more dissimilar than the average interac-
tion. Indeed, zbljA and fooB have quite different memberships in the latent components
([0.80, 0.84] versus the values [0.57, 0.48] found in the first rows of the gene recipe matrix
in Figure 22). Therefore, matrices, such as gene-gene interaction matrix in Figure 21, that
relate objects of the same type are called constraint matrices.
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Figure 22 Collage jointly estimates latent representation of entire compendium.
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The interested reader might now multiply the recipe matrices and backbone matrices
shown in the figure below as we did in Section 5. Their products should match closely
to the corresponding original data matrices. Data fusion is about compression, but it also
tries to infer a model that well captures the input data sets.

9 Gene profiling

Until now we have been concerned with the Collage inference of a compressed system
of data matrices. We will use this system to construct gene profiles that will be used for
prioritization. We first present chaining, a procedure that allows us to characterize genes in
the latent component space of any other type of objects that is included in the data fusion
graph. That is, we propose an algorithm that can profile genes in the space of metabolic
pathways, Gene Ontology terms, MeSH descriptors and others types of objects from the
data fusion graph.

Let us say that we are interested in relating genes to MeSH descriptors and would like to
construct the corresponding gene profiles (i.e. one vector per gene). A data set that would
directly relate genes to MeSH descriptors does not exist, however, in our data fusion graph
genes are related to MeSH descriptors indirectly through research literature (Figure 23).

Genes

PubMed
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MeSH
descriptors

0.80 0.84

0.57 0.48

0.63 0.49

0.24 0.90

0.75 0.44
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-34.22 34.09 7.55

-19.29 33.54 -7.37

28.33 -36.40 2.25

Gene-to-PubMed 
backbone matrix

PubMed-to-MeSH 
backbone matrix

Figure 23 Part of data fusion graph that relates genes to the latent space of
Medical Subject Heading descriptors.

Hence, we formulate a chain consisting of gene recipe matrix and two backbone matri-
ces, gene-by-PubMed and PubMed-by-MeSH backbone matrices, and form a gene profile
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matrix by multiplying the matrices along the chain (Figure 24). Notice that the chain in
Figure 23 does not contain the recipe matrix corresponding to MeSH terms. This means
that our compiled profile matrix profiles gene in the latent MeSH term space rather than
in the original MeSH term space. The resulting matrix therefore has genes in rows and
latent components of the MeSH space in columns. This way, we are later able to effec-
tively compute similarities between candidate genes and seed genes in the smooth and
condensed latent space, which has far fewer dimensions than original data.

There are, however, tasks other than gene prioritization, where exact association strengths
between objects from the start and the end of a chain are important. For example, if
predicting gene-disease associations, where diseases are represented with a respective part
of the MeSH tree, we might want to know, which diseases are most likely associated with
a particular gene instead of which groups of diseases (i.e. latent components of diseases)
are connected with the gene. In such a scenario we would use latent data representation of
Collage and assemble gene profiles in the decompressed MeSH term space.
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Figure 24 A chain of latent matrices connecting genes and Medical Subject
Heading descriptors.

The resulting matrix (Figure 24, right) describes genes in the latent space of MeSH de-
scriptors. Each row in this resulting matrix is a gene profile in the latent MeSH space.

Using chaining we can easily profile any object type in the space of another object type
from the data fusion graph. For example, we can profile phenotypes in the context of
metabolic pathways, or Gene Ontology terms in the context of RNA-seq experiments.
Chaining, as proposed in our work, is a generally applicable procedure that can model
relations between any two object types for which there is a path in the data fusion graph.

In order to perform gene prioritization we need seed genes. These are genes known to be
relevant to the phenotype of interest. The goal of prioritization is to find other genes with
this phenotype, and the approach is to do so based on the similarity of the unknown genes
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with the seed genes. Similarity is computed from the gene profiles, which are obtained by
Collage from the fusion graph using chains of latent matrices.

To proceed with our example, suppose there is a phenotype that is characteristic of mutant
strains in which the mutated genes are zbljA, fooB, or barC. We would like to prioritize
other genes from our data sets, that is, genes fgD and hgE, and estimate which one is
the most promising candidate gene that should be the focus of subsequent experimental
analysis. Note that in the real world gene prioritization would typically consider thousands
of genes instead of just two.

Collage uses chaining of latent matrices (Section 9) to construct gene profiles in the latent
space. In our example, the data fusion graph includes seven object types besides “Genes”
(Figure 20). For a given target object type we consider all possible chains that start with
“Genes” and end at the node of a given target. For example, “Reactome pathways” can
be reached from “Genes” via two distinct chains: directly as “Genes”→ “Reactome path-
ways” and via an intermediate “Metabolic pathways”, “Genes”→ “Metabolic pathways”
→ “Reactome pathways”. We identify a total of 13 chains, that is, 13 paths from the node
“Genes” to all other nodes in the graph (Figure 25).

Genes

Genes    Gene Ontology terms
Genes    Reactome pathways    Gene Ontology terms
Genes    Metabolic pathways    Gene Ontology terms
Genes    PubMed identifiers    Gene Ontology terms

Genes    Metabolic pathways    Reactome pathways    Gene Ontology terms

Genes    Phenotypes

Genes    Reactome pathways

Genes    Metabolic pathways    Reactome pathways

Genes    RNA-seq experiments

Genes    Metabolic pathways
Genes    PubMed identifiers

Genes    PubMed identifiers    MeSH descriptors

Figure 25 A list of 13 latent matrix chains that start with “Genes” and end with
any other node in the fusion graph.

Chaining thus returns 13 different gene profile matrices. Each row in every profile matrix
corresponds to one of five studied genes. Figure 26 provides five of the 13 profile matrices
as examples.
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Figure 26 Examples of derived gene profile matrices.

10 Profile-based similarity scoring

Collage now assesses the similarity between the candidates, fgD and hgE, and every seed
gene by computing the Spearman rank correlation of the corresponding gene profiles (row
vectors) from every profile matrix. For our 13 profile matrices and 3 seed genes, this
procedure yields a score matrix of size 13 × 3 of rank correlations for every candidate
gene (Figure 27).
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Figure 27 Similarity scoring between candidate genes, fgD and hgE, and seed
genes, fooB, zbljA and barC.

The highlighted value of −1.00 in the fgD score matrix (Figure 27) indicates that the
Spearman rank correlation between the profile of the test gene fgD and the profile of the
seed gene zbljA in the profile matrix “Genes”→ PubMed identifiers→MeSH descriptors
is −1.00. Intuitively, this means that the membership strengths of fgD and zbljA to the
MeSH descriptors latent components are in a completely reversed order. This suggests that
fgD and zbljA are different with respect to the selected chain. On the other hand, there is
a perfect match between the profiles of hgE and barC in the chain “Genes”→ “Metabolic
pathways”. It should be noted that in the real-world, score matrices contain a spectrum
of different values as the input data matrices are much larger than in this hypothetical
example.

Instead of Spearman rank correlation, we could use other profile-based similarity mea-
sures. But it turns out that rank correlation is the most suitable scoring method for our
profiling technique. A gene profile measures the strength of the membership of a given
gene in the latent components. We are not interested in the absolute value of this strength,
but rather in the order of the latent components to which a gene can belong. Hence,
rank correlation, where only the order matters, better assesses gene similarity than other
correlation-based measures.
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11 Overall prioritization

The final step of Collage is to construct a prioritized list of genes based on the score
matrices of candidates genes from Section 10. Recall from previous sections that our aim
is to assemble a list of genes in which the position of a gene would indicate how “good”
this gene would be in further studies of the phenotype of interest. That is, in the prioritized
gene list, the most promising candidate genes should be placed near the top and the least
promising genes near the bottom of the list.

Collage uses a two-step aggregation scheme of score matrices via medians to estimate
gene positions in the list (Figure 28). A two-step aggregation scheme is needed as every
candidate gene is associated with a score matrix, i.e. a two-dimensional table, as shown in
Figure 27. To rank genes, we would like to obtain one score per gene, hence every gene
score matrix has to be summarized with a single number. Collage performs aggregation of
a score matrix by first computing the median of every column in the matrix (i.e. a median
candidate gene score across all chains and a selected seed gene) and second, it determines
a median of column-wise medians obtained in the first step. We experimented with various
L-statistics to summarize similarity score matrices and concluded that order statistics, e.g.,
the median, produce robust prioritization, are easy to calculate and are often resistant to
outliers (data not shown).
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Figure 28 Collage summarizes similarity score matrix of each gene with a
single value to estimate the final position of the gene in the prioritized list.
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Considering the candidate gene scores, we conclude that hgE is a more promising candi-
date than fgD (Figure 28).

Finally, we can obtain nominal P-values by repeatedly randomizing the seed set of genes
and re-scoring genes from the pool of candidates. The P-value of a gene position in the
list is calculated as a proportion of randomizations with higher aggregated score than the
score obtained from the unperturbed seed set.
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