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CPP Cargo Technique 
In vivo/ 

in vitro 
(Quantitative) result* Reference 

SynB1 Benzylpenicillin 

In situ brain perfusion in 

rats (single time) + 

capillary depletion 

In vivo 

Q: Without SynB1: Kin = 0.15 µl/s/g    

coupled to SynB1: Kin = 1.14 µl/s/g. 

80% SynB1 coupled benzylpenicillin in 

parenchyma. 

[1] 

SynB1 Dalargin 

In situ brain perfusion 

(single time) in rats + 

antinociceptive test 

In vivo 

Q: Without CPP: Vd = 16.7 µl/g     

coupled to SynB1: Vd = 309 µl/g. 

Enhancement of analgesic activity. 

[2] 

SynB1 Doxorubicin 

In situ brain perfusion in 

rats (single time) + 

capillary depletion 

In vivo 

Q: Without CPP: Kin = 0.25 µl/s/g    coupled 

to SynB1: Kin = 1.50 µl/s/g. 

70% SynB1 coupled benzylpenicillin in 

parenchyma. 

[3] 

SynB1 Doxorubicin 

In situ brain perfusion in 

mice (single time) + 

capillary depletion 

In vivo 

Q: Without CPP: Vd = < 100 µl/g     

coupled to SynB1: Vd = 776.4 µl/g. 

60% SynB1 coupled doxorubicin in 

parenchyma. 

[4] 

SynB1 

PEG-gelatin-

siloxane 

nanoparticles 

Determination transcellular 

transport across co-culture 

BBB model and 

determination of PG-GS-

SynB particles in brain after 

IV injection of mice using 

in vivo imaging. 

In vitro/ 

In vivo 

D: Vectorizing the nanoparticles with the 

SynB peptide enhances the transport across 

the BBB in vitro as well as in vivo. 

[18] 

SynB3 Dalargin 

In situ brain perfusion 

(single time) in rats + 

antinociceptive test 

In vivo 

Q: Without CPP: Vd = 16.7 µl/g     

coupled to SynB3: Vd = 240 µl/g. 

Enhancement of analgesic activity. 

[2] 

(L- and D-) 

SynB3 
Doxorubicin 

In situ brain perfusion in 

mice (single time) + 

capillary depletion 

In vivo 

Q: Without CPP: Vd = < 100 µl/g     

coupled to (L-en D-) SynB3: Vd = 961.8 (L) 

and 788.4 (D) µl/g. 

50% SynB1 coupled doxorubicin in 

parenchyma. 

[4] 

SynB3 Paclitaxel 
In situ brain perfusion in 

mice 
In vivo 

D: Vectorized paclitaxel bypasses Pgp at 

luminal side of BBB. 
[5] 

SynB3 
Morphine-6-

glucuronide 

In situ brain perfusion in 

mice + antinociceptive tests 
In vivo 

Q: Without CPP: Kin = 0.024 µl/s/g    

coupled to SynB3: Kin = 1.27 µl/s/g. 

Improvement of pharmacological activity. 

[6] 
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CPP Cargo Technique 
In vivo/ 

in vitro 
(Quantitative) result* Reference 

SynB3 

Endomorphin-1 

(linked by 

disulfide 

linkage) 

Tail flick antinociceptive 

test 
In vivo 

Q: Five-fold increase in antinociception 

compared to EM-1 alone. 
[39] 

D-Penetratin Doxorubicin 

In situ brain perfusion in 

rats (single time) + 

capillary depletion. 

In vivo 

Q: Without CPP: Kin = 0.25 µl/s/g    coupled 

to D-Penetratin: Kin = 2.14 µl/s/g. 

70% SynB1 coupled benzylpenicillin in 

parenchyma. 

[3] 

Penetratin - 
IV injection  stained with 

fluorescent tag. 
In vivo D: no staining  no brain influx. [7] 

Penetratin scFvs 

Mice were IV injected with 

scFv-CPP construct. Then 

the presence of scFv-CPP 

in brain cryosections was 

evaluated after fluorescent 

labeling using a 

fluorescence microscope. 

In vivo 
D: scFv-CPP construct clearly appeared in 

brain cells after IV injection. 
[26] 

Penetratin 

Doxorubicin 

loaded 

transferrin 

liposomes 

The amount of doxorubicin 

in brain homogenate was 

evaluated using HPLC at 

different time points after 

IV injection in rats. 

In vivo 

Q: Tf-Penetratin liposomes showed maximal 

brain penetration after 24h (about 3.67% 

ID/g).  

[27] 

Penetratin 

PEG-PLA 

nanoparticles 

loaded with 

coumarin-6 

In vivo imaging and 

pharmacokinetic and 

biodistribution studies 

using LC-MS/MS analysis 

of coumarin-6 in brain 

homogenate. 

In vivo 

D: Fluorescence in rat brain was higher for 

penetratin-NP treated rats than for NP-

treated ones. Brain uptake was enhanced 

when NP was coupled to penetratin. 

[28] 

Tat 47-57 NEP1-40 

Focal ischemia model in 

rats  evaluate outcome 

after ischemia + detect 

presence of vectorized 

NEP1-40. 

In vivo 

B: Improvement of neurologic outcomes. 

D: Tat-NEP1-40 detected in brain using 

Western blot and immunofluorescence. 

[8] 
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CPP Cargo Technique 
In vivo/ 

in vitro 
(Quantitative) result* Reference 

Tat 47-57 NR2B9c  

Measuring effect of 

vectorized NR2B9c in a rat 

stroke model. 

In vivo 

Q: Treatment with Tat-NR2B9c reduced the 

volume of cerebral infarction with 67% and 

87% in cortical infarction volume. 

[10] 

Tat 47-57 β-galactosidase 

Fluorescence confocal 

microscopy: tissues were 

dissected from mice 20 min 

after i.p. injection 

In vivo 

D: - Tat-FITC: strong signals in all areas of 

brain (not with control FITC). 

- Tat-β-Gal: brain sections from mice 

analyzed: 2h post injection, strong activity 

around capillaries, not in parenchyma, 

starting from 4h after injection all brain 

regions showed strong β-Gal activity.  

- BBB remained intact (Evan’s blue albumin 

complexes not in brain sections). 

[11] 

Tat 47-57 

Green 

fluorescent 

protein (GFP) 

Evaluation of transcellular 

transport of Tat-GFP across 

bEnd-3-astrocyte co-culture 

layer. 

In vitro 

D: Tat-GFP was able to translocate bEnd-3 

cell layer but not astrocyte layer. No 

influence on barrier integrity observed. 

[12] 

Tat 47-57 

PEG-b-Chol 

nanoparticles 
(loaded with 

ciprofloxacine, 

quantum dots or 
FITC) 

Confocal microscopy of rat 

brain sections 4h after IV 

injection in the tail vein. 

In vivo 

D: Tat-conjugated nanoparticles loaded with 

FITC or quantum dots crossed the BBB, 

while FITC and quantum dots alone did not 

and were localized around blood vessels in 

the brain. 

[13] 

Tat 47-57 

PEG decorated 

gelatin-siloxane 

nanoparticles 

In vivo imaging (mice) and 

TEM. 
In vivo 

Q: Tat-modification of the nanoparticles 

resulted in a quantitatively higher fluorescent 

signal in the brain than no-Tat nanoparticles 

(total signal counts of 708.69 ± 4.8 counts/ 

(sc × s) versus 670.47 ± 8.96 counts/ (sc × 

s)). TEM analysis revealed that the BBB 

remained intact. 

[14] 

Tat 47-57 

δ-V1-1 (isozyme 

specific inhibitor 

of  δ-PKC) 

Two in vivo models of 

vascular stress: transient 

focal ischemia in 

normotensive rats and 

chronic hypertension. 

In vivo 

B: δ-V1-1-Tat increased the number of 

patent microvessels by 92% compared to 

control (Tat) treated animals and increased 

cerebral blood flow by 26% following acute 

focal ischemia (not with Tat peptide alone). 

In chronic hypertension model, the cerebral 

blood flow increased by 12%. 

[15] 
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CPP Cargo Technique 
In vivo/ 

in vitro 
(Quantitative) result* Reference 

Tat 47-57 PACAP-38 

Six hours after i.p. injection 

of FITC-labeled peptides, 

the fluorescence intensity of 

isolated brains was 

determined.  

In vivo 
B: PACAP-Tat showed a 2.5 fold higher 

efficiency to traverse the BBB than PACAP. 
[16] 

Tat 47-57 GDNF 

Evaluation of cryosections 

of mouse brain 4h post i.p. 

injection using fluorescence 

microscopy. 

In vivo 
D: The fusion proteins crossed the BBB and 

transduced the brain parenchyma. 
[17] 

Tat 47-57 

PEG-cholesterol 

(PEG-b-Col) 

nanoparticles 

Evaluation of presence of 

FITC loaded PEG-b-Col-

Tat nanoparticles in brain 

cryosections using confocal 

microscope 4h after IV 

injection of rats. 

In vivo 
D: PEG-b-Col-Tat particles crossed the 

BBB. 
[19] 

Tat 47-57 Bcl-XL 

Evaluation of infarct 

volume and neurological 

deficit in ischemic insult 

mice model. 

In vivo 

D: Tat- Bcl-XL reduces the infarct volume 

and neurological deficits when administered 

before and after ischemic insult.  

[22] 

Tat 47-57 GDNF 

Evaluation whether IV 

administration of Tat-

GDNF prevent brain injury 

after transient focal 

ischemia. 

In vivo 

D: After IV administration, the Tat-GDNF 

protein reaches the ischemic zone and 

reduced the brain injury and infarction zone. 

[23] 

Tat 47-57 
Ritonavir loaded 

nanoparticles 

Measuring radioactivity of 

ritonavir in brain tissue 

digest after decapitation of 

mice at different time 

points.  

In vivo 

Q: The brain drug level was 800-fold higher 

than that with drug in solution at two weeks 

(0.1 µg/g (solution) versus 80.3 µg/g (Tat-

nanoparticles)). 

[25] 

Tat 

Doxorubicin 

loaded 

transferrin 

ligated 

liposomes 

The amount of doxorubicin 

in brain homogenate was 

evaluated using HPLC at 

different time points after 

IV injection in rats. 

In vivo 

Q: Tf-Penetratin liposomes showed max 

brain penetration after 24h (about 2.89% 

ID/g).  

[27] 
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In vivo/ 

in vitro 
(Quantitative) result* Reference 

Tat Quantum dots 

Rats were infused intra-

arterially and after 

euthanizing the rat, the 

brain was isolated and 

quantum dot fluorescence 

was evaluated. 

In vivo 

D: If quantum dots are conjugated to Tat, the 

brain tissue was labeled. Histological data 

confirm the passage across the endothelial 

cell line of the blood-brain barrier. 

[31] 

D-Tat 

99mTc-

Tricarbonyl and 

fluorescein-5-

maleimide 

Biodistribution was 

evaluated in mice. At 

several time points after IV 

injection, tissues were 

evaluated by fluorescence 

microscopy and radiometric 

analysis. 

In vivo D: Little brain permeation was determined. [32] 

Tat 

G3R6-cholesterol 

(conjugated to 

Tat and forms 

nanoparticles)  

4h after i.v. injection of the 

nanoparticles, rabbit brain 

sections were evaluated for 

FITC-loaded nanoparticles 

using a confocal 

microscope. 

In vivo 

D: FITC was detected in the brain sections 

when coupled to CG3R6TAT nanoparticles 

(not if not coupled to nanoparticles), 

indicating the nanoparticles cross the BBB. 

[34] 

Tat 47-57 

Cholesterol 

liposomes 

loaded with 

coumarin-6 

After i.v. injection of the 

coumarin-6 loaded TAT-

liposomes in mice, the 

coumarin-6 concentration 

was determined in brain 

tissue. 

In vivo 

D: The AUC (0-t) for TAT-liposomes was 

1.79 to 2.54 times higher than non-

conjugated liposomes.  

[35] 
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In vivo/ 

in vitro 
(Quantitative) result* Reference 

(D-)Tat 47-57 Liposomes 

In vivo biodistribution study 

in mice of (D-)Tat-coupled 

liposomes loaded with 

coumarin-6. At different 

time points after IV 

injection, the concentration 

of coumarin-6 was 

determined i.a. in brain 

tissue. Capillary depletion 

study was used to 

demonstrate distribution to 

brain parenchyma. 

In vivo 

Q: The concentration of coumarin-6 

delivered using (D-)Tat-coupled liposomes 

was 2 to 2.5 times higher than liposomes 

coupled to a Tat analogue with basic 

residues replaced by glycine and glutamic 

acid residues.  

[36] 

Tat 48-57 

FITC doped 

silica 

nanoparticles 

(FSNPs) 

The Tat-FSNPs were intra-

arterially injected into rats. 

After completing the 

procedure, the rats were 

decapitated and the brain 

was sliced into 4 pieces and 

imaged using a 

fluorescence microscope.  

In vivo 

D: The images confirm labeling of branches 

of the right middle cerebral artery. Thus, not 

the nanoparticles crossed the blood-brain 

barrier.  

[37] 

Tat 46-57 

Doxorubicin 

loaded 

nanoparticles 

(and co-modified 

with T7 ligand) 

In vivo imaging and 

evaluation of survival time 

of tumor bearing mice. 

In vivo 

D/B: Compared to control liposomes, the 

TAT-T7 co-modified doxorubicin-loaded 

liposomes markedly accumulated in the 

glioma brain tumor. Also the survival time 

of these mice significantly increased. 

[40] 

Tat 47-57 VIP 

Efficiency assay of 

traversing the BBB by 

fluorimetry; food intake 

assay and evaluation of 

effect on scopolamine 

induced amnesia. 

In vivo 

Q: After i.p. injection, the brain uptake 

efficiency of VIP-TAT (1.81) was twice as 

high as that of VIP (0.78). 

B: VIP-TAT had a significantly stronger 

anorexigenic effect than VIP. 

Q/B: Administration of VIP-TAT 

significantly inhibited stronger than VIP 

alone the reduction of the latent time induced 

by scopolamine. 

[41] 
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CPP Cargo Technique 
In vivo/ 

in vitro 
(Quantitative) result* Reference 

Tat 47-57 

BRBP1 (and 

linked to the 

proapoptotic 

peptide KLA as 

well) 

IV injection of 

fluorescently labeled 

BRBP1-TAT-KLA in mice 

with breast cancer brain 

metastasis. 

In vivo 

D: Compared to TAT-KLA, BRBP1-TAT-

KLA showed higher fluorescence intensity 

in the brain metastasis lesions. 

[44] 

R7-myristoylated - 

NIR fluorescence imaging 

after IV injection + 

immunohistochemical 

staining. 

In vivo 
D: Presence of fluorescently labeled vector 

demonstrated. 
[9] 

rR9 
RVG29-cargo 

(plasmid DNA) 

Evaluation of luciferase 

activity of in several tissues 

after injection of rR9-

RVG29-pGL3 (gene) 

construct in the tail vein of 

mice.  

In vivo 
B: At 72h, the luciferase expression was 3-

fold higher than for the control group.  
[21] 

R8 RGD 

Translocation across an in 

vitro BBB model AND in 

vivo imaging in C6 glioma 

bearing mouse model. 

In vitro/ 

In vivo 

D: R8-RGD reached the brain and 

accumulated in the glioma foci. Also in 

vitro, R8-RGD crossed the BBB. 

[24] 

R8 Liposomes 

In vivo biodistribution study 

of R8-coupled liposomes 

loaded with coumarin-6. At 

different time points after 

IV injection, the 

concentration of coumarin-

6 was determined i.a. in 

brain tissue. Capillary 

depletion study was used to 

demonstrate distribution to 

brain parenchyma. 

In vivo 

Q: The concentration of coumarin-6 

delivered using R8-coupled liposomes was 

3.5 times higher than liposomes coupled to a 

Tat analogue with basic residues replaced by 

glycine and glutamic acid residues.  

[36] 

R2-R5 EM-1 analogs Antinociceptive test  In vivo 

D: Unless the decreased affinity for the 

opioid receptor, the vectorized analogs 

showed potent antinociceptive effect, partly 

caused by the improved bioavailability. 

[29] 
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in vitro 
(Quantitative) result* Reference 

Oligo-arginine 

Transferrin 

ligated 

liposomes 

Rat were IV injected with 

vectorized liposomes and at 

different time points, brain 

was isolated and evaluated 

using NIR imaging. 

In vivo 
D: The brain penetration of Tf-PR-liposomes 

was 8-fold greater than plain liposomes. 
[30] 

R11 
No cargo, but 

FITC labeled. 

Evaluation of 

immunoreactivity (using 

goat anti-FITC antibodies) 

in mouse brain sections 

after systemic 

administration of 11R-

FITC. 

In vivo 

D: Strong immunoreactivity was observed in 

vessels and surrounding cells of cortex, 

striatum and thalamus, which was not seen 

when systemically injecting 11E-FITC. 

[43] 

pVEC 

pVEC covalently 

attached to gHo 

(glioma homing 

sequence) = 

gHoPe2 

Evaluation of presence of 

FAM-labeled gHoPe2, IV 

injected in mice, in 

cryosections of the brain. 

In vivo 

D: In intracranial brain tumor model, the 

gHoPe2-FAM peptides were present in the 

intracranial tumors, not in healthy brain 

tissue. Thus the construct crossed the BBB. 

[20] 

Mastoparan 

Doxorubicin 

loaded 

transferrin 

liposomes 

The amount of doxorubicin 

in brain homogenate was 

evaluated using HPLC at 

different time points after 

IV injection in rats. 

In vivo 

D: Accumulation of Tf-Mastoparan 

liposomes was lower compared to Tf-Tat 

and Tf-Penetratin liposomes.  

[27] 

(RXRRBR)2XB 

AMO (antisense 

morpholino 

oligonucleotides) 

IV injection to mice (single 

time and multiple time 

injection) and evaluation of 

presence of fluorescence in 

different brain areas using 

fluorescence microscopy. 

In vivo 

D: Fluorescence was widely detected 

throughout the brain and increased when 

multiple injections were given. 

[33] 

PepFect 32 

(PepFect 14-

Angiopep-2 

construct) 

pDNA 

In vitro Transwell 

experiment. Transport 

across the bEnd.3 layer was 

demonstrated by measuring 

plasmid transfection in U87 

cells. 

In vitro 

Q: PepFect 32 showed the most efficient 

transfection of the luciferase-expressing 

plasmid in U87 cells. 

[38] 
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in vitro 
(Quantitative) result* Reference 

LNP pDNA 

Evaluation of in vitro 

transport of LNP-modified 

pDNA nanoparticles across 

the BMEC layer. 

In vitro 

Q: Papp of LNP-modified pDNA 

nanoparticles was 92.43 × 10-6 cm/s, while if 

not LNP-modified, the Papp was ≤ 65 × 10-6 

cm/s. 

[42] 

* Q: Quantitative result; B: biological effect; D: effect described.  
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 Remarks: 

Ref [7]: Penetratin (directly injected in brain) cause in a dose > 1 µg neurotoxic cell death and 

recruitment of inflammatory cells. At doses < 1 µg less pronounced toxic effect. 


