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Appendix: A technical description of self-
organizing maps 
 
The self-organizing map (SOM), introduced by 
Kohonen,(1, 2) is a widely used neural 
network method for the classification and 
visualization of high-dimensional data sets.(3, 
4) SOMs are similar in some respects to multi-
dimensional scaling and ordination,(5) in that 
they allow reduction of multi-dimensional data 
onto a simpler set of dimensions. SOMs are 
also parallel in some respects to cluster 
analysis in that they classify multivariate data 
by grouping together similar observations. 
However, the groups that are identified in a 
SOM are ordered/mapped into a two-
dimensional parameter space, while 
preserving the topological characteristics of 
the input data.(6) This results in an 
organization of the data, where similar 
observations are placed in the same group, 
and the position of each group in the final map 
depends on the similarity among groups. 
 
SOMs are a form of neural network and fall in 
the category of machine learning techniques. 

As such they require training against a set of n 
observations. Each observation represents an 
input vector, here a patient, of length m, 
where m is the number of variables recorded 
for each observation, in the case of the 
present study the SOFA subscores. Variables 
are standardized to avoid bias where 
parameters have different magnitudes of 
variation. The map or grid of the SOM is made 
up of a two-dimensional lattice of nodes or 
neurons, with each node linked to either four 
or six neighbors.(2) Higher dimensions are 
sometimes used, but these present additional 
difficulties for visualization and post-
processing. Each node has an associated 
vector of m weights, with each weight 
corresponding to the number of variables in 
the input dataset. 
 
The basic SOM is an unsupervised 
classification method, i.e. no target data is 
used to constrain the final groups. A 
supervised version does exist,(7) but requires 
a target classification. As we employed SOM 
as an exploratory technique to identify novel 



phenotypes, we employed the unsupervised 
version of SOM.  
 
The SOM method proceeds as follows. The 
input data is used to train the grid of nodes, 
using a competitive learning technique.(2) The 
grid is initialized by setting the weights of each 
node to a random value. Then, at each 
training iteration (usually 100 to 1000 
iterations; we employed 500 in the current 
study): 
1. An input vector is selected at random and 

compared to all the nodes on the map. 
2. The most similar node or best matching 

unit (BMU) is identified using dissimilarity 
metric. 

3. The m weights of the BMU are then 
adjusted by a small amount (𝛼𝛼) towards 
the values of the input vector. 

4. In addition, the weights of the nodes within 
a certain radius of the BMU are also 
adjusted toward the input vector, although 
this adjustment diminishes with distance. 

5. Once all adjustments are complete, 
another input vector is chosen, and steps 
2 through 4 are repeated 

 
As the iterations continue and the node 
weights are continuously updated, the 
observations are progressively shuffled 
between nodes. The neighborhood effect 
forces closer nodes to be more similar, and 
distant nodes to be more dissimilar, with the 
net effect that “the low-dimensional lattice of 
node vectors begins to replicate major 
topological structures existing in the n-
dimensional space.”(3) The final map 
represents a two-dimensional parameter 
space defined by co-variation in the 
parameters, and the final set of weights for 
each node represents a prototype input vector 
for that node. For our data, the node weights 
would therefore represent an “idealized” 
patient associated with that node. These 
weights may be visualized and used to display 
how that parameter varies across the map, 
and by comparison between multiple 
parameters, it is possible to visualize the 
areas of the parameter space where different 
parameters show co-variation (positive or 
negative).  

 
While there is no single objective function to 
optimize, the fit of the SOM to the data can be 
estimated by calculating the average distance 
between each input vector and its BMU. As 
the number of iterations increases, this value 
decreases and ultimately stabilizes, at which 
point the organization is optimal, and little 
reassignment of input vectors occurs with 
further training iterations. (In our data, stability 
was observed after approximately 250 
iterations, so we used 500 iterations.) 
 
There are several choices in setting up the 
SOM, including the value of 𝛼𝛼 and the 
neighborhood radius, the dissimilarity metric 
and the size of the SOM grid. Generally, both 
𝛼𝛼 and the radius are set to relatively high 
values at the outset of the training process to 
allow for quick but crude organization of the 
data.(2) As training continues, these values 
can be reduced. This adaptive learning allows 
finer or more local tuning of the map, so that a 
match between an input vector and the BMU 
may only update the immediate neighbors or 
even just the BMU itself.  
 
By default, multivariate Euclidean distances 
are used as the dissimilarity metric, where 
dissimilarity between observation i and node j 
across the set of variables m is given by:  
 

𝑑𝑑𝑖𝑖𝑖𝑖 = ��(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖)2
𝑚𝑚

𝑖𝑖=1

 

 
This metric is used as standard in nearly all 
applications of SOMs and was used in the 
current study. 
 
The choice of the number of nodes is 
important. Smaller SOMs result in a 
classification of data very similar to k-means 
clustering. With higher numbers of nodes, the 
SOM is a topological representation of the 
original data, and termed a high-resolution 
SOM.(8) Higher resolution SOMs can identify 
smaller-scale features in the data, and may be 
used as base maps to display other aspects of 
the data, including time-dependent trajectories 



for longitudinal observations(9, 10) For the 
present study, we employed a high resolution 
24X24 map. 
 
The final map is generally post-processed to 
identify larger features, particularly when the 
number of nodes is high. This is usually done 
by hierarchical or k-means clustering of the 
node weights, which helps identify continuous, 
internally homogenous parts of the map.(8) It 
is worth noting that the resulting k clusters can 
be quite different from those obtained by 
clustering of the original dataset, as clustering 
is performed on the organized results. By 
comparing the mapped weights within and 
between each of the clusters, it is possible to 
identify the characteristics of each group, as 
well as the in-group variability, which is 

usually ignored in classical cluster analysis. In 
our study, we defined these clusters as 
phenotypes of the multiple organ dysfunction 
syndrome, and the individual nodes represent 
the internal variability within a given 
phenotype (Fig. 3). 
 
The classification generated by the SOM may 
be further used with parameters that were not 
used in generating the organization, by 
mapping them onto the SOM nodes. This 
mapping is carried out for each node by 
averaging the value of the variable for all 
observations belonging to that node. This 
provides a simple method to investigate the 
relationship between different nodes, or node 
groups, and the value of the external 
variables. 

 

 
 

 

 

 

 
eTable 1  Simple multivariate logistic regression of 30-day mortality, after backwards elimination. 

 Univariate OR (95% 
confidence interval) Univariate P* Multivariate OR (95% 

confidence interval) 
Multivari
ate P* 

APACHE II (per point) 1.09 (1.07-1.10) <0.0001 1.07 (1.06, 1.10) <0.0001 
SOFA (per point) 1.19 (1.16-1.23) <0.0001 1.05 (0.99, 1.11) 0.09 
Age (per year) 1.03 (1.03-1.04) <0.0001 1.03 (1.03, 1.04) <0.0001 
Lactate (per mg/dL) 1.15 (1.11-1.19) <0.0001 1.08 (1.05, 1.12) <0.0001 
Urinary source 0.58 (0.44-0.76) <0.0001 0.58 (0.42, 0.79) 0.0005 
Cluster membership NA <0.0001 NA 0.0006 
Cluster 1 0.55 (0.40-0.73) <0.0001 NA (referent) NA 
Cluster 2 0.56 (0.45-0.70) <0.0001 1.67 (1.14, 2.46) NA 
Cluster 3 2.58 (2.06-3.23) <0.0001 1.20 (0.80, 1.82) NA 
Cluster 4 1.39 (1.03-1.86) 0.03 2.25 (1.46, 3.48) NA 
*P values are from the Likelihood Ratio test. Overall odds ratios are not defined for multinomial predictors, so 
odds ratios are not reported for overall cluster membership, and multivariate odds ratios for clusters are 
reported in comparison to cluster 1. P values are not defined for the multivariate comparisons for individual 
clusters. 
APACHE II: Acute Physiology and Chronic Health Evaluation score, 2nd version. SOFA: Sequential Organ 
Failure Assessment; OR: odds ratio. 



 
eTable 2  Simple multivariate linear regression of ICU-free days 

 β 95% confidence interval P 
APACHE II (per point) -0.30 (-0.37, -0.24) <0.001 
SOFA -0.43 (-0.62, -0.25) <0.001 
Age (per year) -0.04 (-0.06, -0.02) <0.001 
Lactate (per mg/dL) -0.31 (-0.43, -0.18) <0.001 
Urinary source 2.18 (1.32, 3.04) <0.001 
Cluster 2  (versus Cluster 1) -2.16 (-3.23, -1.10) <0.001 
Cluster 3 (versus Cluster 1) -2.50 (-3.75, -1.25) <0.001 
Cluster 4 (versus Cluster 1) -2.87 (-4.15, -1.58) <0.001 

 
eTable 3  Stratified logistic regression of 30-day mortality after backwards elimination. 

 OR 95% confidence interval P 
Phenotype 1 (AUC 0.81)    
   Age 1.06 1.03-1.08 <0.001 
   APACHE II 1.10 1.05-1.16 <0.001 
Phenotype 2 (AUC 0.77)    
   Age 1.04 1.02-1.05 <0.001 
   APACHE II 1.07 1.03-1.10 <0.001 
   Lactate 1.12 1.04-1.21 0.003 
   Pneumonia 0.62 0.38-0.99 0.05 
   Urinary infection 0.27 0.15-0.51 <0.001 
   Soft tissue infection 0.23 0.09-0.61 0.003 
Phenotype 3 (AUC 0.74)    
   Age 1.04 1.02-1.05 <0.001 
   APACHE II 1.07 1.04-1.10 <0.001 
   Lactate 1.11 1.05-1.17 <0.001 
Phenotype 4 (AUC 0.73)    
   APACHE II 1.09 1.04-1.14 0.001 
   Elixhauser comorbidity index 1.26 1.08-1.46 0.003 
APACHE II: Acute Physiology and Chronic Health Evaluation score. SOFA: Sequential Organ 
Failure Assessment. 



 
eTable 4  Stratified multivariate linear regression of ICU-free days 

 β 95% confidence interval P 
Overall population (adjusted R2 0.26) 

Phenotype 1 (adjusted R2 0.14)    
   Age -0.05 (-0.09,0.01) 0.01 
   APACHE II -0.26 (-0.39,-0.14) <0.001 
Phenotype 2 (adjusted R2 0.14)    
   APACHE II -0.26 (-0.41, -0.21) 0.001 
   Lactate -0.40 (-0.63, -0.16) 0.001 
   Urinary infection 3.5 (2.01, 5.00) <0.001 
   Soft tissue infection  2.8 (0.94, 4.63) 0.003 
Phenotype 3 (adjusted R2 0.15),    
   Age -0.9 (-0.14, -0.03) 0.002 
   APACHE II 0.29 (-0.43, -0.15) <0.001 
   Lactate -0.39 (-0.62, -0.16) 0.001 
   Urinary infection 3.3 (0.18, 6.34) 0.04 
Phenotype 4 (adjusted R2 0.25)    
   SOFA score -0.98 (-1.45, -0.50) <0.001 
   APACHE II -0.29 (-0.48, -0.09) 0.005 
   Elixhauser Comorbidity Index -0.57 (-1.10, -0.05) 0.03 
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