S2 Table: Table of Reaction Mechanisms Table S2: Kinetic Model Reaction Mechanisms | Reaction | Table S2: Kinetic Model I Mechanism | Activators | Inhibitors | Reference | |----------|--|------------|--------------------------|--| | PTS | $[glcD[p] + pep[c] \longrightarrow g6p[c] + pyr[c]]$ Irreversible Bi-Bi mechanism, with non-competitive product inhibition product by g6p. | | g6p | Chassagnole (2002) | | PGMT | [c]: g1p ≈ g6p Reversible Michaelis-Menten, with uncompetitive inhibition by accoa, succoa and coa against g1p. | | accoa,
succoa,
coa | Duckworth (1973)
Chassagnole (2002) | | PGI | [c]: g6p ≠ f6p
Reversible Michaelis-Menten, with
competitive inhibition of g6p and f6p. | | 6pgc | Chassagnole (2002) | | PFK | [c]: atp + f6p \longrightarrow adp + fdp Monod-Wyman-Changeux K-system model, with allosteric regulation of f6p by amp (inhibit), adp (inhibit) and pep (activate); and competitive inhibition of atp by adp. | amp, adp | pep | Chassagnole (2002) | | FBA | | | g3p | Chassagnole (2002) | | TPI | | | | Chassagnole (2002) | | GAPDH | [c]: $g3p + nad + pi \rightleftharpoons 13dpg + nadh$
Random-Ordered Bi-Bi Mechanism.
Ignoring effect of assumed constant
[pi], as its value is absorbed by v_{max} . | | | Chassagnole (2002) | | PGK | | | | Chassagnole (2002) | | PGM | | | | Chassagnole (2002) | | ENO | | | | Chassagnole (2002) | | Reaction | Table S2 continued: Kinetic M Mechanism | Activators | Inhibitors | Reference | |----------|---|------------|------------------------|---| | PYK | [c]: adp + pep → atp + pyr Monod-Wyman-Changeux K-system model, with allosteric regulation | fdp, amp | atp | Chassagnole (2002) | | | by atp, fdp and amp to pep. | | | | | PDH | [c]: $\cos + \operatorname{nad} + \operatorname{pyr} \longrightarrow \operatorname{accoa} + \operatorname{nadh}$
Irreversible Tri-Bi mechanism, with competitive product inhibition by nadh Vs nad, and accoa Vs $\cos^{[1]}$. Non-competitive inhibition by nadh:nad ratio is included ^[1] . Glyoxylate also has strong competitive inhibition Vs pyruvate ^[2] . | | g6p | [1] Hoefnagel (2002)
[2] Bisswanger (1981) | | PTAr | [c]: accoa + pi = actp + coa Hill equation for forward and reverse reaction. Forward reaction: assumed non-competitive inhibition by nadh and atp, with pep and pyr acting as non- essential activators. Reverse reaction: assumed non-competitive inhibition by nadh, atp, pep and pyr. | pep, pyr | nadh, atp,
pep, pyr | Bermudez (2010)
Wang (2001) | | ACKr | [c]: $actp + adp \rightleftharpoons atp + ac$
Sequential random-ordered mechanism for forward and reverse reactions. Actp showing noncompetitive product inhibition to actp synthesis reaction Vs both acetate and atp. | | actp | Janson (1974) | | ACS | [c]: $ac + atp + coa \longrightarrow accoa + amp$
Reaction flux = 0, consistent with belief
that it is inactive during aerobic growth. | | | | | CS | [c]: $accoa + oaa \longrightarrow cit + coa$
Irreversible sequential-ordered mechanism with accoa binding first. Nadh and akg inhibit non-competitively with oaa, and atp inhibits competitively with accoa and non-competitively with oaa. CS v_{max} is dependent on pH value. | | atp, nadh, akg | Mogilevskaya
(2009, Chapter 10) | | ACONTb | | | | Tsuchiya (2009) | | ъ | Table S2 continued: Kinetic Mode | | | | |----------|---|------------|---|--| | Reaction | Mechanism | Activators | Inhibitors | Reference | | ACONTa | | | | | | ICDHyr | [c]: icit + nadp ⇒ akg + nadph Irreversible Ordered Bi-Ter mechanism, with nadp binding first. Allosteric inhibition of icit by pep. | | pep | Nimmo (1986))
Ogawa (2007) | | ICL | [c]: icit \longrightarrow glx + succ
Reaction flux = 0, consistent with belief
that it is inactive during aerobic growth. | | | | | AKGDH | [c]: $akg + coa + nad \longrightarrow nadh + succoa$
Multisite Ping-Pong, with product inhibition and non-competitive inhibition by glyoxylate. | | $\begin{array}{c} \mathrm{succoa}^{[1]}, \\ \mathrm{glx}^{[2]} \end{array}$ | [1] Wright (1980)
[2] Gupta (1980) | | SUCOAS | [c]: $adp + pi + succoa \rightleftharpoons atp + coa + succ$
Reversible rapid equilibrium hybrid random-ordered terreactant system:
Ordered A and random B and C. | | | Moffet (1970)
Boyer | | SUCDi | [c]: q8 + succ → fum + q8h2
Irreversible Michaelis-Menten mechanism,
assuming [q8] is freely available and not rate
limiting | | | Hirsch (1963) | | FUM | | | | Ueda (1990) | | MDH | [c]: mal-L + nad ≈ nadh + oaa Reversible ordered Bi-Bi mechanism, assuming that either nad or nadh binds enzyme first, reaction direction dependent. | | | Segal (1975)
Muslin (1995)
Wright (1992) | | PPC | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$ | accoa, fdp | pep | Izui (1981)
Izui (1983) | | Reaction | Table S2 continued: Kinetic Model Mechanism | Activators | Inhibitors | Reference | |----------|--|-------------|--------------------|--| | PPCK | $\boxed{ [c]: atp + oaa \longrightarrow adp + pep}$ | 11001740015 | 11111510015 | Total | | | Irreversible random-ordered rapid equilibrium mechanism, with product inhibition from pep and substrate inhibition from atp. | | pep, atp | Yang (2003)
Krebs and
Bridger (1980) | | ME1 | [c]: mal-L + nad | | coa | Wang (2006)
Segal (1975) | | MALS | [c]: $accoa + glx \longrightarrow coa + mal-L$
Reaction flux = 0, consistent with belief that it is inactive during aerobic growth. | | | | | G6PDH2r | [c]: g6p + nadp ⇒ nadph + (6pgl →)6pgc Irreversible Bi-Ter mechanism, with product inhibition of nadph competitive with nadp and non-competitive with g6p. Non-competitive inhibition by nadh to both g6p and nadp. Lumped with PGL reaction. | | nadph,
nadh | Sanwal (1970)
Segal (1975) | | GND | [c]: 6pgc + nadp | | nadph,
atp, fdp | DeSilva (1979)
Chassagnole
(2002) | | RPE | [c]: $ru5p-D \rightleftharpoons xu5p-D$
Mass-action kinetics. | | | Chassagnole (2002) | | RPI | | | | Chassagnole (2002) | | TKT1 | | | | Segal (1975) | | TKT2 | [c]: $e4p + xu5p-D \rightleftharpoons f6p + g3p$
Reversible Michaelis-Menten. | | | Segal (1975) | | TALA | | | | Segal (1975) | | Reaction | Mechanism | Activators | Inhibitors | Reference | |----------|--|------------|------------|-----------| | PGL | [c]: 6pgl \longrightarrow 6pgc
Lumped with G6PDH2r, so flux of PGL =
flux of G6PDH2r. Since G6PDH2r is reversible
but PGL is not, the effect of lumping the two
reactions makes overall reaction irreversible.
Also, the reaction is understood to occur
spontaneously. We therefore assume rapid
equilibriation of 6pgl. | | | EcoCyc |