S2 Table: Table of Reaction Mechanisms

Table S2: Kinetic Model Reaction Mechanisms

Reaction	Table S2: Kinetic Model I Mechanism	Activators	Inhibitors	Reference
PTS	$[glcD[p] + pep[c] \longrightarrow g6p[c] + pyr[c]]$ Irreversible Bi-Bi mechanism, with non-competitive product inhibition product by g6p.		g6p	Chassagnole (2002)
PGMT	[c]: g1p ≈ g6p Reversible Michaelis-Menten, with uncompetitive inhibition by accoa, succoa and coa against g1p.		accoa, succoa, coa	Duckworth (1973) Chassagnole (2002)
PGI	[c]: g6p ≠ f6p Reversible Michaelis-Menten, with competitive inhibition of g6p and f6p.		6pgc	Chassagnole (2002)
PFK	[c]: atp + f6p \longrightarrow adp + fdp Monod-Wyman-Changeux K-system model, with allosteric regulation of f6p by amp (inhibit), adp (inhibit) and pep (activate); and competitive inhibition of atp by adp.	amp, adp	pep	Chassagnole (2002)
FBA			g3p	Chassagnole (2002)
TPI				Chassagnole (2002)
GAPDH	[c]: $g3p + nad + pi \rightleftharpoons 13dpg + nadh$ Random-Ordered Bi-Bi Mechanism. Ignoring effect of assumed constant [pi], as its value is absorbed by v_{max} .			Chassagnole (2002)
PGK				Chassagnole (2002)
PGM				Chassagnole (2002)
ENO				Chassagnole (2002)

Reaction	Table S2 continued: Kinetic M Mechanism	Activators	Inhibitors	Reference
PYK	[c]: adp + pep → atp + pyr Monod-Wyman-Changeux K-system model, with allosteric regulation	fdp, amp	atp	Chassagnole (2002)
	by atp, fdp and amp to pep.			
PDH	[c]: $\cos + \operatorname{nad} + \operatorname{pyr} \longrightarrow \operatorname{accoa} + \operatorname{nadh}$ Irreversible Tri-Bi mechanism, with competitive product inhibition by nadh Vs nad, and accoa Vs $\cos^{[1]}$. Non-competitive inhibition by nadh:nad ratio is included ^[1] . Glyoxylate also has strong competitive inhibition Vs pyruvate ^[2] .		g6p	[1] Hoefnagel (2002) [2] Bisswanger (1981)
PTAr	[c]: accoa + pi = actp + coa Hill equation for forward and reverse reaction. Forward reaction: assumed non-competitive inhibition by nadh and atp, with pep and pyr acting as non- essential activators. Reverse reaction: assumed non-competitive inhibition by nadh, atp, pep and pyr.	pep, pyr	nadh, atp, pep, pyr	Bermudez (2010) Wang (2001)
ACKr	[c]: $actp + adp \rightleftharpoons atp + ac$ Sequential random-ordered mechanism for forward and reverse reactions. Actp showing noncompetitive product inhibition to actp synthesis reaction Vs both acetate and atp.		actp	Janson (1974)
ACS	[c]: $ac + atp + coa \longrightarrow accoa + amp$ Reaction flux = 0, consistent with belief that it is inactive during aerobic growth.			
CS	[c]: $accoa + oaa \longrightarrow cit + coa$ Irreversible sequential-ordered mechanism with accoa binding first. Nadh and akg inhibit non-competitively with oaa, and atp inhibits competitively with accoa and non-competitively with oaa. CS v_{max} is dependent on pH value.		atp, nadh, akg	Mogilevskaya (2009, Chapter 10)
ACONTb				Tsuchiya (2009)

ъ	Table S2 continued: Kinetic Mode			
Reaction	Mechanism	Activators	Inhibitors	Reference
ACONTa				
ICDHyr	[c]: icit + nadp ⇒ akg + nadph Irreversible Ordered Bi-Ter mechanism, with nadp binding first. Allosteric inhibition of icit by pep.		pep	Nimmo (1986)) Ogawa (2007)
ICL	[c]: icit \longrightarrow glx + succ Reaction flux = 0, consistent with belief that it is inactive during aerobic growth.			
AKGDH	[c]: $akg + coa + nad \longrightarrow nadh + succoa$ Multisite Ping-Pong, with product inhibition and non-competitive inhibition by glyoxylate.		$\begin{array}{c} \mathrm{succoa}^{[1]}, \\ \mathrm{glx}^{[2]} \end{array}$	[1] Wright (1980) [2] Gupta (1980)
SUCOAS	[c]: $adp + pi + succoa \rightleftharpoons atp + coa + succ$ Reversible rapid equilibrium hybrid random-ordered terreactant system: Ordered A and random B and C.			Moffet (1970) Boyer
SUCDi	[c]: q8 + succ → fum + q8h2 Irreversible Michaelis-Menten mechanism, assuming [q8] is freely available and not rate limiting			Hirsch (1963)
FUM				Ueda (1990)
MDH	[c]: mal-L + nad ≈ nadh + oaa Reversible ordered Bi-Bi mechanism, assuming that either nad or nadh binds enzyme first, reaction direction dependent.			Segal (1975) Muslin (1995) Wright (1992)
PPC	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	accoa, fdp	pep	Izui (1981) Izui (1983)

Reaction	Table S2 continued: Kinetic Model Mechanism	Activators	Inhibitors	Reference
PPCK	$\boxed{ [c]: atp + oaa \longrightarrow adp + pep}$	11001740015	11111510015	Total
	Irreversible random-ordered rapid equilibrium mechanism, with product inhibition from pep and substrate inhibition from atp.		pep, atp	Yang (2003) Krebs and Bridger (1980)
ME1	[c]: mal-L + nad		coa	Wang (2006) Segal (1975)
MALS	[c]: $accoa + glx \longrightarrow coa + mal-L$ Reaction flux = 0, consistent with belief that it is inactive during aerobic growth.			
G6PDH2r	[c]: g6p + nadp ⇒ nadph + (6pgl →)6pgc Irreversible Bi-Ter mechanism, with product inhibition of nadph competitive with nadp and non-competitive with g6p. Non-competitive inhibition by nadh to both g6p and nadp. Lumped with PGL reaction.		nadph, nadh	Sanwal (1970) Segal (1975)
GND	[c]: 6pgc + nadp		nadph, atp, fdp	DeSilva (1979) Chassagnole (2002)
RPE	[c]: $ru5p-D \rightleftharpoons xu5p-D$ Mass-action kinetics.			Chassagnole (2002)
RPI				Chassagnole (2002)
TKT1				Segal (1975)
TKT2	[c]: $e4p + xu5p-D \rightleftharpoons f6p + g3p$ Reversible Michaelis-Menten.			Segal (1975)
TALA				Segal (1975)

Reaction	Mechanism	Activators	Inhibitors	Reference
PGL	[c]: 6pgl \longrightarrow 6pgc Lumped with G6PDH2r, so flux of PGL = flux of G6PDH2r. Since G6PDH2r is reversible but PGL is not, the effect of lumping the two reactions makes overall reaction irreversible. Also, the reaction is understood to occur spontaneously. We therefore assume rapid equilibriation of 6pgl.			EcoCyc