Supporting Information for

Profiling and imaging analysis of cholesterol and 7-dehydrocholesterol in cells via sputtered silver nanoparticle MALDI-ion mobility-MS

Libin Xu,^{1,2,#} Michal Kliman,^{1,2,3#} Jay Forsythe,^{1,2,3} Zeljka Korade,⁴ Anthony B. Hmelo,⁵ Ned A. Porter,^{1,2} John A. McLean^{1,2,3*}

¹Department of Chemistry, ²Vanderbilt Institute of Chemical Biology, ³Vanderbilt Institute for Integrative Biosystems Research and Education, ⁴Department of Psychiatry and Vanderbilt Kennedy Center for Research on Human Development, ⁵Vanderbilt Institute for Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235

Abstract

Profiling and imaging of cholesterol and its precursors by mass spectrometry (MS) are important in a number of cholesterol biosynthesis disorders, such as in Smith-Lemli-Opitz syndrome (SLOS), where 7-dehydrocholesterol (7-DHC) is accumulated in affected individuals. SLOS is caused by defects in the enzyme that reduces 7-DHC to cholesterol. However, analysis of sterols is challenging because these hydrophobic olefins are difficult to ionize for MS detection. We report here sputtered silver MALDI - ion mobility - MS (IM-MS) analysis of cholesterol and 7-DHC. In comparison with liquid-based AgNO₃ and colloidal Ag nanoparticle (AgNP), sputtered silver NP (10 - 25 nm) provided the lowest limits-of-detection based on the silver coordinated $[cholesterol+Ag]^+$ and $[7-DHC+Ag]^+$ signals while minimizing dehydrogenation products ([M+Ag-2H]⁺). When analyzing human fibroblasts that were directly grown on poly-L-lysinecoated ITO glass plates with this technique, in situ, the 7-DHC/cholesterol ratios for both control and SLOS human fibroblasts are readily obtained. The m/z of 491 (specific for $[7-DHC+^{107}Ag]^+$) and 495 (specific for [cholesterol+ $^{109}\text{Åg}$]⁺) were subsequently imaged using MALDI-IM-MS. MS images were co-registered with optical images of the cells for metabolic ratio determination. From these comparisons, ratios of 7-DHC/cholesterol for SLOS human fibroblasts are distinctly higher than in control human fibroblasts. Thus, this strategy demonstrates the utility for diagnosing/assaying the severity of cholesterol biosynthesis disorders in vitro.

Figure S1. Optimization of sputtering time for cholesterol standard. Triplicate experiments were performed for each sputtering time condition for 0.78 nmol cholesterol standard.

Figure S2. Optimization of sputtering time for 7-dehydrocholesterol (7-DHC) standard. Triplicate experiments were performed for each sputtering time condition for 0.72 nmol 7-DHC standard.

Figure S3. Optimization of sputtering time on cells using non-trypsinized SLOS human fibroblasts that were grown on poly-L-lysine and ITO-coated glass MALDI plates. Triplicate experiments were carried out for each condition. 300 s of sputtering was found to give the highest signal intensity, but 100 s was found to give the highest 7-DHC/Cholesterol ratio, suggesting less dehydrogenation peaks were formed from $[7-DHC+Ag]^+$.

Figure S4. Overlay (right) of MS images (left, m/z 495) and optical images (center) of the control fibroblast cells in the same regions of ITO-coated glass plates where cells were grown.

Figure S5. Overlay (right) of MS images (left, m/z 495) and optical images (center) of the SLOS fibroblast cells in the same regions of ITO-coated glass plates where cells were grown.

Figure S6. Theoretical isotope distributions for cholesterol and 7-DHC (top) and their respective silver-coordinated species (bottom).