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Figure S1. Dose-dependent inhibition of DXP synthase by oxime mixtures containing 2,4,5- and 3,4,5-
trinydroxy scaffolds. The activity of each mixture was determined using the IspC-coupled assay described
elsewhere." Concentrations refer to the total concentration of dioxime products irrespective of oxime

derivatization or length of the dialkyoxyamine portion. Alkoxyamine linkers with 2-5 methylenes were used.
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Figure S2. Determination of optimal linker length for 2,4,5-trihydroxybenzaloximes. Symmetrical oximes with
varied dialkoxyamine linkers were synthesized by incubation the desired dialkoxyamine with 2 molar

equivalents of 2,4,5-trihydroxybenzaldehyde overnight in DMSO. The resulting symmetrical oximes were
tested directly for inhibition without purification.
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Figure S3. Inhibition of DXP synthase by mixed oxime 4. a) Oxime 4 displays competitive inhibition against D-
GAP as determined by model discrimination analysis (GraphPad Prism). Inhibitor concentrations: ¢ 0 yM, = 15
MM, a 25 uM, v 30 uM, & 50 uyM, o 60 uM, o 75 yM. b) Oxime 4 displays noncompetitive inhibition against
pyruvate as determined by model discrimination analysis (GraphPad Prism). Inhibitor concentrations: e 0 uM,
= 20 uM, 4 30 yM, v 40 pM.
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Figure S4. Inhibition of DXP synthase by symmetrical oxime 5. a) Oxime 5 displays competitive inhibition

against D-GAP as determined by model discrimination analysis (GraphPad Prism) Inhibitor concentrations: e 0

MM, = 1.0 uM, a 2.5 yM, v 5.0 uM, ¢ 10 yM. b) Oxime 5 displays uncompetitive inhibition against pyruvate as

determined by model discrimination analysis (GraphPad Prism) Inhibitor concentrations: e 0 uM, = 7.5 pM, a
15 uM, v 30 uM
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Figure S5. Inhibition of DXP synthase by 2,4,5-trihydroxybenzaldoximes 7. a) Oxime 7 displays competitive
inhibition against D-GAP as determined by model discrimination analysis (GraphPad Prism). Inhibitor
concentrations: ¢ 0 uM, = 3 uM, o 5 uM, v 6 pM, ¢ 10 uM, o 12 uM, o0 20 uM. b) Oxime 7 displays
uncompetitive inhibition against pyruvate as determined by model discrimination analysis (GraphPad Prism).
Inhibitor concentrations: ¢ 0 uM, = 5 yM, a 10 uM, v 20 M.
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Figure S6. Inhibition of DXP synthase by 2,4,5-trihydroxybenzaldoxime 8. a) Oxime 8 displays competitive
inhibition against D-GAP as determined by model discrimination analysis (GraphPad Prism).
Inhibitorconcentrations: ¢ 0 uM, = 8 uM, a 16 uM, v 30 uM. b) Oxime 8 displays noncompetitive inhibition
against pyruvate as determined by model discrimination analysis (GraphPad Prism). Inhibitor concentrations: e
0 uM, = 5 uM, a 10 uM, v 20 pM.
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Figure S7. Inhibition of DXP synthase by 2,4,5-trihydroxybenzaldoxime 9. a) Oxime 9 displays competitive
inhibition against D-GAP as determined by model discrimination analysis (GraphPad Prism). Inhibitor
concentrations: ¢ 0 uM, = 5 uM, a 10 uM, v 20 uM, & 25 uM, o 40 yM. b) Oxime 9 displays honcompetitive
inhibition against pyruvate as determined by model discrimination analysis (GraphPad Prism). Inhibitor
concentrations: ¢ 0 uM, = 20 uM, a 30 uM, v 40 pM.
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Figure S8. Inhibition of DXP synthase by methyloximes 12-24. ®*Compound was tested at 100 uM.
*Significantly different from no inhibitor control (p < 0.05).
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Figure S9. Inhibition of DXP synthase by oximes 17, 21, and 22. Oximes 17, 21, and 22 all display
competitive inhibition against D-GAP as determined by model discrimination analysis (GraphPad Prism). a)
Inhibition by 17. Inhibitor concentrations: ¢ 0 uM, = 25 uM, A 50 uM, v 75 uM. b) Inhibition by 21. Inhibitor
concentrations: ¢ 0 uM, = 25 uM, a 75 uM, v 200 pM. c) Inhibition by 22. Inhibitor concentrations: ¢ 0 uM, = 20
MM, a 50 uM, v 100 pM.

Experimental Procedure for **C NMR analysis.

Analysis of Oxime 8 in aqueous solution. Oxime 8 (0.0182 g, 0.0994 mmol, 1 eq.) was dissolved in DMSO-
ds (0.050 mL) and diluted into phosphate buffer (500 mM, pH 8, 0.351 mL) then HEPES (1M, 0.099 mL, 1 eq.).
An initial spectrum was collected then another spectrum was collected after 24 hours.

Analysis of Oxime 8 in aqueous solution with B-mercaptoethanol (BME). A solution of oxime 8 (124 mM,
1 eq.) in phosphate buffer (500 mM, pH 8, 10% (v/v) DMSO-ds) was prepared and a **C NMR spectrum was
collected. BME (13.1 pL, 0.187 mmol, 3 eq.) was added to the oxime solution and the resulting solution was
analyzed by *C NMR.
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Figure S10. *C NMR of oxime 8 in the presence and absence of BME. a) No significant accumulation of
quinone species in aqueous solution. **C NMR spectra of 8 are shown i) immediately after adding 8 to
agueous solution, ii) after incubation at ambient temperature for 24 hours in agueous solution, b) BME adducts
form upon addition of BME to 8; i) Spectrum of BME alone in buffered aqueous solution with DMSO-dg. ii)
Spectrum of 8 in buffered aqueous solution with 1 molar equivalent of HEPES prior to addition of BME. iii)
Spectrum of 8 immediately after adding BME (3 eq.) ¢) Enlarged view (50 — 70 ppm) of spectrum shown in b
showing tentative peak assignments for BME adduct.
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Figures S11. 'H NMR spectra of 4.
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Figures S12. '"H NMR spectra of 5.
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Figures S13. 'H NMR spectra of 7.
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Figures S14. 'H NMR spectra of 8.
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Figures S15. 'H NMR spectra of 9.
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Figures S16. '"H NMR spectra of 10.
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Figures S17. 'H NMR spectra of 11.
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Figures S18. 'H NMR spectra of 12.
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Figures S19. 'H NMR spectra of 13.
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Figures S20. 'H NMR spectra of 14.
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Figures S21. 'H NMR spectra of 15.
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Figures S22. '"H NMR spectra of 16.
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Figures S23. "H NMR spectra of 17.
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Figures S24. '"H NMR spectra of 18.
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Figures S25. '"H NMR spectra of 19.
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Figures S26. '"H NMR spectra of 20.
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Figures S27. 'H NMR spectra of 21.
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Figures S28. 'H NMR spectra of 22.
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Figures S29. 'H NMR spectra of 23.
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Figures S30. *H NMR spectra of 24.
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