Content of Supplemental Information

Figure S1. Distribution of beta values of DNA methylation array of the screening cohort (50 patients)2
Figure S2. Pyrosequencing validation of methylated CpG sites of probes identified by array analyses3
Figure S3. Distribution of beta and pyrosequencing values of 8 validated In-CpG sites in two independent
cohorts4
Figure S4. Correlation between pyrosequencing validation values and mRNA expressions in validation
cohort of ESCC patients
Table S1. Clinicopathological characteristics of the patients included in this study
Table S2. List of 186 genes with expression changes are related to ESCC metastasis and progression
(curated from the literature)7
Table S3. List of primers for pyrosequencing validation genes used in this study. 12
Table S4. List of primers used in RT-PCR 14
Table S5. List of 44 top-ranked probes containing DNA methylated CpG sites
Table S6. Univariate and multivariate analysis of 20 validated CpG sites with clinico-pathological
prognostic factors in the validation cohort17
Table S7. Array-based examination of methylated CpG sites
Method S1. Detailed procedures to calculate the 6 correlation metrics
References

Figure S1. Distribution of beta values of DNA methylation array of the screening cohort (50 patients). A) Un-normalized beta values. B) Normalized beta values using LOESS method. T: tumor tissue; N: normal tissue.

Figure S2. Pyrosequencing validation of methylated CpG sites of probes identified by array analyses. Scatterplot analysis showed a high concordance in methylation level between Illumina genome-wide methylation assay (X-axis: Beta value) and pyrosequencing validation (Y-axis). The data was collected on 20 CpG sites in 30 patients and was fitted by a linear regression line with a Pearson Correlation Coefficient 0.78.

Figure S3. Distribution of beta and pyrosequencing values of 8 validated In-CpG sites in two independent cohorts.

The red color and blue color represent the array-derived beta values in screening cohort and the pyrosequencing methylation percentage in validation cohort respectively. N: normal tissue; T: tumor tissue. Error bars indicate standard error of the means.

Figure S4. Correlation between pyrosequencing validation values and mRNA expressions in validation cohort of ESCC patients.

A) Increased methylation CpG sites of genes revealed from GRN_{escc}. B) Decreased methylation CpG sites of genes revealed from GRN_{escc}. FC: fold change; T/N: tumor/normal.

		DNA methylation microarray a	nalysis (N = 50)	Pyrosequencing valida	tion (N = 50)
		N	%	N	%
	<60	31	62	32	64
Age	>60	19	38	18	36
	Male	47	94	49	98
Sex	Female	3	6	1	2
	Ι	4	8	3	6
UICC	II	15	30	13	26
tumor stage	III	20	40	21	42
	IV	11	22	13	26
	T1	5	10	4	8
Tatatua	T2	6	12	2	4
1 status	T3	33	66	37	74
	T4	6	12	7	14
	N0	19	38	22	44
IN status	N1	31	62	28	56
Matataa	M0	38	76	37	74
IVI status	M1	12	24	13	26
Decumenter	Yes	28	85	17	85
Recurrence	No	5	15	3	15

Table S1. Clinicopathological characteristics of the patients included in this study.

N: number of patients; T status: tumor size; N status: lymph node metastasis; M status: distant organ metastasis.

Table S2. List of 186 genes with expression changes are related to ESCC metastasis and progression (curated from the literature).

#			Expression change	
	Gene symbol	Gene ID	associated with	Reference
			progression	
1	ACTN1	87	Up	(Michaylira, et al., 2010)
2	ALCAM	214	Up	(Verma, et al., 2005)
3	AMIGO2	347902	Up	(Michaylira, et al., 2010)
4	ARHGDIG	398	Up	(Li, et al., 2006)
5	ATR	545	Down	(Li, et al., 2006)
6	AURKA	6790	Up	(Michaylira, et al., 2010) (Shi, et al., 2010) (Wang, et al., 2009)
7	BGN	633	Up	(Wong, et al., 2009)
8	BID	637	Up	(Michaylira, et al., 2010)
9	BIRC5	332	Up	(Michaylira, et al., 2010)
10	BMP5	653	Down	(Li, et al., 2006)
11	BNIP3	664	Up	(Li, et al., 2006)
12	CARD10	29775	Up	(Michaylira, et al., 2010)
13	CASP3	836	Down	(Li, et al., 2006)
14	CAV1	857	Up	(Kato, et al., 2002)
15	CCNB1	891	Up	(Song, et al., 2008)
16	CCND1	595	Up	(Li, et al., 2006) (Nakajima, et al., 2002)
17	CCND2	894	Down	(Li, et al., 2006)
18	CCR7	1236	Up	(Ding, et al., 2003) (Ishida, et al., 2009)
19	CCT5	22948	Up	(Uchikado, et al., 2006)
20	CD44	960	Up	(Wong, et al., 2009)
21	CD58	965	Up	(Li, et al., 2006)
22	CD82	3732	Down	(Li, et al., 2006) (Miyazaki, et al., 2000) (Uchida, et al., 1999)
23	CD86	942	Up	(Li, et al., 2006)
24	CD9	3732	Down	(Uchida, et al., 1999)
25	CDC151	977	Up	(Suzuki, et al., 2011)
26	CDC25B	994	Down	(Li, et al., 2006)
27	CDU1	000	Doum	(Li, et al., 2006) (Kaihara, et al., 2001) (Chen, et al., 2011) (Zhang, et
21	CDIII	<i>999</i>	Down	al., 2012) (Lioni, et al., 2007) (Matsushima, et al., 2011)
28	CDH2	1000	Up	(Li, et al., 2010) (Li, et al., 2009) (Li, et al., 2009)
29	CDK5	1020	Down	(Li, et al., 2006)
30	CKS2	1164	Up	(Michaylira, et al., 2010) (Uchikado, et al., 2006)
31	CLDN5	7122	Up	(Chiba, et al., 2010)
32	CLDN7	1366	Down	(Usami, et al., 2006) (Lioni, et al., 2007)
33	COL12A1	1303	Up	(Michaylira, et al., 2010)

34	COL16A1	1307	Up	(Michaylira, et al., 2010)
35	COL1A1	1277	Up	(Wong, et al., 2009)
36	COL1A2	1278	Up	(Wong, et al., 2009)
37	COL27A1	85301	Up	(Michaylira, et al., 2010)
38	COL4A2	1284	Up	(Michaylira, et al., 2010)
39	COL5A1	1289	Up	(Michaylira, et al., 2010)
40	COL5A3	50509	Up	(Michaylira, et al., 2010)
41	COL8A1	1295	Up	(Michaylira, et al., 2010)
42	CSTA	1475	Down	(Li, et al., 2005)
43	CTGF	1490	Down	(Li, et al., 2006)
44	CTNNA1	1495	Down	(Li, et al., 2006)
45	CTNNB1	1499	Up	(Hou, et al., 2011)
46	CTSB	1508	Up	(Jiao, et al., 2007)
47	CTTN	2017	Up	(Luo, et al., 2006) (Luo and Wang, 2007)
48	CYR61	3491	Up	(Xie, et al., 2011)
49	DACT1	51339	Up	(Hou, et al., 2011)
50	DCBLD1	285761	Up	(Michaylira, et al., 2010)
51	DCBLD2	131566	Up	(Michaylira, et al., 2010)
52	DEC1	50514	Down	(Wong, et al., 2011)
53	DFNA5	1687	Up	(Michaylira, et al., 2010)
54	DRD2	1813	Up	(Li, et al., 2006)
55	DSP	1832	Down	(Li, et al., 2006)
56	EDN1	1906	Up	(Jiao, et al., 2007)
57	EGFR	1956	Up	(Li, et al., 2006)
58	ENG	2022	Down	(Wong, et al., 2008)
59	EP300	2033	Down	(Zhang, et al., 2007)
60	EPHA2	1969	Up	(Li, et al., 2006)
61	EPHB6	2051	Down	(Li, et al., 2006)
62	ETS1	2113	Up	(Mukherjee, et al., 2003)
63	FERMT2	10979	Up	(Michaylira, et al., 2010)
64	FEZ1	9638	Up	(Michaylira, et al., 2010)
65	FHL1	2273	Up	(Michaylira, et al., 2010)
66	FHOD3	80206	Up	(Michaylira, et al., 2010)
67	FLNA	2316	Up	(Michaylira, et al., 2010)
68	FLRT2	23768	Up	(Michaylira, et al., 2010)
69	FN1	2335	Up	(Michaylira, et al., 2010) (Wong, et al., 2009)
70	FXYD5	53827	Up	(Michaylira, et al., 2010)
71	GJB2	2706	Down	(Uchikado, et al., 2006)
72	GLI1	2735	Up	(Mori, et al., 2006)

73	HGF	3082	Up	(Grugan, et al., 2010)
74	HIF1A	3091	Up	(Kurokawa, et al., 2003)
75	HLA-DRA	3122	Up	(Sadanaga, et al., 1994)
76	HLA-DRB1	3123	Up	(Sadanaga, et al., 1994)
77	HLA-DRB3	3125	Up	(Sadanaga, et al., 1994)
78	HLA-DRB4	3126	Up	(Sadanaga, et al., 1994)
79	HLA-DRB5	3127	Up	(Sadanaga, et al., 1994)
80	HNT	50863	Up	(Michaylira, et al., 2010)
81	HSPA4	3308	Down	(Li, et al., 2006)
82	HTRA1	5654	Up	(Michaylira, et al., 2010)
83	ID1	3397	Up	(Yuen, et al., 2007)
84	ID2	3398	Down	(Yuen, et al., 2007)
85	IGF1R	3480	Up	(Kong, et al., 2012)
86	IGFBP3	3486	Up	(Li, et al., 2006)
87	IGFBP6	3489	Down	(Li, et al., 2006)
88	IGFBP7	3490	Up	(Michaylira, et al., 2010)
89	IL8	3576	Up	(Ren, et al., 2005)
90	INHBA	3624	Up	(Michaylira, et al., 2010)
91	ITGA3	3675	Up	(Michaylira, et al., 2010)
92	ITGA5	3678	Up	(Michaylira, et al., 2010)
93	ITGAM	3684	Up	(Li, et al., 2006)
94	ITGB5	3693	Up	(Li, et al., 2006)
95	IVL	3713	Down	(Oda and Ono, 2004)
96	JUN	3725	Up	(Li, et al., 2006)
97	KISS1	3814	Down	(Li, et al., 2009)
98	LAMB1	3912	Up	(Michaylira, et al., 2010)
99	LAMB3	3914	Up	(Michaylira, et al., 2010)
100		2019	ŤŢ	(Michaylira, et al., 2010) (Shen, et al., 2007) (Yamamoto, et al.,
100	LAMC2	3918	Up	2001)
101	LGALS3	3958	Down	(Shibata, et al., 2005)
102	LOX	4015	Up	(Sakai, et al., 2009)
103	LOXL2	4017	Up	(Michaylira, et al., 2010)
104	LPXN	9404	Up	(Michaylira, et al., 2010)
105	LTBP2	4053	Up	(Michaylira, et al., 2010)
106	LYPD3	27076	Up	(Hansen, et al., 2008)
107	MAP1B	4131	Up	(Michaylira, et al., 2010)
108	MAPK14	1432	Down	(Li, et al., 2006)
109	MAPK4	5596	Down	(Li, et al., 2006)
110	MAPK7	5598	Down	(Li, et al., 2006)

111	MCAM	4162	Up	(Michaylira, et al., 2010)
112	MDM2	4193	Down	(Li, et al., 2006)
113	MIF	4282	Up	(Ren, et al., 2005)
114	MKI67	4288	Up	(Nakajima, et al., 2002) (Kawamura, et al., 1996)
115	MMP1	4312	Up	(Shen, et al., 2007) (Chen, et al., 2010)
116	MMP13	4322	Up	(Li, et al., 2006) (Ye, et al., 2011)
117	MMP2	4313	Up	(Li, et al., 2006) (Zhang, et al., 2012)
118	MMP9	4318	Up	(Wong, et al., 2009)
119	MRC2	9902	Up	(Michaylira, et al., 2010)
120	MTA1	9112	Up	(Qian, et al., 2005)
121	MTSS1	9788	Up	(Xie, et al., 2011)
122	MUC1	4582	Up	(Ye, et al., 2011)
123	NDUFB9	4715	Up	(Uchikado, et al., 2006)
124	NEFL	4747	Up	(Michaylira, et al., 2010)
125	NME1	4830	Down	(Tomita, et al., 2001)
126	PALM2-AKAP2	445815	Up	(Michaylira, et al., 2010)
127	PCDH7	5099	Up	(Michaylira, et al., 2010)
128	PDCD10	11235	Down	(Li, et al., 2006)
129	PDGFRA	5156	Up	(Michaylira, et al., 2010)
130	PDPN	10630	Up	(Michaylira, et al., 2010) (Chuang, et al., 2009)
131	PIK3CA	5290	Up	(Akagi, et al., 2009)
132	PLEK2	26499	Up	(Michaylira, et al., 2010)
133	PLOD1	5351	Up	(Michaylira, et al., 2010)
134	POR	5447	Up	(Li, et al., 2006)
135	POSTN	10631	Up	(Michaylira, et al., 2010)
136	PPM1D	8493	Down	(Li, et al., 2006)
137	PPP1R1B	84152	Down	(Li, et al., 2006)
138	PRKCI	5584	Up	(Liu, et al., 2011) (Yang, et al., 2008)
139	PTHLH	5744	Up	(Michaylira, et al., 2010)
140	PTK2	5747	Up	(Miyazaki, et al., 2003)
141	PTP4A3	11156	Up	(Ooki, et al., 2010)
142	PTPN2	5771	Down	(Li, et al., 2006)
143	PTPRF	5792	Down	(Li, et al., 2006)
144	PTTG1	9232	Up	(Ito, et al., 2008) (Yan, et al., 2009)
145	PXN	5829	Up	(Wong, et al., 2009)
146	RAC3	5881	Up	(Li, et al., 2006)
147	RXRA	6256	Down	(Li, et al., 2006)
148	S100A4	6275	Up	(Zhang, et al., 2012) (Zhang, et al., 2010)
149	SDK2	54549	Up	(Michaylira, et al., 2010)

150	SEMA4D	10507	Up	(Li, et al., 2006)
151	SERPINB3	6317	Up	(Nagatani, et al., 2003)
152	SGCB	6443	Up	(Michaylira, et al., 2010)
153	SKP2	6502	Down	(Liu, et al., 2011) (Wang, et al., 2009)
154	SLIT2	9353	Down	(Kim, et al., 2008)
155	SNAI2	6591	Up	(Michaylira, et al., 2010) (Tang, et al., 2011)
156	SNCA	6622	Up	(Michaylira, et al., 2010)
157	SPARC	6678	Up	(Michaylira, et al., 2010) (Wong, et al., 2009)
158	SPHK1	8877	Up	(Michaylira, et al., 2010)
159	SPON2	10417	Up	(Michaylira, et al., 2010)
160	SPP1	6696	Up	(Uchikado, et al., 2006)
161	SRC	6714	Up	(Chen, et al., 2010)
162	SRPX	8406	Up	(Michaylira, et al., 2010)
163	STAT5B	6777	Down	(Li, et al., 2006)
164	STC2	8614	Up	(Kita, et al., 2011)
165	STMN1	3925	Up	(Uchikado, et al., 2006)
166	STOML2	30968	Up	(Cao, et al., 2010)
167	SYNPO	11346	Up	(Michaylira, et al., 2010)
168	TGFB1	7040	Up	(Wong, et al., 2009)
169	TGFB1I1	7041	Up	(Michaylira, et al., 2010)
170	TGM2	7052	Up	(Michaylira, et al., 2010)
171	THBD	7056	Down	(Matsushita, et al., 1998) (Tezuka, et al., 1995)
172	THBS1	7057	Up	(Michaylira, et al., 2010) (Zhou, et al., 2009)
173	THY1	7070	Up	(Michaylira, et al., 2010)
174	TIMP2	7077	Down	(Chen, et al., 2010)
175	TNC	3371	Up	(Michaylira, et al., 2010)
176	TNFRSF12A	51330	Up	(Michaylira, et al., 2010)
177	TNFRSF6B	8771	Up	(Xiong, et al., 2011)
178	TNS1	7145	Up	(Michaylira, et al., 2010)
179	TP53	7157	Up	(Nakajima, et al., 2002) (Han, et al., 2007)
180	TWIST1	7291	Up	(Yuen, et al., 2007) (Xie, et al., 2009)
181	TWIST2	117581	Up	(Michaylira, et al., 2010)
182	VEGFA	7422	Up	(Mukherjee, et al., 2003) (Ren, et al., 2005)
183	VEGFC	7424	Up	(Li, et al., 2006) (Han, et al., 2007) (Krzystek-Korpacka, et al., 2007)
184	VIM	7431	Up	(Chen, et al., 2010) (Jin, et al., 2010)
185	VWF	7450	Up	(Wong, et al., 2009)
186	ZEB2	9839	Up	(Matsushima, et al., 2011)

#: serial number; Up: expressed genes in ESCC progression; Down: repressed genes in ESCC progression.

Table S3. List of primers for pyrosequencing validation genes used in this study.

Gene symbol	Primer type	Sequence (from 5'-end to 3'-end)	Product size (bp)			
	Forward	TGGTTTTTGAGGTTTTTGTTTAGATAT				
ADCYAP1	Biotinylated reverse	GGGACACCGCTGATCGTTTACCCTACCACTTCTTACTTAC	315			
	Sequencing	GTTTTTAGGGTGGTGATTTTAG				
	Forward	AATGGGTTTGGGAGATGTTAGATTAG				
KCNK4	Biotinylated reverse	GGGACACCGCTGATCGTTTAAAAAAAATTACAACAAAAACCAACC	139			
	Sequencing	TAGAGTGGTGTTTGTT				
	Forward	GGGGATATTTGAGTAGATGAGAATTG				
SLC5A8	Biotinylated reverse	GGGACACCGCTGATCGTTTAACCCTTTATCCCACATTCC	153			
	Sequencing	GGTAGGTTTTGTTTAAGTG				
	Forward	TTTTAAGGGGGTGGTAGTAG				
CD81	Biotinylated reverse	GGGACACCGCTGATCGTTTACCAAAATACTCACCTCCTTT	154			
_	Sequencing	GGGGTGGTAGTAGGG				
	Biotin-Forward	GGGACACCGCTGATCGTTTAGGGTGAGTAGTGGGTGGAGAAA				
CFTR	Reverse	ACCCCTTCCTTTTACTCTTT	111			
	Sequencing					
	Biotin-Forward	GGGACACCGCTGATCGTTTAAGGGAGGAAGAAAAAAAGGAGATA				
E2F5	Reverse	226				
	Sequencing					
	Forward	GTGGTGGGGGTGTTTAGT				
HS3ST2	Biotinylated reverse	107				
	Sequencing	AAGTTGGTTTGGGGT				
	Forward	TTAGGAAATTAAGGGGTTTATATAGGAAGG				
JAK3	Biotinylated reverse	GGGACACCGCTGATCGTTTAACTAACCTTTACCCTAACAACAC	210			
	Sequencing	g GGTTTTTGTTAGTTAGGTAAGA				
	Forward					
PENK	Biotinylated reverse	GGGACACCGCTGATCGTTTAACCCCAAAAAAAAAAAACATTCCT	184			
	Sequencing					
	Forward	AGGTTGGGTAGGTAATGGA				
SEZ6L	Biotinylated reverse	GGGACACCGCTGATCGTTTAACAAAATTTAACCCCAATTCCCCTTAC	188			
	Sequencing	ncing GTTAGGTAGAGTTGTTGG				
	Forward	TGAGGTTGTTGATTGGTTAGTATAG				
ZIM2	Biotinylated reverse	GGGACACCGCTGATCGTTTACACCAACCCAAAATAAACATCTC	148			
	Sequencing	GAGAAGTTTTGATAAGG				
	Forward	Forward GTTATTGAGTTGAGGTGGAGTT				
PI3	Biotinylated reverse	174				
	Sequencing	ATTAAGTTTGAAATTGAGGG				
PGR	Forward	GGTAAAGAGAATTTTGGGAAGTAGG	124			

	Biotinylated reverse	GGGACACCGCTGATCGTTTAATACTTCTATACCCACACTTACTC	
	Sequencing	GGAAGTAGGTATAGAATGTTTA	
	Biotinylated forward	GGGACACCGCTGATCGTTTATTTTTAGTTTAGGATGGTTTAAGATGT	
INS	Reverse	CCCAAATCATACCCTCCTTCT	182
	Sequencing	ACCTTAACCCATCCAT	
	Forward	GGAGGGGTAGTGAGAGAAT	
SFTPA1	Biotinylated reverse	GGGACACCGCTGATCGTTTACACTCACTAACTCACACCATCTATC	179
	Sequencing	TATTTTGAGGGGGGT	
	Forward	ATGGTTAGAGAGTGGTGATATT	
CCL3	Biotinylated reverse	GGGACACCGCTGATCGTTTACAATCCTTTCTTAACTCTACTAACAC	174
	Sequencing	GTAGGTGAAGGAATGTGG	
	Forward	AGGAAGGTTGTTAGGGTTTTATTAGT	
CSF3R	Biotinylated reverse	GGGACACCGCTGATCGTTTATACTTAACCTCCTTAATCTCTCTTCT	240
	Sequencing	TTGTTAGAGGTTGAGTTAT	
	Forward	AGGGAGTTGAGGGGTTAGTG	
TRPM5	Biotinylated reverse	GGGACACCGCTGATCGTTTACTCAACCCTCATAAAACTCATATCT	109
	Sequencing	AGAGGGGTTGAGATG	
	Forward	AGAAGGGTTTAGGAAATATAGGAAT	
MAPK4	Biotinylated reverse	GGGACACCGCTGATCGTTTAAAATCACTACCACCAACTCTCT	141
	Sequencing	AGGAAATATAGGAATTAGTAG	
	Forward	TGTATTAGGAGGGGAGAGGGGAGTATTTA	
PAX6	Biotinylated reverse	GGGACACCGCTGATCGTTTATATCATCATCCTCCAACAAAACACT	206
	Sequencing	GGAGAGGGAGTATTTAAT	

Table S4. List of primers used in RT-PCR

Gene symbol	Primer type	Sequence or TaqMan [®] Assay ID	Product size (bp)
CD01	Forward	GCCAAGGATGTGAAGCAGTT	200
CD81	Reverse	CCTCCTTGAAGAGGTTGCTG	208
	Forward	CTGGAGGTACCCATTCCAGA	1(0
E2F3	Reverse	GGAAGGCTGTGTGAGGTCAT	108
14122	Forward	AGCCGCCTCCTTCTCTATTC	212
JAKS	Reverse	TACCAGAAAATGGGGCTCTG	212
CCL3	TaqMan [®] probes	Hs00234142_m1	53
INS	TaqMan [®] probes	Hs02741908_m1	139
MAPK4	TaqMan [®] probes	Hs00177074_m1	72
PAX6	TaqMan [®] probes	Hs00240871_m1	76
PGR	TaqMan [®] probes	Hs01556702_m1	77

Rank	Probe ID	Gene ID	Gene symbol	GRNescc	GRN _{g-escc}	TSS	Gene description	Methylation level	GOs
								(Tumor/Normal)	GO:0045595~regulation of cell
									differentiation
1	5705			V	N	. 111		T	CO:0001525 angiogenesis
1	5725	9353	SL112	Yes	No	+111	Slit homolog 2	1	GO:0001525~angiogenesis
									GO:0016477~cell migration
									GO:0006935~chemotaxis
2	5615	2719	141/2*	Vac	No	161	Janua kinasa 2	т	GO:0007166~cell surface receptor
2	3013	5/18	JAK5*	res	NO	+04	Janus kinase 5	1	linked signal transduction
							Solute carrier family 22		
3	3926	6581	SLC22A3	No	Yes	+122	(extraneuronal monoamine	D	
							transporter), member 3		
							· · · · · · · · · · · · · · · · · · ·		GO:0045595~regulation of cell
							Cualin dependent kinges inhibitor		differentiation
4	6139	1029	CDKN2A	Yes	No	Null		Ι	
							ZA		GO:0001558~regulation of cell growth
									GO:0042981~regulation of apoptosis
5	3913	6435	SFTPA1*	No	No	+340	Surfactant, pulmonary-associated	D	
5	0,10	0100	51 11 11	110	110	1010	protein A1	2	
6	2192	2273	FHL1 [†]	Yes	No	-768	Four and a half LIM domains 1	Ι	
							V-FES feline sarcoma viral/V-FPS		
7	4002	2242	FES	Yes	No	-223	fujinami avian sarcoma viral	I	GO:0008283~cell proliferation
							oncogene homolog		r · · · ·
							Solute corrier family 5 (indide		
8	2003	160728	SLC5A8*	No	No	-38	transmenter) merchan 8	Ι	
	1050	2202				1.001	transporter), member 8		
9	1072	3202	HOXA5	Yes	No	-1,324	Homeobox A5	I	
10	3752	5179	PENK*	No	Yes	+26	Proenkephalin	I	
									GO:0045595~regulation of cell
11	1661	5080	PAX6*	Yes	No	-1,121	Paired box gene 6 isoform b	Ι	differentiation
									GO:0016477~cell migration
							Transmembrane protein with		
12	2136	8577	TMEFF1	No	Yes	-626	EGF-like and two follistatin-like	Ι	
							domains 1		
13	1685	5266	PI3*	No	Yes	-1 394	Elafin preproprotein	D	
10	1005	0200		110	105	1,021	Kinoso insert domain recentor (a	2	GO:0001525-angiogenesis
14	4232	3791	KDR	Yes	No	-445	Kinase hisert domain receptor (a	Ι	CO:0016477 cell microtion
							type III receptor tyrosine kinase)	~	GO:0016477~cell migration
15	2811	5241	PGR*	Yes	No	-456	Progesterone receptor	D	
									GO:0045595~regulation of cell
16	5068	7070	$THV1^{\dagger}$	Vac	No	20	Thy 1 cell surface antigen	т	differentiation
10	5700	1010	11111	103	110	-20	Thy-T cen surface antigen	1	GO:0001525~angiogenesis
									GO:0007155~cell adhesion
17	2868	6348	CCL3*	Yes	No	+53	Chemokine (C-C motif) ligand 3	D	GO:0006935~chemotaxis
									GO:0045595~regulation of cell
									differentiation
19	2721	2560	Пб	Vac	No	611	Interlaukin 6 (interform hate 2)	D	GO:0016477-cell migration
10	2721	3309	iLo	105	NO	-011	Interfeuxin 6 (Interferon, beta 2)	D	
									GO:0006935~cnemotaxis
									GO:0042981~regulation of apoptosis
									GO:0045595~regulation of cell
10	1202	3630	INC*	Vac	No	804	Proinsulin precursor	D	differentiation
19	1205	5050	шъ.,	1 08	INO	-004	r tomsum precuisor	D	GO:0001558~regulation of cell growth
									GO:0042981~regulation of apoptosis
							Cystic fibrosis transmembrane		
20	247	1080	CFTR*	Yes	No	-115	conductance regulator. ATP-binding	Ι	
	-			res			cassette (sub-family C member 7)		
							Henaran sulfate D_glucocaminv1		
21	1087	9956	HS3ST2*	No	No	-546	2 O sulfotronoforese 2	Ι	
							5-0-sunoualisterase 2		
22	3534	50801	KCNK4*	No	No	+3	Potassium channel, subfamily K,	Ι	

Table S5. List of 44 top-ranked probes containing DNA methylated CpG sites.

							member 4 isoform 1		
23	5893	3651	IPF1	Yes	No	-750	Insulin promoter factor 1, homeodomain transcription factor	Ι	
24	3981	8794	TNFRSF10C	No	Yes	+109	Tumor necrosis factor receptor superfamily, member 10c precursor	Ι	
25	631	3205	HOXA9	No	Yes	+252	Homeobox protein A9 isoform b	Ι	
							Transmembrane protein with		
26	6131	23671	TMEFF2	No	Yes	+442	EGF-like and two follistatin-like	Ι	
							domains 2		
27	5078	4811	NID1	Yes	No	-714	Nidogen (enactin)	D	GO:0007155~cell adhesion
28	5943	64321	SOX17	No	Yes	-303	SRY-box 17	Ι	GO:0001525~angiogenesis
29	2153	29850	TRPM5*	No	No	-721	Transient receptor potential cation	D	
29	2155	29850	TKI WI5	NO	NO	-721	channel, subfamily M, member 5	D	
30	1088	9956	H\$3\$T2	No	Ves	-171	Heparan sulfate D-glucosaminyl	T	
50	1000	7750	1155512	110	103	-171	3-O-sulfotransferase 2	1	
31	5660	5596	MAPK4* [†]	Yes	No	273	Mitogen-activated protein kinase 4	D	
32	758	2070	EYA4	No	Yes	-508	Eyes absent 4 isoform a	Ι	
33	5602	1875	E2F5*	Yes	No	-516	E2F transcription factor 5	Ι	
34	1790	63968	PWCR1	No	No	-811	Prader-Willi syndrome chromosome	D	
54	1790	05700	IWCKI	NO	NO	-011	region 1	D	
							Similar to Metalloproteinase		
35	5345	7077	TIMP2 [†]	Ves	No	-267	inhibitor 2 precursor (TIMP-2)	т	GO:0045595~regulation of cell
55	5545	1011	THVIT 2	103	110	-207	(Tissue inhibitor of	1	differentiation
							metalloproteinases-2) (CSC-21K)		
36	950	283120	H19	No	No	-1 411	H19, imprinted maternally expressed	D	
50	250	205120	1117	110	110	1,411	transcript (non-protein coding)	D	
									GO:0008283~cell proliferation
37	220	975	CD81*	Yes	No	-272	CD81 antigen	Ι	GO:0044409~entry into host
									GO:0030260~entry into host cell
38	3463	1441	CSF3R*	Ves	No	-8	Colony stimulating factor 3 receptor	D	GO:0007155~cell adhesion
50	5105	1111	COLOR	105	110	0	isoform d precursor	D	CO.0007155 Con autosion
39	1262	50801	KCNK4*	No	No	-171	Potassium channel, subfamily K,	I	
							member 4 isoform 1		
40	1931	23544	SEZ6L*	No	No	-299	Seizure related 6 homolog	Ι	
							(mouse)-like precursor		
41	961	338433	HBII-52	No	No	-563	Small nucleolar RNA, C/D box	D	
							115-1		
									GO:0045595~regulation of cell
									differentiation
42	4118	3569	IL6	Yes	No	+168	Interleukin 6 (interferon, beta 2)	D	GO:0016477~cell migration
									GO:0006935~chemotaxis
									GO:0042981~regulation of apoptosis
43	2198	23619	ZIM2*	No	No	-22	Zinc finger, imprinted 2	Ι	
							Adenvlate cyclase activating		
44	41	116	ADCYAP1*	No	Yes	-455	polypeptide precursor	Ι	
							I VITT FILL FILL OF		

Rank: ranked genes in ascending order based on logrank-test-derived p-values; TSS: methylated CpG sites relative to transcription start site; *: available for primer design for pyrosequencing validation; †: overlapped with literature-curated significantly expressed genes associated with ESCC progression; GRN_{escc}: ESCC progression-associated gene regulatory network; GRN_{g-escc}: non-ESCC progression-associated gene regulatory network; I: methylation level increased in tumor; D: methylation level decreased in tumor; Yes: in network; No: not in network; GOs: cancer progression-related Gene Ontology terms.

Un	ivariate	
	HR (95% CI)	<i>P</i> -value
Gene methylation (increased vs decreased methylation)		
In-CpGs		
JAK3	2.61 (0.93-7.30)	0.068
PAX6	4.33 (0.93-20.11)	0.062
CFTR	0.48 (0.16-1.46)	0.198
E2F5	3.08 (1.10-8.63)	0.032*
CD81	2.95 (1.17-7.41)	0.021*
CCL3	8.46 (1.12-63.74)	0.038*
CSF3R	24.53 (0.03-23196.12)	0.360
INS	0.32 (0.103-0.101)	0.052
MAPK4	0.06 (0.01-0.67)	0.022*
PGR	3.70 (1.30-10.46)	0.014*
Out-CpGs		
SLC5A8	3.16 (0.60-16.67)	0.176
PENK	0.48 (0.18-1.28)	0.143
HS3ST2	0.71 (0.26-1.97)	0.509
KCNK4	28.15 (0.06-13818.94)	0.291
SEZ6L	1.69 (0.68-4.15)	0.257
ZIM2	0.04 (0.00-74.11)	0.409
ADCYAPI	1.42 (0.66-3.08)	0.373
P13	2.06 (0.59-7.11)	0.255
SFTPA1	21.34 (0.00-1031990.42)	0.578
TRPM5	1.81 (0.68-4.83)	0.239
TNM stage (III/IV vs I/II)	0.97 (0.35-2.74)	0.957
Local lymph node metastasis (yes vs no)	0.53 (0.21-1.35)	0.181
Distant metastasis (yes vs no)	2.81 (1.08-7.34)	0.035*
Age (>=55 vs <55)	0.40 (0.14-1.14)	0.086
Drinking status (yes vs no)	1.13 (0.26-4.90)	0.876
Mul	tivariate ^c	0.0.00
JAK3	2.70 (0.96-7.59)	0.060
PAX6	3.90 (0.81-18.78)	0.089
E2F5	3.18 (1.13-8.92)	0.028*
CD81	3.52 (1.35-9.18)	0.010*
CCL3	7.67 (1.01-58.12)	0.049*
INS	0.24 (0.07-0.78)	0.018*
MAPK4	0.11 (0.01-1.29)	0.079
PGR	5.26 (1.73-16.04)	0.004*

Table S6. Univariate and multivariate analysis of 20 validated CpG sites with clinico-pathological prognostic factors in the validation cohort.

HR: hazard ratio; CI: confidence interval; c: multivariate analysis in each gene was adjusted with distant metastasis; *: p-value < 0.05.

Table S7. Array-based examination of methylated In-CpG and Out-CpG sites.

CpGs	Distance from TSS	Gene	Fold change (p-value ¹)	Association with survival p-value ²	Survival correlation direction ³
In-CpG	+64	JAK3	1.2 (<0.0004**)	<0.0001***	-
In-CpG	-1,121	PAX6	1.2 (<0.0001***)	0.017*	-
In-CpG	-115	CFTR	1.1 (0.047*)	0.0002**	_
In-CpG	-516	E2F5	1.1 (<0.0001***)	<0.0001***	-
In-CpG	-272	CD81	1.1 (0.001*)	<0.0001***	-
In-CpG	+53	CCL3	-1.1 (<0.0001***)	0.017*	+
In-CpG	-8	CSF3R	-1.2 (<0.0001***)	0.002*	+
In-CpG	-804	INS	-1.1 (<0.0001***)	0.023*	_
In-CpG	+273	MAPK4	-1.1 (<0.0001***)	0.047*	_
In-CpG	-456	PGR	-1.1 (<0.0001***)	0.011*	+
Out-CpG	-38	SLC5A8	1.1 (0.006*)	0.0005**	-
Out-CpG	+26	PENK	1.5 (<0.0001***)	0.004*	+
Out-CpG	-546	HS3ST2	1.1 (<0.0003**)	0.130	-
Out-CpG	+3	KCNK4	1.2 (<0.0001***)	0.038*	-
Out-CpG	-299	SEZ6L	1.1 (0.0009**)	0.113	-
Out-CpG	-22	ZIM2	1.1 (<0.0001***)	0.075	-
Out-CpG	-455	ADCYAP1	1.3 (<0.0001***)	0.0002**	-
Out-CpG	-1,394	PI3	-1.2 (<0.0001***)	0.004*	+
Out-CpG	+340	SFTPA1	-1.1 (<0.0001***)	0.003*	-
Out-CpG	-721	TRPM5	-1.1 (0.0003**)	0.075	-

TSS: transcription start site; Fold change: beta values between matched ESCC and normal adjacent tissue; 1: p-value of t-test; 2: p-value of log-rank test; 3: the direction of correlation was considered as "+" (respectively "-") when the methylation increase in tumor led to a good (respectively poor) survival rate; NA: not applicable; *: p-value < 0.05; **: p-value < 0.001; ***: p-value < 0.0001.

Method S1. Detailed procedures to calculate the 6 correlation metrics.

The support *Supp* is a widely-used measure in *association rule* data mining (Liu, et al., 2011). In this study, for each probe, a *Supp* of sample set *X* is defined as the proportion of total clinical samples in the data set which contains *X*. The exact definition is given by the following equation.

$$Supp(X) = \frac{C_X}{\# of \ samples}, X \subset \{hypo, hyper, N_0, N_1\}$$

Where C_X represents the occurrence times of X for a given probe.

$$PhiCoeffic ient(hypo, N_0) = \frac{Supp(hypo, N_0) - Supp(hypo)Supp(N_0)}{\sqrt{Supp(hypo)Supp(N_0)(1 - Supp(hypo))(1 - Supp(N_0))}}$$

The domain of *PhiCoefficient* (Cramer, 1946) is given by [-1, 1], and a value of 0 implies that there is no correlation.

$$OddsRatio(hypo, N_0, hyper, N_1) = \frac{\frac{Supp(hypo, N_0)}{Supp(hyper, N_0)}}{\frac{Supp(hypo, N_1)}{Supp(hyper, N_1)}} = \frac{Supp(hypo, N_0)Supp(hyper, N_1)}{Supp(hyper, N_0)Supp(hypo, N_1)}$$

The domain of *OddsRatio* (Edwards, 1963) is given by $[0, \infty]$, and a value of 1 implies that there is no correlation.

$$PiatetskyShapiroMeasure(hypo, N_0) = Supp(hypo, N_0) - Supp(hypo)Supp(N_0)$$

The domain of *PiatetskyShapiroMeasure* (Piatetsky-Shapiro, 1991) is given by [-0.25, 0.25], and a value of 0 implies that there is no correlation.

$$LiftMeasure(hypo, N_0) = \frac{Supp(hypo, N_0)}{Supp(hypo)Supp(N_0)}$$

The domain of *LiftMeasure* (Tufféry, 2011) is given by $[0, \infty]$, and a value of 1 implies that there is no correlation.

$$AddedValue(hypo, N_0) = \frac{Supp(hypo, N_0)}{Supp(hypo)} - Supp(N_0)$$

The domain of *AddedValue* (Sahar and Mansour, 1999) is given by [-0.5, 1], and a value of 0 implies that there is no correlation.

KlosgenMeasure(hypo,N₀) =
$$\sqrt{Supp(hypo, N_0) \times AddedValue(hypo, N_0)}$$

The domain of *KlosgenMeasure* (Klösgen, 1992) is given by $[(2/\sqrt{3}-1)^{1/2}(2-\sqrt{3}-1/\sqrt{3}), 2/3\sqrt{3}]$, and a value of 0 implies that there is no correlation.

References

- Akagi, I., *et al.* (2009) Overexpression of PIK3CA is associated with lymph node metastasis in esophageal squamous cell carcinoma, *International journal of oncology*, **34**, 767-775.
- Cao, W.F., *et al.* (2010) [Expression of SLP-2 protein in esophageal squamous cell carcinoma is associated with cancer invasion], *Zhonghua zhong liu za zhi* [*Chinese journal of oncology*], **32**, 830-833.
- Chen, Y.K., *et al.* (2010) Molecular characterization of invasive subpopulations from an esophageal squamous cell carcinoma cell line, *Anticancer research*, **30**, 727-736.
- Chen, Z.L., *et al.* (2011) microRNA-92a promotes lymph node metastasis of human esophageal squamous cell carcinoma via E-cadherin, *The Journal of biological chemistry*, **286**, 10725-10734.
- Chiba, T., *et al.* (2010) Independent histological risk factors for lymph node metastasis of superficial esophageal squamous cell carcinoma; implication of claudin-5 immunohistochemistry for expanding the indications of endoscopic resection, *Diseases of the esophagus : official journal of the International Society for Diseases of the Esophagus / I.S.D.E*, **23**, 398-407.
- Chuang, W.Y., *et al.* (2009) Tumor cell expression of podoplanin correlates with nodal metastasis in esophageal squamous cell carcinoma, *Histology and histopathology*, **24**, 1021-1027.
- Cramer, H. (1946) Mathematical Methods of Statistics. Princeton University Press, Princeton, NJ.
- Ding, Y., *et al.* (2003) Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma, *Clinical cancer research : an official journal of the American Association for Cancer Research*, **9**, 3406-3412.
- Edwards, A.W.F. (1963) The Measure of Association in a 2×2 Table, *Journal of the Royal Statistical Society*, **126**, 109-114.
- Grugan, K.D., *et al.* (2010) Fibroblast-secreted hepatocyte growth factor plays a functional role in esophageal squamous cell carcinoma invasion, *Proceedings of the National Academy of Sciences of the United States of America*, **107**, 11026-11031.
- Han, U., et al. (2007) Expressions of p53, VEGF C, p21: could they be used in preoperative evaluation of lymph node metastasis of esophageal squamous cell carcinoma?, Diseases of the esophagus : official journal of the International Society for Diseases of the Esophagus / I.S.D.E, 20, 379-385.
- Hansen, L.V., *et al.* (2008) Altered expression of the urokinase receptor homologue, C4.4A, in invasive areas of human esophageal squamous cell carcinoma, *International journal of cancer*. *Journal international du cancer*, **122**, 734-741.
- Hou, J., *et al.* (2011) Cytoplasmic HDPR1 is involved in regional lymph node metastasis and tumor development via beta-catenin accumulation in esophageal squamous cell carcinoma, *The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society*, **59**, 711-718.
- Ishida, K., *et al.* (2009) High CCR7 mRNA expression of cancer cells is associated with lymph node involvement in patients with esophageal squamous cell carcinoma, *International journal of oncology*, **34**, 915-922.
- Ito, T., *et al.* (2008) Pituitary tumor-transforming 1 increases cell motility and promotes lymph node metastasis in esophageal squamous cell carcinoma, *Cancer research*, **68**, 3214-3224.
- Jiao, W.J., *et al.* (2007) Effect of endothelin-1 in esophageal squamous cell carcinoma invasion and its correlation with cathepsin B, *World journal of gastroenterology : WJG*, **13**, 4002-4005.

- Jin, H., *et al.* (2010) Vimentin expression of esophageal squamous cell carcinoma and its aggressive potential for lymph node metastasis, *Biomed Res*, **31**, 105-112.
- Kaihara, T., *et al.* (2001) Decreased expression of E-cadherin and Yamamoto-Kohama's mode of invasion highly correlates with lymph node metastasis in esophageal squamous cell carcinoma, *Pathobiology : journal of immunopathology, molecular and cellular biology*, **69**, 172-178.
- Kato, K., *et al.* (2002) Overexpression of caveolin-1 in esophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage, *Cancer*, **94**, 929-933.
- Kawamura, T., *et al.* (1996) Acceleration of proliferative activity of esophageal squamous cell carcinoma with invasion beyond the mucosa: immunohistochemical analysis of Ki-67 and p53 antigen in relation to histopathologic findings, *Cancer*, **77**, 843-849.
- Kim, H.K., *et al.* (2008) Slit2 inhibits growth and metastasis of fibrosarcoma and squamous cell carcinoma, *Neoplasia*, **10**, 1411-1420.
- Kita, Y., *et al.* (2011) STC2: a predictive marker for lymph node metastasis in esophageal squamous-cell carcinoma, *Annals of surgical oncology*, **18**, 261-272.
- Klösgen, W. (1992) Problems for knowledge discovery in databases and their treatment in the statistics interpreter explora, *International Journal of Intelligent Systems*, **7**, 649-673.
- Kong, K.L., *et al.* (2012) MicroRNA-375 inhibits tumour growth and metastasis in oesophageal squamous cell carcinoma through repressing insulin-like growth factor 1 receptor, *Gut*, **61**, 33-42.
- Krzystek-Korpacka, M., *et al.* (2007) Up-regulation of VEGF-C secreted by cancer cells and not VEGF-A correlates with clinical evaluation of lymph node metastasis in esophageal squamous cell carcinoma (ESCC), *Cancer letters*, **249**, 171-177.
- Kurokawa, T., *et al.* (2003) Overexpression of hypoxia-inducible-factor 1alpha(HIF-1alpha) in oesophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage, *British journal of cancer*, **89**, 1042-1047.
- Li, K., *et al.* (2009) N-cadherin knock-down decreases invasiveness of esophageal squamous cell carcinoma in vitro, *World journal of gastroenterology : WJG*, **15**, 697-704.
- Li, K., *et al.* (2010) Downregulation of N-cadherin expression inhibits invasiveness, arrests cell cycle and induces cell apoptosis in esophageal squamous cell carcinoma, *Cancer investigation*, **28**, 479-486.
- Li, K., *et al.* (2009) Expression of N-cadherin in esophageal squamous cell carcinoma and silencing expression of N-cadherin using RNA interference on invasiveness of EC9706 cells, *Ai zheng = Aizheng = Chinese journal of cancer*, **28**, 8-13.
- Li, L., *et al.* (2006) DRD2/DARPP-32 expression correlates with lymph node metastasis and tumor progression in patients with esophageal squamous cell carcinoma, *World journal of surgery*, **30**, 1672-1679; discussion 1680-1671.
- Li, N., *et al.* (2009) [Effect of KISS-1 on invasive potential and proliferation of esophageal squamous carcinoma cell line EC-1], *Zhonghua bing li xue za zhi Chinese journal of pathology*, **38**, 263-267.
- Li, P., *et al.* (2006) Expression profile of metastasis-associated genes in esophageal squamous cell carcinoma, *Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban*, **26**, 167-171.
- Li, W., et al. (2005) Overexpression of stefin A in human esophageal squamous cell carcinoma cells inhibits

tumor cell growth, angiogenesis, invasion, and metastasis, *Clinical cancer research : an official journal of the American Association for Cancer Research*, **11**, 8753-8762.

- Lioni, M., *et al.* (2007) Dysregulation of claudin-7 leads to loss of E-cadherin expression and the increased invasion of esophageal squamous cell carcinoma cells, *The American journal of pathology*, **170**, 709-721.
- Liu, S.G., *et al.* (2011) Atypical protein kinase Ciota (PKCiota) promotes metastasis of esophageal squamous cell carcinoma by enhancing resistance to Anoikis via PKCiota-SKP2-AKT pathway, *Molecular cancer research : MCR*, **9**, 390-402.
- Liu, Y.C., Cheng, C.P. and Tseng, V.S. (2011) Discovering relational-based association rules with multiple minimum supports on microarray datasets, *Bioinformatics*, **27**, 3142-3148.
- Luo, M.L., *et al.* (2006) Amplification and overexpression of CTTN (EMS1) contribute to the metastasis of esophageal squamous cell carcinoma by promoting cell migration and anoikis resistance, *Cancer research*, **66**, 11690-11699.
- Luo, M.L. and Wang, M.R. (2007) CTTN (EMS1): an oncogene contributing to the metastasis of esophageal squamous cell carcinoma, *Cell research*, **17**, 298-300.
- Matsushima, K., *et al.* (2011) MiRNA-205 modulates cellular invasion and migration via regulating zinc finger E-box binding homeobox 2 expression in esophageal squamous cell carcinoma cells, *Journal of translational medicine*, **9**, 30.
- Matsushita, Y., *et al.* (1998) A subcloned human esophageal squamous cell carcinoma cell line with low thrombomodulin expression showed increased invasiveness compared with a high thrombomodulin-expressing clone--thrombomodulin as a possible candidate for an adhesion molecule of squamous cell carcinoma, *Cancer letters*, **127**, 195-201.
- Michaylira, C.Z., *et al.* (2010) Periostin, a cell adhesion molecule, facilitates invasion in the tumor microenvironment and annotates a novel tumor-invasive signature in esophageal cancer, *Cancer research*, **70**, 5281-5292.
- Miyazaki, T., *et al.* (2003) FAK overexpression is correlated with tumour invasiveness and lymph node metastasis in oesophageal squamous cell carcinoma, *British journal of cancer*, **89**, 140-145.
- Miyazaki, T., *et al.* (2000) Mutation and expression of the metastasis suppressor gene KAI1 in esophageal squamous cell carcinoma, *Cancer*, **89**, 955-962.
- Mori, Y., *et al.* (2006) Gli-1 expression is associated with lymph node metastasis and tumor progression in esophageal squamous cell carcinoma, *Oncology*, **70**, 378-389.
- Mukherjee, T., *et al.* (2003) Ets-1 and VEGF expression correlates with tumor angiogenesis, lymph node metastasis, and patient survival in esophageal squamous cell carcinoma, *Journal of cancer research and clinical oncology*, **129**, 430-436.
- Nagatani, S., *et al.* (2003) Validation of intra-operative detection of paratracheal lymph node metastasis using real-time RT-PCR targeting esophageal squamous cell carcinoma, *Japanese journal of clinical oncology*, **33**, 549-555.
- Nakajima, Y., *et al.* (2002) Evaluation of an indicator for lymph node metastasis of esophageal squamous cell carcinoma invading the submucosal layer, *Japanese journal of cancer research : Gann*, **93**, 305-312.
- Oda, N. and Ono, Y. (2004) [Significance of the Yamamoto-Kohama mode of invasion in the prognosis of esophageal squamous cell carcinoma: relationship with reduced expression of involucrin protein], *Nihon*

Shokakibyo Gakkai zasshi = The Japanese journal of gastro-enterology, **101**, 591-597.

- Ooki, A., *et al.* (2010) Phosphatase of regenerating liver-3 as a convergent therapeutic target for lymph node metastasis in esophageal squamous cell carcinoma, *International journal of cancer. Journal international du cancer*, **127**, 543-554.
- Piatetsky-Shapiro, G. (1991) *Discovery, analysis, and presentation of strong rules*. Knowledge Discovery in Databases. AAAI/MIT Press, Cambridge, MA.
- Qian, H., *et al.* (2005) Reduced MTA1 expression by RNAi inhibits in vitro invasion and migration of esophageal squamous cell carcinoma cell line, *Clinical & experimental metastasis*, **22**, 653-662.
- Ren, Y., *et al.* (2005) Macrophage migration inhibitory factor stimulates angiogenic factor expression and correlates with differentiation and lymph node status in patients with esophageal squamous cell carcinoma, *Annals of surgery*, **242**, 55-63.
- Sadanaga, N., *et al.* (1994) Local immune response to tumor invasion in esophageal squamous cell carcinoma. The expression of human leukocyte antigen-DR and lymphocyte infiltration, *Cancer*, **74**, 586-591.
- Sahar, S. and Mansour, Y. (1999) An Empirical Evaluation of Interest-Level Criteria. In Dasarathy, B.V. (ed), *Data Mining and Knowledge Discovery: Theory, Tools, and Technology*.
- Sakai, M., *et al.* (2009) Expression of lysyl oxidase is correlated with lymph node metastasis and poor prognosis in esophageal squamous cell carcinoma, *Annals of surgical oncology*, **16**, 2494-2501.
- Shen, X.M., *et al.* (2007) Interaction of MT1-MMP and laminin-5gamma2 chain correlates with metastasis and invasiveness in human esophageal squamous cell carcinoma, *Clinical & experimental metastasis*, **24**, 541-550.
- Shi, J., *et al.* (2010) [Clinical significance of abnormal expression of Aurora-A in human esophageal squamous cell carcinoma with or without lymph node metastasis], *Zhonghua zhong liu za zhi [Chinese journal of oncology]*, **32**, 748-751.
- Shibata, T., *et al.* (2005) Impact of nuclear galectin-3 expression on histological differentiation and vascular invasion in patients with esophageal squamous cell carcinoma, *Oncology reports*, **13**, 235-239.
- Song, Y., *et al.* (2008) Overexpression of cyclin B1 in human esophageal squamous cell carcinoma cells induces tumor cell invasive growth and metastasis, *Carcinogenesis*, **29**, 307-315.
- Suzuki, S., *et al.* (2011) Prognostic significance of CD151 expression in esophageal squamous cell carcinoma with aggressive cell proliferation and invasiveness, *Annals of surgical oncology*, **18**, 888-893.
- Tang, P., *et al.* (2011) Slug down-regulation by RNA interference inhibits invasion growth in human esophageal squamous cell carcinoma, *BMC gastroenterology*, **11**, 60.
- Tezuka, Y., *et al.* (1995) Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis, *Cancer research*, **55**, 4196-4200.
- Tomita, M., *et al.* (2001) Expression of nm23-H1 gene product in esophageal squamous cell carcinoma and its association with vessel invasion and survival, *BMC cancer*, **1**, 3.
- Tufféry, S. (2011) *Data Mining and Statistics for Decision Making*. translated from the French Data Mining et statistique décisionnelle. John Wiley & Sons, Chichester, GB.
- Uchida, S., *et al.* (1999) Motility-related protein (MRP-1/CD9) and KAI1/CD82 expression inversely correlate with lymph node metastasis in oesophageal squamous cell carcinoma, *British journal of cancer*,

79, 1168-1173.

- Uchikado, Y., *et al.* (2006) Gene expression profiling of lymph node metastasis by oligomicroarray analysis using laser microdissection in esophageal squamous cell carcinoma, *International journal of oncology*, **29**, 1337-1347.
- Usami, Y., *et al.* (2006) Reduced expression of claudin-7 correlates with invasion and metastasis in squamous cell carcinoma of the esophagus, *Human pathology*, **37**, 569-577.
- Verma, A., *et al.* (2005) MEMD/ALCAM: a potential marker for tumor invasion and nodal metastasis in esophageal squamous cell carcinoma, *Oncology*, **68**, 462-470.
- Wang, X., *et al.* (2009) Stable knockdown of Aurora-A by vector-based RNA interference in human esophageal squamous cell carcinoma cell line inhibits tumor cell proliferation, invasion and enhances apoptosis, *Cancer biology & therapy*, **8**, 1852-1859.
- Wang, X.C., *et al.* (2009) Suppression of anoikis by SKP2 amplification and overexpression promotes metastasis of esophageal squamous cell carcinoma, *Molecular cancer research : MCR*, **7**, 12-22.
- Wong, F.H., *et al.* (2009) Combination of microarray profiling and protein-protein interaction databases delineates the minimal discriminators as a metastasis network for esophageal squamous cell carcinoma, *International journal of oncology*, **34**, 117-128.
- Wong, V.C., *et al.* (2008) Identification of an invasion and tumor-suppressing gene, Endoglin (ENG), silenced by both epigenetic inactivation and allelic loss in esophageal squamous cell carcinoma, *International journal of cancer. Journal international du cancer*, **123**, 2816-2823.
- Wong, V.C., *et al.* (2011) Abrogated expression of DEC1 during oesophageal squamous cell carcinoma progression is age- and family history-related and significantly associated with lymph node metastasis, *British journal of cancer*, **104**, 841-849.
- Xie, F., Li, K. and Ouyang, X. (2009) Twist, an independent prognostic marker for predicting distant metastasis and survival rates of esophageal squamous cell carcinoma patients, *Clinical & experimental metastasis*, 26, 1025-1032.
- Xie, F., *et al.* (2011) The impact of Metastasis Suppressor-1, MTSS1, on oesophageal squamous cell carcinoma and its clinical significance, *Journal of translational medicine*, **9**, 95.
- Xie, J.J., *et al.* (2011) Involvement of Cyr61 in the growth, invasiveness and adhesion of esophageal squamous cell carcinoma cells, *International journal of molecular medicine*, **27**, 429-434.
- Xiong, G., *et al.* (2011) Decoy receptor 3 expression in esophageal squamous cell carcinoma: correlation with tumour invasion and metastasis, *Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals*, **16**, 155-160.
- Yamamoto, H., *et al.* (2001) Expression of the gamma(2) chain of laminin-5 at the invasive front is associated with recurrence and poor prognosis in human esophageal squamous cell carcinoma, *Clinical cancer research : an official journal of the American Association for Cancer Research*, **7**, 896-900.
- Yan, S., *et al.* (2009) PTTG overexpression promotes lymph node metastasis in human esophageal squamous cell carcinoma, *Cancer research*, **69**, 3283-3290.
- Yang, Y.L., *et al.* (2008) Amplification of PRKCI, located in 3q26, is associated with lymph node metastasis in esophageal squamous cell carcinoma, *Genes, chromosomes & cancer*, **47**, 127-136.
- Ye, Q., et al. (2011) MUC1 induces metastasis in esophageal squamous cell carcinoma by upregulating

matrix metalloproteinase 13, *Laboratory investigation; a journal of technical methods and pathology*, **91**, 778-787.

- Yuen, H.F., *et al.* (2007) Id-1 and Id-2 are markers for metastasis and prognosis in oesophageal squamous cell carcinoma, *British journal of cancer*, **97**, 1409-1415.
- Yuen, H.F., *et al.* (2007) Upregulation of Twist in oesophageal squamous cell carcinoma is associated with neoplastic transformation and distant metastasis, *Journal of clinical pathology*, **60**, 510-514.
- Zhang, C., *et al.* (2007) p300 expression repression by hypermethylation associated with tumour invasion and metastasis in oesophageal squamous cell carcinoma, *Journal of clinical pathology*, **60**, 1249-1253.
- Zhang, H.Y., *et al.* (2012) S100A4 mediated cell invasion and metastasis of esophageal squamous cell carcinoma via the regulation of MMP-2 and E-cadherin activity, *Molecular biology reports*, **39**, 199-208.
- Zhang, H.Y., *et al.* (2010) [Expression of S100A4 in esophageal squamous cell carcinoma and its relation to tumor invasion and metastasis], *Nan fang yi ke da xue xue bao = Journal of Southern Medical University*, 30, 1541-1544.
- Zhou, Z.Q., *et al.* (2009) Expression and prognostic significance of THBS1, Cyr61 and CTGF in esophageal squamous cell carcinoma, *BMC cancer*, **9**, 291.