
Additional file 3: Markov Chain Monte Carlo simulation of probability variables 

corresponding to effectiveness and risk of non-serious adverse effects 

 

The hierarchical beta-binomial model 

In this assessment, effectiveness was estimated by the fraction of patients experiencing a 

clinical improvement of at least one point on the expanded disability status scale (EDSS). 

Similarly, risk of non-serious adverse effects was estimated by the fraction of patients 

experiencing at least one non-serious adverse effect. For the various considered treatment 

alternatives, respectively, both of these probability variables were estimated based on a series 

of treatment arms from studies included on pre-specified criteria. 

 The hierarchical beta-binomial model is a natural and commonly used model to 

combine results from a set of parallel experiments concerning a binary outcome [1]. Hence it 

is suitable to analyse the data available for effectiveness and risk of non-serious adverse 

effects in this assessment. Because it is a model from Bayesian statistics, inference is based on 

a posterior distribution. This fits well with the probabilistic decision-analytical framework 

employed in the current benefit-risk assessment. 

 Consider the i:th treatment alternative and its Jj ,,2,1  available study arms, each 

with i

jn  included patients among which i

jy  experience clinical improvement as specified 

above. The model presupposes binomial distributions for each of the study arms separately: 
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where i

jp  is the probability for a patient in the j:th study arm for the i:th treatment alternative 

to experience clinical improvement. Contrary to standard meta-analysis, there is no strict 

homogeneity assumption; for example, patient populations are not assumed to be identical in 

nature across the study arms. Rather, the study arms are linked through the assumption of a 

common higher-level distribution for the probability to experience clinical improvement: 
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where the hyperparameters α
i
 and β

i
 determine both the central tendency of the probabilities 

i

jp  for the different study arms, as well as the variability between them. As the overall 

measure of the effectiveness of the i:th treatment alternative we use the expectancy of these 

probabilities: 
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It should be noted that both α
i
 and β

i
, and therefore p

i
, are random parameters. Probabilistic 

inference is possible in the Bayesian setting via the posterior distribution of p
i
, as detailed 

below. However, this requires not only data from the various included study arms, but also a 

prior distribution for α
i
 and β

i
. Here, a non-informative joint prior distribution is employed:  
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The model specification in Equations 1 – 4 applies to the effectiveness of the various 

considered treatment alternatives. The exact same mathematical framework was used for the 

risk of non-serious adverse effects, though with the variable i

jy in Equation 1 instead 

indicating the number of patients experiencing at least one non-serious adverse effect. Also, 

from a practical perspective, study arms were included based on different criteria, as 

described in the main article. 

 

Sampling from the posterior distribution of p
i
 

For the purpose of sampling posterior values for the various probabilities p
i
 to be used in the 

probabilistic benefit-risk assessment, Markov Chain Monte Carlo (MCMC) simulation was 

employed. Specifically, the Metropolis-Hastings algorithm [2, 3] was used, since it is well 

suited to handle the complex posterior distributions of the hierarchical beta-binomial model. 

Each i

jp  was reparameterised as the logarithm of the odds  i

j

i

j pp 1/ , and each pair of α
i
 and 

β
i
 was reparameterised as the pair  ii  loglog   and  ii  log . All jumping distributions 

were normally distributed. 

 The practical simulation strategy followed closely that of expert recommendations [1]. 

The variances of the jumping distributions were tuned to obtain near-optimal rates of accepted 

jumps. Twenty parallel MCMC chains were used with starting points randomly dispersed 

around crude estimates of α
i
 and β

i
. For each chain, the first 5,000 samples were discarded; 

thereafter every tenth sample was retained until 500 samples had been generated in total. 

Thus, 10,000 values were sampled in total for each p
i
. Convergence was measured by so 

called potential scale reduction and is reported in Table A3. The diagnostic results are 

reassuring, indicating that the simulation strategy yields samples from the actual posterior 

distributions of the considered probability variables p
i
. 

 

 

Table A3. Diagnostic results for the MCMC simulation of probability variables corresponding to 

effectiveness and risk of non-serious adverse effects. 

Probability variable Intervention Parameter Potential scale 

reduction
a
 

Effectiveness High-dose methylprednisolone α 1.01 

Effectiveness High-dose methylprednisolone β 1.01 

Effectiveness High-dose methylprednisolone p 1.00 

Effectiveness Low-dose methylprednisolone α 1.06 

Effectiveness Low-dose methylprednisolone β 1.07 

Effectiveness Low-dose methylprednisolone p 1.00 

Effectiveness Placebo α 1.03 

Effectiveness Placebo β 1.03 

Effectiveness Placebo p 1.00 

Risk of non-serious adverse effects High-dose methylprednisolone α 1.00 

Risk of non-serious adverse effects High-dose methylprednisolone β 1.00 

Risk of non-serious adverse effects High-dose methylprednisolone p 1.00 

Risk of non-serious adverse effects Placebo α 1.03 

Risk of non-serious adverse effects Placebo β 1.03 

Risk of non-serious adverse effects Placebo p 1.00 
a
 Values close to 1 are suggestive of a convergent simulation process. 
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 References number 1, 2, and 3 correspond to references number 23, 24, and 25, respectively, of the main article 

to which this additional file serves as supporting information. 


