
Additional file 5: Sampling from qualitatively modelled utility variables in probabilistic 

decision analysis 

 

This quantitative benefit-risk assessment employed a general framework of probabilistic 

decision analysis, which requires distributions over all constituent probability and utility 

variables. For the utilities, an approach was used whereby ab initio standard uniform 

distributions for all variables are modified according to a set of qualitative relations. Each 

relation expresses the comparative desirability of two considered clinical outcomes by 

declaring one of their corresponding utility variables greater than the other; for examples, 

please see Figure 6 of the main article. The below description is intended to provide an 

overview, and interested readers are referred to the original publication for details [1]. 

 

A permutation-based sampling technique 

The modelling framework is flexible and does not require a relation to be specified between a 

given pair of utility variables. However, it is based on a core algorithm that does use a 

completely ordered set of dummy utility variables. 

Assume that there are n utility variables that are all initially distributed as 

Uniform(0,1), and let U1,...,Un denote the random variables that result from the specified 

relations. In other words, these are the random variables from which we wish to sample. 

Further, let V1,...,Vn denote the random variables that result from a strict ordering      

V1 < ... < Vn, where each Vj is also initially distributed as Uniform(0,1). Sampling from these 

dummy variables is straightforward with the aid of the m×n matrix X whose entries i

jx  are all 

Uniform(0,1) random numbers. Here, m is the total number of samples to be drawn, which in 

this assessment was 10,000, and i is the index for the current sample. It is now possible to 

sample from the dummy variables V1,...,Vn one at the time, starting with the largest [2]: 
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Next it must be determined what permutations of the utility variables U1,...,Un that are 

implied by the set of specified relations. Consider a simple example where 4n  and the 

following has been specified: U4 < U3, U4 < U2, U3 < U1, and U2 < U1. Note that there is no 

relation specified between U2 and U3. While in this example it is clear that the only possible 

permutations are U4 < U3 < U2 < U1 and U4 < U2 < U3 < U1, the set of possible permutations 

must be algorithmically constructed in more complicated situations. 

Regardless of how the set of permutations has been constructed, it is imperative to see 

that each permutation is equally probable. The reason is simply that all utility variables have 

the same ab initio distribution. In the example considered above, the probability is ½ for both 

possibilities U3 < U2 and U2 < U3, corresponding to the two respective permutations listed. 

Hence, for each sample iteration, one of the possible permutations is selected at random, and 

then the values sampled for the dummy variables are assigned accordingly. Again using the 

same small example, if in the i:th iteration the permutation U4 < U3 < U2 < U1 was selected, 

values would be assigned in the following way: 
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If instead the permutation U4 < U2 < U3 < U1 was selected, the value assignments would be 

the following: 
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In the long run, each permutation will be selected about the same number of times, and the 

values sampled for a given variable Uj will be distributed according to the position of that 

variable in the various possible permutations. 

 

Accommodating minimum utility differences 

The modelling framework also permits the inclusion of so called minimum utility differences, 

which in effect introduce extra separation between groups of utility variables. In this benefit-

risk assessment, a minimum utility difference was introduced between lethal and non-lethal 

clinical outcomes. The value of this difference was one of the parameters altered in the 

sensitivity analysis. (For more details, see the Methods section of the main article.) 

 Here it will be assumed that the value d of the minimum utility difference is given. In 

this case, the dummy variables are related as V1 < ... < Vk < Vk+d < Vk+1 < ... < Vn.  Clearly it 

must hold that 0 ≤ d < 1. 

The algorithm presented in Equation 1 must now be adapted slightly. First, two 

parallel series of values i

js  and i

jt  are sampled according to 
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It is important to note that the same supporting matrix X is used in both Equation 4 and 

Equation 5. Sampled values for the dummy variables are then assigned in the following way: 
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Finally, values are assigned to the actual utility variables U1,...,Un based on the sampled 

values i

jv  in exactly the same way as described above for the case without minimum utility 

differences. It should be noted that the inclusion of a minimum utility difference in itself 

implies that Up < Uq for all combinations of p in {1,...,k} and q in {k+1,...,n}. 

 Although it is not made use of in the present benefit-risk assessment, the described 

framework naturally generalises to situations with more than one minimum utility difference. 
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