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This supplementary material contains the algorithm details and proof of the main theorem

along with necessary lemmas.

Web Appendix A Algorithm details

To numerically obtain θ̂ in (9), we first perform a variable transformation by letting δ(c) to

represent the differences between adjacent categories: δ(c) = β
(c+1)
(rn)

− β(c)
(rn)

, for c = 1, . . . , C − 2.

Let Θ = (γ
(1)
0 , · · · , γ(C−1)0 ,β

(1)
(rn)

, δ(1), . . . , δ(C−2)) be our new parameters after transformation,

which relates to the original parameter vector θ = (γ
(1)
0 , ..., γ

(C−1)
0 ,β

(1)
(rn)

,β
(2)
(rn)

, ...,β
(C−2)
(rn)

,β
(C−1)
(rn)

)T

through θ = MΘ, where

M =



IC−1 0 0 0 0 · · · 0

0 Ir 0 0 0 · · · 0

0 Ir Ir 0 0 · · · 0

0 Ir Ir Ir 0 · · · 0

...
...

...
...

...
...

0 Ir Ir Ir Ir · · · Ir


Let X̃ = ÃTM and Ỹ = ÃTθ̃, where Ã = ÃÃT. Therefore, (9) is transformed into a linear

adaptive group LASSO (gLASSO) problem:

Θ̂ = argmin
Θ

[
1

2
‖X̃Θ− Ỹ‖22 + τ1

C−2∑
c=1

‖Θ(c)‖2
‖Θ̃

(c)
‖2

]
(1)
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where Θ̃ = M−1θ̃.

Web Appendix B Parameter tuning

There are three tuning parameters involved in our proposed procedure, ρ, τ1 and τ2, where ρ is

the parameter for kernel k(·, ·; ρ), τ2 is the tuning parameter for the ridge penalty, and τ1 is the

gLASSO penalty parameter controlling the amount of penalty for the differences between adjacent

categories. Commonly used methods for selecting tuning parameters for ridge regression and

gLASSO penalties include AIC, BIC, cross-validation, and generalized cross validation (GCV)

(????). For each given ρ, we obtain an optimal τ2 based on the GCV criterion (?), denoted by

τ2(ρ). Then with each given ρ and τ2(ρ), we obtain the corresponding synthetic data {X̃, Ỹ, δ̃(c)}

for fitting the gLASSO penalized least square in (1). The tuning parameters τ1 and ρ are then

selected via the AIC criterion. The degree of freedom in the AIC criterion is estimated analogous

to those proposed in ?) and ?). Specifically, we define DF(ρ, τ1) =
∑C−1

c=1 I{‖δ̂(c)(ρ, τ1)‖ > 0} +∑C−1
c=1

‖δ̂(c)(ρ,τ1)‖2
‖δ̃(c)(ρ)‖2

(dc(ρ) − 1), where dc(ρ) is the effective number of parameters in the cth group

from the ridge regression, calculated as the sum of the diagonal elements of Hessian matrix

Ã(ρ) that correspond to the cth group. We then select the optimal (ρ, τ1) as the minimizer of

AIC(ρ, τ1) = −2loglik(ρ, τ1) + 2DF(ρ, τ1).

Web Appendix C Asymptotic Properties of ĥ(c)(·)

Here, when Hk is finite dimensional, we aim to establish the root-n convergence rate of ĥ(c)(x)

and model selection consistency in the sense that P{ĥ(c)(x) = ĥ(c+1)(x)} → 1 when h(c) = h(c+1).

To this end, we first note that we can write our penalized likelihood (7) in the same form as in

?). It is the summation of C − 1 independent terms, each of which takes the form:

n∑
i=1

I(yi > c)
[
D

(c)
i log{g(γ

(c)
0 + ψ̃

T

iβ
(c)
(rn)

)}+ (1−D(c)
i ) log{1− g(γ

(c)
0 + ψ̃

T

iβ
(c)
(rn)

)}
]
− τ2‖β(c)

(rn)
‖22

Therefore, using the same arguments as given in ?), we have

Lemma 1: P (rn = r)→ 1 and ‖Ψ̃(x)−Ψ(x)‖2 + n−
1
2‖Ψ̃−Ψ‖F + ‖θ̃ − θ‖2 = Op(n

− 1
2 ).
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It also directly implies that h̃(c)(x) − h(c)(x) = Op(n
− 1

2 ) and we may need establish the con-

vergences conditioning on rn = r. In view of this together with the parametrization in (1), it

suffices to show that δ̂
(c)
− δ(c) = Op(n

− 1
2 ), if c ∈ A; and P (δ̂

(c)
= 0) → 1, if c /∈ A, where

A = {c : δ(c) 6= 0}. These are parallel to Theorem 1 and 2 in (?) where they show the estimation

consistency and selection consistency of the adaptive group lasso estimator. The main difference

between our problem and the setting considered in ?) is that our X̃ and Ỹ are not directly

observed data but are estimated quantities with X̃ = ÃTM, Ỹ = ÃTθ̃, where Ã = ÃÃT, so we

need to take into account the randomness in X̃ and Ỹ. In their proof, the main arguments rely on

two convergences: n−1XTX→ E(XiX
T
i ) in probability and n−

1
2 XT(Y−Xδ) = Op(1). In our case,

the corresponding convergences we need to establish are the probability convergence of MTÃM

and MTÃ[n
1
2 (θ̃ − θ)] = Op(1). By the Lemma, n

1
2 (θ̃ − θ) = OP (1), and since M is a constant,

it is suffice to show that Ã = diag{Ã(1), ..., Ã(C−1)} converges to A = diag{A(1), ...,A(C−1)} in

probability, where

Ã(c) =n−1
n∑
i=1

I(yi > c)
[
ψ̃
i
ψ̃

T

i
g(ψ̃

T

i
β̃

(c)

(r)
)(1− g(ψ̃

T

i
β̃

(c)

(r)
))
]

A(c) =E
{
I(yi > c)

[
ψ
i
ψT

i
g(ψT

i
β(c)

(r)
)(1− g(ψT

i
β(c)

(r)
))
]}

ψ
i

= [1, ψT
i ]

T, β(c)

(r)
= [γ

(c)
0 ,β

(c)
(r)

T

]T; ψ̃
i

= [1, ψ̃T
i ]

T, and β̃
(c)

(r)
= [γ̃

(c)
0 ,β

(c)
(r)

T

]T.

Since ‖Ã − A‖2F =
∑C−1

c=1 ‖Ã(c) − A(c)‖2F , so if we can show the convergence of each of the

C − 1 blocks, we will have convergence for the entire matrix Ã. Let Ã?(c) = n−1
∑n

i=1 I(yi >

c)
[
ψ
i
ψT

i
g(ψT

i
β(c)

(r)
)(1− g(ψT

i
β(c)

(r)
))
]
, we have ‖Ã(c) − A(c)‖2F = ‖Ã(c) − Ã?(c) + Ã?(c) − A(c)‖2F 6

‖Ã(c) − Ã?(c)‖2F + ‖Ã?(c) − A(c)‖2F . Note that since Ã?(c) → A(c) with probability 1 by Law of

Large Numbers, so we only need to show ‖Ã(c) −A?(c)‖2F → 0. To simplify notation, we drop (c)
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superscripts and the (r) subscripts. We first split Ã− Ã? into summation of three parts:

Ã− Ã? = n−1
n∑
i=1

I(yi > c)
[
(ψ̃

i
− ψi)ψ̃

T

i
g(ψ̃

T

i
β̃)(1− g(ψ̃

T

i
β̃))
]

(P1)

+ n−1
n∑
i=1

I(yi > c)
[
ψ
i
(ψ̃

i
−ψ

i
)Tg(ψ̃

T

i
β̃)(1− g(ψ̃

T

i
β̃))
]

(P2)

+ n−1
n∑
i=1

I(yi > c)
[
ψ
i
ψT

i
(g(ψ̃

T

i
β̃)(1− g(ψ̃

T

i
β̃))− g(ψT

i
β)(1− g(ψT

i
β)))

]
(P3)

Assume that ‖ψ
i
‖2 6 R and apply the Lemma, (P1) can be bounded since∥∥∥∥∥n−1

n∑
i=1

I(yi > c)
[
(ψ̃

i
−ψ

i
)ψ̃

T

i
g(ψ̃

T

i
β̃)(1− g(ψ̃

T

i
β̃))
]∥∥∥∥∥

F

6n−1
[
Rn

1
2‖Ψ̃−Ψ‖F + ‖Ψ̃−Ψ‖2F

]
= R ·Op(n

−1) +Op(n
−2)

The term (P2) can also be bounded similarly with

n−1

∥∥∥∥∥
n∑
i=1

I(yi > c)
[
ψ
i
(ψ̃

i
−ψ

i
)Tg(ψ̃

T

i
β̃)(1− g(ψ̃

T

i
β̃))
]∥∥∥∥∥

F

6 n−1/2R‖Ψ̃−Ψ‖F = R ·Op(n
−1)

Since ‖β̃−β‖2 = Op(n
−1/2), ‖Ψ̃−Ψ‖F = Op(1), ‖ψ

i
‖2 6 R and ‖β‖2 <∞, we can easily obtain

(P3) = Op(n
− 1

2 ). Therefore ‖Ã−Ã∗‖F → 0 in probability and hence ‖Ã−A‖F → 0 in probability.

This, together with the same arguments as given in (?), implies that ‖δ̂
(c)
− δ(c)‖2 = Op(n

− 1
2 )

when c ∈ A and P (δ̂
(c)

= 0)→ 1 when c /∈ A.


