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ESTIMATING THE SCALING EXPONENT OF CONTACTS FROM TWITTER DATA

To test the super-linear scaling hypothesis on our Twitter dataset, we adopt the following statistical method. We
fit the rescaled cumulative degree Cr to a power-law function of the population of the census area, both normalized by
their averages, using a linear regression of the log-transformed variables, in the form ln(Cr/〈Cr〉) = γ ln(N/〈N〉) + ε,
and compare the result against a null model, represented by a linear function of the rescaled population, ln(Cr/〈Cr〉) =
ln(N/〈N〉) + ε̂, where ε and ε̂ are constant.

We quantify the goodness of fit by computing the adjusted R2 for both models. We then compare the results of
the regression by using a Student’s t-test to quantify the significance of the difference between the two slopes. More
specifically, under the null hypothesis that there is no difference between linear and super-linear models, we compute

the associated Z-score: Z = |γ−1|
σγ

, where σγ is the standard error of the slope γ. If the sample size is s, then the

p-value associated to Z can be obtained from the survival function of Student’s t distribution: p = t(Z, s− 2).
Figures S1 and S2 show the comparison between the super-linear model and the linear one, for all the datasets

under study. In all cases, the super-linear function is a better fit to the data than the linear one (R2 is always larger
for the super-linear fit) and the difference between the slopes is always statistically significant, with p < 0.001.

SCALING OF INTERACTIONS BEYOND THE BOUNDARY OF GEOGRAPHICAL AREAS

For a given basin/metropolitan area, N is the population, S is the total number of geo-mappable users within the
area. The total number of Twitter interactions C =

∑
i∈S ci. Different from the above case, ci is assumed to be

the degree of user i in the entire RMI network. In this case, ci is no longer confined within the basin/metropolitan
area boundary and the interactions between user i and users from other basin/metropolitan areas or users that are
not geo-mappable are also taken into account. The volume of interactions Cr is rescaled as Cr = C/s = C N

S . As
shown in Figure S2, for the case of BMU we find γ = 1.11 ± 0.01 in the US, γ = 1.06 ± 0.01 in Europe [4] and
γ = 1.11 ± 0.01 when considering all the basins in the world. For the case of MMU, we find γ = 1.07 ± 0.01 in the
US, γ = 1.09± 0.03 in Europe and γ = 1.08± 0.02 when combining all the metropolitan areas of the US and Europe
together. See Table S1.

COMPLETE DERIVATION OF THE GLOBAL INVASION THRESHOLD

SIR is a compartmental model which describes the evolution of a contagious disease in a closed population. The
three compartments S(t), I(t), R(t) represent respectively the number of susceptible, infectious and recovered people.
The total population N = S(t) + I(t) +R(t) is constant, so we can define the fraction of people in each compartment
simply dividing by N:

s(t) =
S(t)

N
; i(t) =

I(t)

N
; r(t) =

R(t)

N
(1)

so that s(t) + i(t) + r(t) = 1, ∀t.
Here, we derive the expression of R0(k) including the scaling of human contacts with subpopulation sizes. For clarity
in the exposition let us start from the derivation of the reproductive number in the case within the frequent-dependent
approximation.
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Geographical aggregation Scaling exponent γ

Basins (internal connections only) 1.11± 0.01

Basins (all connections) 1.11± 0.01

Metro areas (internal connections only) 1.20± 0.02

Metro areas (all connections) 1.08± 0.02

Basins in US (internal connections only) 1.15± 0.01

Basins in US (all connections) 1.16± 0.02

Metro areas in US (internal connections only) 1.16± 0.02

Metro areas in US (all connections) 1.09± 0.03

Basins in Europe (internal connections only) 1.21± 0.04

Basins in Europe (all connections) 1.06± 0.01

Metro areas in Europe (internal connections only) 1.18± 0.02

Metro areas in Europe (all connections) 1.08± 0.02

TABLE S1: Summary of the scaling exponents γ measured on the Twitter dataset. Error intervals are given by the standard
error of the slope in the regression fit.

R0 in SIR models

Let us assume homogeneous mixing in the population, which means everyone interacts with equal probability with
everyone else. Every susceptible individual has c0 contacts per unit of time and we define g as the probability of
successful disease transmission following a contact.

Therefore is convenient to define the transmission rate λ of the disease as [1]:

λ = −c0 log(1− g) (2)

and µ the recovery rate of the disease.
The dynamics of the model is described by the following system of equations:

ds(t)

dt
= −λ i(t)s(t) (3)

di(t)

dt
= λ i(t)s(t)− µi(t) (4)

dr(t)

dt
= µi(t). (5)

We are interested in the time evolution of number of infectious people:

di(t)

dt
= λ i(t)s(t)− µi(t) = i(t)(λs(t)− µ). (6)

In early stage of epidemics the number of susceptible people is almost the whole population s(i) ' 1, so:

di(t)

dt
' i(t)(λ− µ). (7)

Since (λ− µ) does not change over time we can integrate obtaining:

i(t) ' i(t0) e(λ−µ)t. (8)

We conclude that an outbreak of the disease can occur only if λ > µ. It is a common practice to define the Basic
Reproductive Rate of the disease:

R0 =
λ

µ
, (9)

which has to be greater than 1 in order to have an outbreak.
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Introducing the scaling of contacts

Usually it is assumed that the average number of contacts c per individual and unit of time is a constant and does
not depend on the population size. However, recent studies on urban data [2] as well as our observation reported in
this paper suggest that the total number of contacts C =

∑
i∈S ci scale super linearly with the population size N:

C ∝ Nγ where γ > 1. (10)

So the average per capita contacts rate can be defined as:

c ≡ C

N
= c0N

γ−1 = c0N
η where η = γ − 1. (11)

Consequently the transmission rate will be a function of N:

λNη ≡ −c0Nη log (1− g), (12)

where λ ≡ −c0log(1− g) > 0 because 0 < g < 1 is a probability, thus also R0 will be a function of N:

R0(N) =
λ

µ
Nη. (13)

Global invasion threshold in metapopulation networks

Let us consider a metapopulation model defined on a network in which nodes represents spatial regions with a certain
population (called subpopulation), links represents human mobility patterns between those regions and weights on
links quantify the average number of people traveling on each pattern.
The whole network has V nodes identified by a index i = 1, ..., V and the degree distribution of the nodes is P (k).
Since we consider network with a heterogeneous degree distribution, a more convenient representation of the systems
is provided by the quantities defined in terms of the degree k:

Nk =
1

Vk

∑
i|ki=k

Ni, (14)

where Vk is the number of nodes with degree k and the sum run over all nodes i having degree ki equal to k. Using
this degree-block description we can make explicit the dependency of R0(Ni) from k:

R0(Ni) −→ R0(k) ≡ λ

µ
Nη
k . (15)

Assuming the scaling of human contacts with population size, the expression of R0 is a function of the population Nk
in each patch:

R0(k) =
λ

µ
Nη
k . (16)

We introduce this new hypothesis in the basic formula for the evolution of the number Dn
k of diseased subpopulation

of degree k at epidemic generation n :

Dn
k =

∑
k′

Dn−1
k′ (k′ − 1)P (k|k′)

[
1−

(
1

R0(k)

)λk′k](
1− Dn−1

k

Vk

)
. (17)

At early stage of epidemics the probability that the subpopulation is not already seeded by infected individuals is

almost one

(
1− Dn−1

k

Vk

)
' 1, so:

Dn
k =

∑
k′

Dn−1
k′ (k′ − 1)P (k|k′)

[
1−

(
1

R0(k)

)λk′k]
. (18)
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Considering the case of uncorrelated networks, i.e. P (k|k′) =
kP (k)

〈k〉 and that R0(k) − 1 << 1; in this limit we can

approximate the local outbreak probability as:[
1−

(
1

R0(k)

)λk′k]
' (R0(k)− 1)λk′k. (19)

In this case we obtain:

Dn
k =

kP (k)

〈k〉 (R0(k)− 1)
∑
k′

Dn−1
k′ (k′ − 1)λk′k. (20)

The quantity λk′k can be estimated as:

λk′k = dk′k
α(k′)

µ
Nk′ . (21)

In the case of diffusion proportional to the product of the degrees:

dk′k = p
ω0(k′k)θ

Tk′
, (22)

where p is the diffusion rate and the term Tk′ in the traffic depend mobility case is defined as:

Tk′ = k′
∑
k

P (k|k′)ω0(k′k)θ = ω0
〈k1+θ〉
〈k〉 (k′)1+θ, (23)

thus,

dk′k = p
〈k〉
〈k1+θ〉

kθ

k′
, (24)

and

λk′k = p
〈k〉
〈k1+θ〉

(k)θ

k′
α(k′)

µ
Nk′ . (25)

The stationary solution ∂tNk(t) = 0 of the equation that describes the dynamics of individual, gives the population
in a node of degree k in the stationary state:

Nk =
k(1+θ)

〈k1+θ〉N where N =
∑
k

P (k)Nk, (26)

then

λk′k = p
〈k〉
〈k1+θ〉2

α(k′)

µ
(k′k)θ N. (27)

Substituting in the expression for Dn
k :

Dn
k = (R0(k)− 1)

k1+θP (k)

〈k1+θ〉2
pN

µ

∑
k′

α(k′) Dn−1
k′ k′θ(k′ − 1). (28)

In the case of macroscopic outbreak, in a closed population, the total number of infected individuals during the
evolution of the epidemic will be equal to α(k)Nk. The value of α(k) is dependent on the details of the disease, in
particular in the case of R0 ∼ 1 :

α(k) ' 2(R0(k)− 1)

[R0(k)]2
. (29)
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So we get:

Dn
k = 2

pN

µ
(R0(k)− 1)

k1+θP (k)

〈k1+θ〉2
∑
k′

Dn−1
k′

(R0(k′)− 1)

[R0(k′)]2
[(k)′1+θ − (k′)θ]. (30)

Let us define the auxiliary function Θn−1 as:

Θn−1 =
∑
k′

Dn−1
k′

(R0(k′)− 1)

[R0(k′)]2
[(k)′1+θ − (k′)θ]. (31)

We can rewrite the expression for Dn
k using the auxiliary function obtaining:

Dn
k = 2

pN

µ
(R0(k)− 1)

k1+θP (k)

〈k1+θ〉2 Θn−1. (32)

So the expression for the auxiliary function can be conveniently written in the iterative form:

Θn = 2
pN

µ

1

〈k1+θ〉2
∑
k′

(R0(k′)− 1)2

[R0(k′)]2
[(k′)2+2θ − (k′)1+2θ]P (k′)Θn−1. (33)

In the sum over k′ there are no terms that depend on k so:

Θn = 2
pN

µ

1

〈k1+θ〉2
∑
k

(R0(k)− 1)2

[R0(k)]2
[k2+2θ − k1+2θ]P (k)Θn−1. (34)

We can write:

(R0(k)− 1)2

[R0(k)]2
= 1− 2

R0(k)
+

1

[R0(k)]2
. (35)

Then:

Θn = Θn−1 2pN

µ

1

〈k1+θ〉2
[∑

k

[k2+2θ−k1+2θ]P (k)−2
∑
k

[k2+2θ−k1+2θ]
1

R0(k)
P (k)+

∑
k

[k2+2θ−k1+2θ]
1

[R0(k)]2
P (k)

]
.

(36)
As we said before, the value of R0(k) is:

R0(k) =
λ

µ
Nη
k =

λ

µ

(
k1+θ

〈k1+θ〉N
)η

=Mkξ, (37)

where M = λ
µ

N
η

〈k1+θ〉η and ξ = (1 + θ)η. Plugging this in the previous equation we have:

Θn = Θn−1 2pN

µ

1

〈k1+θ〉2
[
〈k2+2θ〉 − 〈k1+2θ〉 − 2

M
∑
k

[k2+2θ−ξ − k1+2θ−ξ]P (k) +
1

M2

∑
k

[k2+2θ−2ξ − k1+2θ−2ξ]P (k)

]
.

(38)
That yield to:

Θn = Θn−1 2pN

µ

1

〈k1+θ〉2
[
〈k2+2θ〉 − 〈k1+2θ〉 − 2

M [〈k2+2θ−ξ〉 − 〈k1+2θ−ξ〉] + +
1

M2
[〈k2+2θ−2ξ〉 − 〈k1+2θ−2ξ〉]

]
. (39)

It is natural to define the Global Invasion Threshold R∗ as:

R∗ =
2pN

µ

1

〈k1+θ〉2
[
〈k2+2θ〉 − 〈k1+2θ〉 − 2

M [〈k2+2θ−ξ〉 − 〈k1+2θ−ξ〉] +
1

M2
[〈k2+2θ−2ξ〉 − 〈k1+2θ−2ξ〉]

]
, (40)

that allows the increasing of infected subpopulations and a global epidemic in the metapopulation process only if

R∗ > 1. (41)

So we immediately find the condition on the mobility rate:

pN ≥ µ

2
〈k1+θ〉2

[
〈k2+2θ〉 − 〈k1+2θ〉 − 2

M [〈k2+2θ−ξ〉 − 〈k1+2θ−ξ〉] +
1

M2
[〈k2+2θ−2ξ〉 − 〈k1+2θ−2ξ〉]

]−1
. (42)
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General solution accounting for the R0(k) < 1 cases

Introducing the scaling of contacts, it might happen that R0(k) < 1 for some degree classes (see Figure S3).
Neglecting this condition introduces non physical terms in the threshold as shown in Figure S4 (red line). It is
reasonable considering that in subpopulation with R0(k) < 1 the probability for an outbreak to occur is zero:

1−R0(k)−λk′k = 0, ∀k|R0(k) < 1. (43)

All the expression obtained remain the same with a caveat: not all the k contribute to the moments. In other words
the basic expression for Dn

k becomes:

Dn
k =

∑
k′

Dn−1
k′ (k′ − 1)P (k|k′)

[
1−

(
1

R0(k)

)λk′k]
. (44)

Considering, as before, uncorrelated networks and R0(k)− 1 << 1:

Dn
k = (R0(k)− 1)

kP (k)

〈k〉
∑
k′

Dn−1
k′ (k′ − 1)λk′k. (45)

And the quantity λk′k become:

λk′k = δ[R0(k′)]α(k′)Nk′dk′k
1

µ
, (46)

or using the expression 29 for α(k′):

λk′k ' δ[R0(k′)]
2(R0(k′)− 1)

R0(k′)2
Nk′dk′k

1

µ
, (47)

where the δ is the step function:

δ[R0(k)] =

{
1 for k | R0(k) > 1

0 for k | R0(k) < 1.
(48)

Plugging this term in Eq. 45 the expression for the Global Invasion Threshold becomes:

R∗ =
2pN̄

µ

1

〈k1+θ2〉

[
〈k2+2θ〉∗ − 〈k1+2θ〉∗ − 2

M
[
〈k2+2θ−ξ〉∗ − 〈k1+2θ−ξ〉∗

]
+

1

M2

[
〈k2+2θ−2ξ〉∗ − 〈k1+2θ−2ξ〉∗

] ]
, (49)

where each moment 〈kx〉∗ =
∑
k|R0(k)>1 k

xP (k). Since R0 =Mkξ, it is an increasing and monotonous function of k.

So we can find k∗ | ∀k > k∗, R0(k) > 1. In other words, we can simply define:

〈kx〉∗ =
∑
k>k∗

kxP (k). (50)

Finally the condition on the mobility rate becomes:

pN ≥ µ

2
〈k1+θ〉2

[
〈k2+2θ〉∗ − 〈k1+2θ〉∗ − 2

M [〈k2+2θ−ξ〉∗ − 〈k1+2θ−ξ〉∗] +
1

M2
[〈k2+2θ−2ξ〉∗ − 〈k1+2θ−2ξ〉∗]

]
. (51)

It is important to notice that just the moments in the squared parenthesis are done in a subset of k. The moment
outside the parenthesis considers every k as it is related to the mobility and not to the internal spreading dynamics.
Clearly the mobility threshold is

pc =
µ

2N
〈k1+θ〉2

[
〈k2+2θ〉∗ − 〈k1+2θ〉∗ − 2

M [〈k2+2θ−ξ〉∗ − 〈k1+2θ−ξ〉∗] +
1

M2
[〈k2+2θ−2ξ〉∗ − 〈k1+2θ−2ξ〉∗]

]
. (52)
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Mobility threshold as a function of η

In the main text we show the phase space R∗(p, λ) for η = 0 and η = 0.12. Here, we show the behavior of the
invasion threshold for a larger set of η. As clear from Fig S5 increasing the value of η results in a larger phase space
where the invasion is possible. In particular, it is interesting to notice that different values of η are characterized by
similar values of pc, but very different values of λc.

Mobility threshold as a function of V

Real networks have finite size, thus the distributions characterizing their features, as the degree, are defined by an
upper bound. In our study, we consider uncorrelated scale-free networks generated with the configuration model [3].
In order to avoid structural correlations, the algorithm sets kmax =

√
V . Given such constraint, the invasion threshold

is a function of the network size through the moments of the degree distribution appearing in its definition. In this
section we derive the explicit dependence. To this end, let us consider the critical value of the mobility rate, pc, and
its dependence on V as:

pc(V ) ∼ A(V )

B(V ) + C(V )
(53)

where we defined A(V) = 〈k1+θ〉2, B(V ) = 〈k2+2θ〉∗ − 〈k1+2θ〉∗, and C(V ) = − 2
M [〈k2+2θ−ξ〉∗ − 〈k1+2θ−ξ〉∗] +

1
M2 [〈k2+2θ−2ξ〉∗ − 〈k1+2θ−2ξ〉∗]
Let us derive the explicit dependence of V for each term, starting with the numerator:

A(V) = 〈k1+θ〉2 =

(
1− γ

V
1−γ
2 − k1−γmin

1

2 + θ − γ k
2+θ−γ |

√
V

kmin

)2

(54)

In the limit of large V , and for any value of γ such that 1 < γ < 2 + θ, we can write:

A(V ) ∝ V 2+θ−γ . (55)

Let us consider the second term:

B(V ) = 〈k2+2θ〉∗ − 〈k1+2θ〉∗ =
1− γ

V
1−γ
2 − k∗(1−γ)

(
1

3 + 2θ − γ k
3+2θ−γ |

√
V

k∗ −
1

2 + 2θ − γ k
2+2θ−γ |

√
V

k∗

)
(56)

In the limit of large V , k∗ �
√
V , and for any value of γ such that 1 < γ < 2 + 2θ, we can write

B(V ) ∝ V 3+2θ−γ
2 (57)

Let us now consider the last term

C(V ) = − 2

M [〈k2+2θ−ξ〉∗ − 〈k1+2θ−ξ〉∗] +
1

M2
[〈k2+2θ−2ξ〉∗ − 〈k1+2θ−2ξ〉∗]. (58)

In the limit of large V , k∗ �
√
V , and for any value of γ such that 1 < γ < 2(1 + θ)(1− η), we can write

C(V ) ∝ V 3+2θ−γ+2η(1−γ)
2 (59)

Interestingly, for any value of γ > 1 the leading order in the denominator is B(V ). Thus we can write

pc(V ) ∝ V 1−γ
2 (60)

It is important stressing that the validity of such scaling is limited in the regime of large V , k∗ �
√
V , and 1 < γ <

minθ,η[2 + θ, 2 + 2θ, 2(1 + θ)(1 − η)]. For any general real value of θ and η we could have minθ,η[2 + θ, 2 + 2θ, 2(1 +
θ)(1− η)] < 1. In this case the scaling behavior derived would not be correct. Instead if θ > 2η−1

2(1−η) or η < 1+2θ
2(1+θ) the

minimum value of those quantities is always larger than one. This is the regime where the scaling derived above holds
and, interestingly, it coincides with the region of parameters we study. In fact, one of the settings we considered is
θ = 0.5 and η = 0.12. In general for such value of θ the scaling holds as long as η < 2/3.
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In Figure S6 we compare the empirical scaling evaluated through numerical solution of pc with the analytical trend
derived above. We set θ = 0.5, γ = 2.1, λ = 0.35, and µ = 0.3. From the plot we confirm that the scaling is
not function of η. Also, the fitted behaviors as function of V are in agreement with the theoretical prediction of
pc ∝ V −0.55. To further substantiate the comparison in Figure S7 we considered γ = 1.5. Also in this case, we do not
observe a dependence of η, and the numerical values are well captured by the theoretical prediction pc ∝ V −0.25.

The mathematical construct we proposed in this paper is, in general, valid for V → ∞. Indeed, beside the
explicit dependence on V we just derived, we expect others finite size effects. In fact, in small networks some of
the approximations we adopted are not strictly valid, and stochastic effects can become dominant. Consequently, by
reducing the system size we expect the experimental invasion threshold to deviate from our theoretical predictions.
In Figure S8 we show the behavior of D∞/V as a function of p for different values of V . As clear, from the plot the
theoretical estimation of the mobility threshold (vertical lines) is accurate for V = 105, while it is underestimated for
V = 104, and overestimated for V = 103. It is important to mention that the analytical conditions on the mobility
threshold we derived provides a lower bound for p. Thus empirical thresholds larger than theoretical predictions
are still compatible with our analytical results (as for the case V = 104). Instead, empirical thresholds smaller
than theoretical predictions are not compatible with our analytical results (as for the case V = 103). As expected,
decreasing V small finite size effects become increasingly important and deviations from the theoretical predictions
become increasingly large.
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FIG. S1: Top row: rescaled cumulative degree Cr against population N , measured between 13 129 406 Twitter users distributed
across 2371 basins in 205 countries (left panel). Center and right panels show the dependency of Cr on N restricted to the
Twitter users in the US and Europe. Bottom row: rescaled cumulative degree against population, measured between 4 606 444
Twitter users in 1344 metropolitan areas in 31 countries (left panel). Center and right panels show the dependency of Cr on N
restricted to the Twitter users in the US and Europe. We normalized the values of Cr and N by their average to compare the
results across different countries. In each panel we show the results of the super-linear and linear model fit, the corresponding
R̂2 and the p-value of the Student’s t test on the difference between the slopes. In all cases the user-user interactions are
bounded within the geographical areas.
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FIG. S2: Top row: rescaled cumulative degree Cr against population N , measured between 13 129 406 Twitter users distributed
across 2371 basins in 205 countries (left panel). Center and right panels show the dependency of Cr on N restricted to the
Twitter users in the US and Europe. Bottom row: rescaled cumulative degree against population, measured between 4 606 444
Twitter users in 1344 metropolitan areas in 31 countries (left panel). Center and right panels show the dependency of Cr on N
restricted to the Twitter users in the US and Europe. We normalized the values of Cr and N by their average to compare the
results across different countries. In each panel we show the results of the super-linear and linear model fit, the corresponding
R̂2 and the p-value of the Student’s t test on the difference between the slopes. In all cases the user-user interactions are not
limited within geographical areas.
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FIG. S3: We show that, for some values of the parameters, R0(k) can be smaller than 1 for some degree classes and greater than
1 for the other classes. The theoretical curve has been calculated on Eq. 37, while the empiric curve is measured averaging the
values of R0(k) in each degree class in a synthetic network (obtained with the uncorrelated configuration model algorithm [3])

at the stationary state. In this plot we used: N = 103, θ = 0.5, P (k) ∼ k−2.1|
√
V

2 , η = 0.12, µ = 0.35, V = 104 .
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FIG. S4: Comparison between the mobility threshold pN̄ with (red) and without (black) scaling of the contacts with population
size. In green we plot the new threshold that accounts also for the R0(k) < 1 . In the plot we used: N = 103, θ = 0.5, P (k) ∼
k−2.1|

√
V

2 η = 0.12, µ = 0.3, V = 105 .
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FIG. S6: Scaling behavior of pc with V for two different values of η. In the plot we used: N = 103, θ = 0.5, P (k) ∼
k−2.1|
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2 , µ = 0.3, λ = 0.35. The black and grey lines describe power-law fits. The theoretical prediction for the scaling is
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2 = V −0.25
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FIG. S8: D∞/V as a function of p for different values of the network size V . We considered V = 105 (panel A), V = 104 (panel

B), and V = 103 (panel C). In the simulations we used: N = 103, θ = 0.5, P (k) ∼ k−2.1|
√
V

2 , µ = 0.3, λ = 0.35. The vertical
lines indicate the theoretical prediction for the mobility threshold.


